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Abstract—Memetic algorithms with an appropriate trade-off
between the exploration and exploitation can obtain very good
results in continuous optimisation. That implies the evolutionary
algorithm component should be focused in exploring the search
space while the local search method exploits the achieved solu-
tions. In a previous work, it was proposed a memetic algorithm,
MA-LSCh-CMA, that was able to work with a local search
method, CMA-ES, with a great exploitation factor, but without a
mechanism to maintain diversity and avoid competition between
the evolutionary algorithm and CMA-ES. In this work, we
propose a variation of this algorithm, called RMA-LSCh-CMA,
adding a niching strategy that divide the domain search in
equal hypercubes. The experimental results obtained show that
the new version is statistically better than the previous one
and is very competitive in comparisons with the state-of-the-art
algorithm IPOP-CMA-ES, obtaining equivalent results on the
medium and higher dimensions, although slightly better in the
higher dimension.

I. INTRODUCTION

One of the main issues when designing an evolutionary

algorithm (EA) [1] for real-coded parameter optimisation

problems is to propose a good exploration of the search space

and, at the same time, to exploit the most promising region

to obtain high quality solutions. For that purpose memetic

algorithms (MA) arose [2], [3], which are a hybridisation

between EA and local search (LS) algorithms, mixing in one

model the exploration power of EA and the exploitative power

of the LS.

MAs with an appropriate trade-off between the exploration

and exploitation can obtain accurate solutions, improving the

search [4], [5]. Therefore, the key point in the design of a

MA is to avoid competition between the EA and the LS to

obtain that good trade-off. This is usually made increasing the

exploration factor of the EA, as the exploitation should be

made more efficiently by the LS component.

In a previous work [6] it was proposed an MA, MA-LSCh-

CMA. The originality of this model lies in its ability to apply

various times the LS on the same solution. The final state of

the LS parameters after each LS application becomes the initial

point of a subsequent LS application over the same solution,

creating a LS chain. This way, MA-LSCh-CMA adapts the

intensity of the LS to a solution in function of its quality.

MA-LSCh-CMA obtains good results, but the separation

between the effort of the EA and the LS in their specific tasks,

respectively exploration and exploitation, is not ensured.

In this work, we propose to add a niching strategy to

the MA-LSCh-CMA model, in order to avoid competition

between the EA and the LS by ensuring a high diversity in the

EA’s population. Contrarily to most niching strategies where

the niches are defined around the solutions of the population,

the niches are predefined as divisions of the search space. The

search space is divided into equal hypercubes each of which

represent one exclusion region, not allowing more than one

solution in each one. Also, the LS method is initialised to

explore inside these regions. This way, there is no competition

between the EA and the LS method.

This paper is structured as follows. In Section II, we give

a brief explanation of the MA-LSCh-CMA algorithm. In

Section III, we describe in detail the new proposal, remarking

the differences with the previous model. In Section IV, the

experimental framework is designed. In Section V, several

comparisons are carried out to study how the next algorithm

improves the previous one, and to show if the proposal is a

competitive algorithm, comparing with other state-of-the-art

algorithm. Finally, in Section VI, we present the conclusions

and future works.

II. THE MA-LSCH-CMA ALGORITHM

This section briefly describes the general scheme of the MA-

LSCh-CMA algorithm and its main components. More details

can be seen in [6].

A. General scheme

MA-LSCh-CMA was designed with the idea that the LS

should be applied with higher intensity on the most promising

regions. By promising regions, we consider the areas/regions

where the solutions are maintained the most time in the

population for their good fitness.

The MA-LSCh-CMA is a steady state MA which alterna-

tively applies a Steady-State Genetic Algorithm(SSGA) as EA

[7], and a CMA-ES [8] as LS method with an Istr. This

hybridisation model allow the same solution improve several

times, creating LS chain. Also, it uses a mechanism to store

with the solution the final state of the LS parameters after each

LS application. In this way, the final state of a LS application

over a solution will be used as the initial point of a subsequent

LS application over the same solution, continuing the LS. The

general algorithm can be seen in Algorithm 1.
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Algorithm 1 Pseudocode of MA-LSCh-CMA

1: Generate the initial population

2: while not termination-condition do

3: Perform the SSGA with nfrec evaluations

4: Build the set SLS of individuals which can be refined

by LS

5: Pick the best individual cLS in SLS

6: if cLS belongs to an existing LS chain then

7: Initialise the LS operator with the LS state stored

with cLS

8: else

9: Initialise the LS operator with the default LS param-

eters

10: end if

11: Apply the LS algorithm to cLS with Istr evaluations,

giving crLS

12: Replace cLS by crLS

13: Store the final LS state with crLS

14: end while

To select the individual cLS to which the LS will be applied,

the following process is used (steps 3 and 4):

1) The set SLS is build with the individuals of the popu-

lation that:

a) have never been improved by the LS.

b) have been improved by the LS but with an im-

provement (in fitness) superior to δmin
LS .

2) If |SLS | 6= 0, the LS is applied on the best individ-

ual in SLS . If SLS is empty, the whole population

is reinitialised except for the best individual which is

maintained in the population.

With this mechanism, if SSGA obtains a next best solution,

it should be improved by the LS in the following application

of the LS method.

B. The EA

The SSGA applied was specifically designed to promote

high population diversity levels by means of the combination

of the BLX−α crossover operator [9] with a high value for its

associated parameter (α = 0.5) and the negative assortative

mating strategy (NAM) [10]. Diversity is favoured as well

by means of the BGA mutation operator. The replacement

strategy used is Replacement Worst, RW. The combination

NAM-RW produces a high selective pressure.

C. The LS

The continuous LS algorithm is CMA-ES [8]. This algo-

rithm is the state-of-the-art in continuous optimisation. Thanks

to the adaptability of its parameters, its convergence is very

fast and obtains very good results. CMA-ES is an algorithm

that uses a distribution function to obtain new solutions, and

adapt the distribution around the best created solutions.

Its only parameters are the initial average of the distribution

~m and the initial σ. MA-LSCh-CMA sets the individual to

optimise cLS as ~m, and as the initial σ value the half of the

distance of cLS to its nearest neighbour in the EA’s population.

III. REGION BASED MA-LSCH-CMA

This section present the basic concepts of the novel niching

strategy that we included in the MA-LSCh-CMA.

Most EA for continuous optimisation are designed to offer

a good trade-off between exploration and exploitation. How-

ever, when implemented in a MA framework, they are being

used for their exploration ability as the exploitation part is

performed more efficiently by the LS algorithm.

We propose here to add to the MA-LSCh-CMA a niching

strategy to maintain the certain diversity in the EA’s popu-

lation. Through this niching strategy, we propose a clearer

separation between the exploration effort done by the EA and

the exploitation task of the LS method.

In Section III-A, we describe the proposed niching strategy.

Including such niching strategy implied two major modifi-

cations in the MA-LSCh-CMA, the redefinition of the EA,

explained in Section III-B and the initial parameters of the LS

explained in Section III-C.

A. The region based MA

Contrarily to most niching strategies where the niches are

defined by the area surrounding solutions of the population,

we propose here a strategy in which the niches are predefined

as divisions of the search space, divided into hypercubes of

equal size called here regions. This definition of a niche is

illustrated in Figure 1. Each dimension is divided into ND
divisions creating a grid of equal hypercubes, that represent

exclusive regions (niches) which can contain only one solution.

Fig. 1. Different niching strategy

B. The SSGA in a region-based MA

One of the key issues in niching strategies is to decide what

to do with a solution generated in the exclusion area of an

other solution. The modifications to the SSGA are described

in Algorithm 2. It consists in not allowing the generation of a

solution by the SSGA in a region that is already occupied by

another solution in the population if this solution is optimised.

By optimised, we refer to the fact that the last LS applied

to this solution has not brought enough improvements (upper



than δmin
LS ). Then, if a solution is optimised, we consider its

neighbourhood (and by consequence the region it lies in) has

sufficiently been explored. On the other hand, if the solution

is not optimised, the EA can replace it with a solution with a

better fitness in that region. That way, we avoid unnecessary

LS evaluations within the region to get a higher quality

solutions in it. In the latter case, instead of replacing the worst

individual in the population, the new solution will replace (if

it is better) the solution lying in the same region. This way,

we ensure that the population will not hold two solutions in

the same region.

Algorithm 2 Pseudo-code for the region-based SSGA

1: Randomly generate the population

2: while not termination-condition do

3: Select two parents in the population

4: Create an offspring cn using crossover and mutation

5: if cn falls in a region containing an individual co then

6: if co is considered optimised then

7: Mutate cn using the BGA mutation [11] and go

back to 5

8: end if

9: end if

10: if cn falls in a region containing an individual co then

11: Replace co by cn if f(co) > f(cn)
12: else

13: Replace the worst individual cworst in the population

if f(cworst) > f(cn)
14: end if

15: end while

C. The LS in a region-based MA

In order to put the emphasis on dedicating the exploration

task to the EA and the exploitation one to the LS, we have

also modified the strategy for initialising the parameters of the

LS. In the MA-LSCh-CMA, the initial step of the CMA-ES

is set between the area limited by its neighbouring solutions.

Here the CMA-ES initial step is set according to the size of

the region. We want to ensure that the close surrounding of a

solution are properly explored by the LS as this task will not

be done by the EA. The initial standard deviation is set to half

the size of the region. Apart from this modification, in order

to allow a proper refinement of the solution, the LS is not

influenced by the divisions of the search space. However, if at

the end of the LS application, the new solution is in a region

occupied, the best one is kept and the other one is replaced

by a randomly generated solution.

IV. EXPERIMENTAL FRAMEWORK

For the experimental sections, we have used the benchmark

proposed in the Special Session on Real Parameter Optimisa-

tion organised in the 2005 IEEE Congress on Evolutionary

Computation (CEC’2005). The complete description of the

functions can be seen in [12]. Note that every functions have

been shifted to ensure that the global optimum is not in the

center of search space.

In order to be able to compare our results with other

algorithms involved in the competition, we followed the re-

quirements descibed in [12] :

• Each algorithm is run 25 times for each test function,

and the average of error of the best individual of the

population is computed. The function error value for a

solution x is defined as (f(x)− f(x∗)), where x∗ is the

global optimum of the function.

• The study has been made with dimensions D = 10, D =
30, and D = 50.

• The maximum number of fitness evaluations for each run

is 10, 000 ·D, where D is the dimension of the problem.

• Each run stops either when the error obtained is less

than 10−8, or when the maximal number of evaluations

is achieved.

For the comparisons we use non-parametric tests [13],

because [12] shows that for this benchmarks parametric test

are not possible. In particular, we have considered two tests:

Wilcoxon’s test, to compare two algorithms, and Iman and

Davenport’s test and the post-hoc Holm’s test to compare more

algorithms.

V. EXPERIMENTAL RESULTS

We have carried out the experiments of RMA-LSCh-CMA

using the parameters’ values proposed by the authors of

MA-LSCh-CMA [6], for a reliable comparison: Popsize is

80, NNAM = 3, Pmutation = 0.125, Istr = 500, and

RatioLS = 0.5. The same way, the CMA-ES population is

popsizecmaes = 4+3 log(D), where D is the dimension, and

the offspring size is set to popsizecmaes/2
This section is thus composed as follows. In Section V-A,

we study the influence of the number of divisions on the

search. In Section V-B, we demonstrate through a few ex-

amples that the diversity is better maintained with the region-

alisation of the search space. In Section V-C, we compare the

results of our model against the original one, MA-LSCh-CMA,

and, in Section V-D, to the state-of-the-art, IPOP-CMA-ES.

A. Study of the number of divisions

When implementing a niching strategy, the most critical

parameter is the size of the niches. Here, the size of the niches

are defined by the number of divisions per dimension ND. We

test in this section three values of ND: 10, 50 and 100. The

detailed results can be found in the Appendix.

Figure 2 shows the average rankings obtained by the RMA-

LSCh-CMA instances with different ND values on the 25 test

functions with dimensions D = 10, 30, and 50. The mean

rankings correspond to the average of the ranking of each

algorithm on each function. We can note that the influence on

the number of divisions depends on the dimension. Indeed,

for smaller dimensions, a smaller number of divisions obtains

better results while for higher dimensions, a higher number of

divisions performs better on higher dimensions.



Fig. 2. Mean rankings obtained by RMA-LSCh-CMA with different number
of divisions over every functions of the CEC’2005 benchmark. The lower
columns corresponds to the best algorithms.

TABLE I
IMAN-DAVENPORT TEST FOR SIGNIFICANT DIFFERENCE BETWEEN THE

INSTANCES OF R-MA-LSCH-CMA WITH ND = 10, ND = 50 AND

ND = 100

Significant
Dimension p-value differences?

10 0.763 No
30 0.014 Yes
50 0.333 No

We first applied the Iman-Davenport’s test to the results of

the three instances of the model to assess any significant differ-

ences. Table I shows that there are no significant differences

in dimension 10 and 50. In dimension 30, we can observe

significant differences, thus we apply the Holm’s test using the

algorithm with best fitness, ND=50, as the control algorithm.

Table II show the results. It can be observed that ND=50 gives

significantly better results than with ND=10 and they are fairly

equivalent with ND=100. Thus, for the following experiments,

we set the number of divisions to 50 (ND=50).

TABLE II
COMPARISON USING HOLM’S TEST WITH α = 0.05 OF THE INSTANCE

WHERE ND = 50 AGAINST THE OTHER INSTANCES

Significant
i ND z = (R0 −Ri)/SE p α/i difference?

2 10 2.687 0.007 0.025 Yes
1 100 0.495 0.621 0.05 No

B. Diversity study

One objective of this new model is to maintain a certain

diversity in the population. In this section, we analyse the evo-

lution of the diversity along the search in each instances of R-

MA-LSCh-CMA and plotted it against the diversity observed

in the MA-LSCh-CMA. We chose the distance-to-average-

point measure as described in [14]. Figure 3 represents the

evolution of the diversity of each EA’s population.

Two important points are to be noted here: first, the num-

ber of divisions influences the diversity. Indeed, the smaller

the number of divisions, the higher is the diversity in the

population remains along the search. Also, RMA-LSCh-CMA

maintains a higher diversity in the EA’s population than MA-

LSCh-CMA.

C. Comparison with the MA-LSCh-CMA

The original purpose of this work was to improve the

promising results of the MA-LSCh-CMA. We analyse in the

improvements brought by the proposed niching strategy to this

algorithm.

TABLE III
WILCOXON SIGNED RANK TEST RESULTS OF RMA-LSCH-CMA VS

MA-LSCH-CMA

R+ R−
Dim RMA-LSCh-CMA MA-LSCh-CMA p− value
10 209.5 92 0.100
30 199.5 102 0.177
50 237.5 87.5 0.043

Table III shows the Wilcoxon signed rank obtained when

comparing both algorithms. We can see that the new model

obtains better results in every dimensions and is statistically

better in dimension 10 (with α = 0.1) and 50 (with α = 0.05).

The significant improvement in dimension 50 is particularly

interesting for being the most difficult optimisation cases.

D. Comparison with the IPOP-CMA-ES

In this section, we compare the efficiency of our algorithm

with IPOP-CMA-ES [15]. IPOP-CMA-ES is the winner of the

CEC2005 Real-Parameter.

Table IV shows the results of the comparison with IPOP-

CMA-ES applying the Wilcoxon’s test. We can see that al-

though the IPOP-CMA-ES is significantly better in dimension

10, we do not obtain statistical differences in dimension 30

and 50.

VI. CONCLUSION

This paper presents a MA, RMA-LSCh-CMA, in which we

demonstrated the importance of separating the effort of the

global search from the refinement of the solution. To avoid

the competition between the EA and the LS, we have decided

to divide the search space into predefined regions ensuring

each region only contains one solution. This division on the

search space led to two major modifications in the MA-LSCh-

CMA used as basis. The first one is to ensure that only one

solution of the EA’s population can be present in a region.

This maintains a certain diversity in the population to be

maintained and that the close neighbourhood of a solution

will not be explored by the EA. The second modification is

TABLE IV
WILCOXON SIGNED RANK TEST RESULTS OF RMA-LSCH-CMA VS

IPOP-CMA-ES

R+ R−
Dim RMA-LSCh-CMA MA-LSCh-CMA p− value
10 255.5 59.5 0.011
30 172 153 0.798
50 128 172 0.529
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Fig. 3. Evolution of the diversity in the population of the EA of the RMA-LSCh-CMA and MA-LSCh-CMA for different functions

the initialisation of the LS. It is now initialised according to

the size the regions to ensure that the region the solution to

which the LS is applied is properly explored.

We have experimented RMA-LSCh-CMA using the

CEC’2005 benchmark. The results obtained are significantly

better than obtained by MA-LSCh-CMA. We have also proven

that the diversity in the EA’s population is maintained a higher

level. We have observed that the number of divisions influ-

enced the quality of the results according to the dimension.

Finally, we have compared the results with the IPOP-CMA-

ES obtaining in dimension 30 and 50 statistically equivalent

results, although slightly better in dimension 50.

To summarize, RMA-LSCh-CMA improves in fitness and

in diversity the original MA-LSCh-CMA, and becomes a very

competitive algorithm.

As future work, considering the good results obtained in

dimension 50, we are going to study its application to higher

dimensions problems. Also, because there is a relation between

the number of divisions and the dimension, we will try to

design a model with an adaptable number of divisions.
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TABLE V
RESULTS IN DIMENSION 10 OF THE RMA-LSCH-CMA WITH VARIOUS

VALUES OF ND

F /ND 10 50 100

F1 1.00E-008 1.00E-008 1.00E-008

F2 1.00E-008 1.00E-008 1.00E-008

F3 1.00E-008 1.00E-008 1.00E-008

F4 1.00E-008 1.00E-008 1.00E-008

F5 1.00E-008 1.00E-008 1.00E-008

F6 1.00E-008 5.68E-003 1.68E-003
F7 1.00E-008 1.00E-008 1.00E-008

F8 2.04E+001 2.04E+001 2.04E+001

F9 8.15E-001 7.96E-002 1.00E-008

F10 4.18E+000 2.35E+000 1.83E+000

F11 3.32E-001 1.29E+000 1.64E+000
F12 1.47E+002 1.22E+002 2.19E+002
F13 6.29E-001 5.69E-001 4.78E-001

F14 2.84E+000 2.52E+000 2.15E+000

F15 2.13E+002 2.67E+002 2.72E+002
F16 8.43E+001 9.09E+001 9.02E+001
F17 9.72E+001 9.34E+001 9.28E+001

F18 7.79E+002 8.47E+002 8.57E+002
F19 7.63E+002 8.03E+002 8.60E+002
F20 7.51E+002 8.21E+002 8.36E+002
F21 7.47E+002 7.70E+002 7.70E+002
F22 7.42E+002 7.35E+002 7.30E+002

F23 9.31E+002 9.47E+002 9.35E+002
F24 2.36E+002 2.12E+002 2.76E+002
F25 4.10E+002 4.06E+002 4.40E+002

TABLE VI
RESULTS IN DIMENSION 30 OF THE RMA-LSCH-CMA WITH VARIOUS

VALUES OF ND

F /ND 10 50 100
F1 1.00E-008 1.00E-008 1.00E-008

F2 1.00E-008 1.00E-008 1.00E-008

F3 1.00E-008 1.06E-008 1.00E-008

F4 2.43E+001 4.02E-001 2.98E-001

F5 9.27E+001 3.77E+001 5.70E+000

F6 2.83E+001 1.49E+001 1.57E+001
F7 6.90E-004 1.00E-008 1.00E-008

F8 2.10E+001 2.09E+001 2.09E+001
F9 6.70E+000 2.73E-002 5.69E-004

F10 2.46E+001 1.79E+001 1.71E+001

F11 4.04E+000 1.24E+001 1.60E+001
F12 1.88E+003 1.64E+003 2.26E+003
F13 3.46E+000 2.50E+000 2.17E+000

F14 1.28E+001 1.26E+001 1.27E+001
F15 3.32E+002 3.15E+002 3.14E+002

F16 9.69E+001 8.57E+001 7.55E+001

F17 9.05E+001 7.18E+001 7.36E+001
F18 9.07E+002 9.02E+002 9.02E+002

F19 9.03E+002 9.02E+002 9.02E+002

F20 9.03E+002 9.06E+002 9.06E+002
F21 5.00E+002 5.00E+002 5.00E+002

F22 8.95E+002 8.67E+002 8.76E+002
F23 5.50E+002 5.34E+002 5.57E+002
F24 2.00E+002 2.00E+002 2.00E+002

F25 2.10E+002 2.11E+002 2.13E+002

TABLE VII
RESULTS IN DIMENSION 50 OF THE RMA-LSCH-CMA WITH VARIOUS

VALUES OF ND

F /ND 10 50 100

F1 1.00E-008 1.00E-008 1.00E-008

F2 1.00E-008 1.01E-008 1.03E-008
F3 1.00E-008 1.05E-008 1.00E-008

F4 3.82E+003 1.06E+003 1.83E+003
F5 2.22E+003 1.82E+003 1.70E+003

F6 1.87E+001 9.48E+000 3.79E+001
F7 1.00E-008 1.08E-003 1.00E-008

F8 2.11E+001 2.11E+001 2.11E+001

F9 5.69E-001 2.19E-002 1.00E-003

F10 6.60E+001 3.63E+001 3.81E+001
F11 1.11E+001 2.61E+001 3.27E+001
F12 1.47E+004 1.03E+004 1.18E+004
F13 6.00E+000 4.52E+000 4.06E+000

F14 2.26E+001 2.23E+001 2.21E+001

F15 3.13E+002 3.57E+002 3.01E+002

F16 5.89E+001 7.12E+001 5.33E+001

F17 9.59E+001 8.47E+001 5.92E+001

F18 8.72E+002 8.97E+002 9.21E+002
F19 8.21E+002 9.21E+002 9.20E+002
F20 8.97E+002 8.93E+002 9.21E+002
F21 5.24E+002 5.12E+002 5.00E+002

F22 9.41E+002 9.35E+002 9.12E+002

F23 5.67E+002 5.39E+002 5.53E+002
F24 2.00E+002 2.00E+002 2.00E+002

F25 2.14E+002 2.15E+002 2.19E+002


