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Abstract—An electric vehicle (EV) may be used as energy Though [9] and[[1I0] involve V2G operation to minimize the
storage which allows the bi-directional electricity flow béween cost, the consideration of system constraints, especiady
the vehicle’s battery and the electric power grid. In order o v/ elated constraints, is inadequate. In particulary tfel

flatten the load profile of the electricity system, EV scheduhg . . . .
has become a hot research topic in recent years. In this paper to take the features of EVs into consideration. The algorith

we propose a new formulation of the joint scheduling of EV Proposed in[[2] is efficient in reducing the EV individual os
and Unit Commitment (UC), called EVUC. Our formulation but the authors did not take the system running cost into

considers the characteristics of EVs while optimizing theystem  account. In particular, the Unit Commitment (UC) problem,
total running cost. We employ Chemical Reaction Optimizaon - he scheduling of generator units, is ignored. In order to

(CRO), a general-purpose optimization algorithm to solve lis . . . .
problem and the simulation results on a widely used set of avoid these drawbacks and provide an integrated solution of

instances indicate that CRO can effectively optimize this pblem.  the complete power system, we introduce UC into the optimal
scheduling model and propose a new formulation of jointly

Index Terms—Electric vehicle, unit commitment, chemical scheduling of Electric Vehicle and Unit Commitment (EVUC).
reaction Optlle&thﬂ, metaheurlstlc, power system, smetrgrld,

vehicle-to-grid. Metaheuristic is a kind of general-purpose algorithm which
optimizes problems in an iterative manner, trying to find or
I. INTRODUCTION improve a candidate solution given a measure of qualitys It i

ITH the growing concern on global climate change® Very Popular approach to solve UC-related problems [$][11
W governments and industries have invested extensivéi'ong all metaheuristics, Chemical Reaction Optimization
in environmentally friendly technologies. The transptioia (CRO) is a promising algorithm in solving combinatorial
sector is responsible for a large portion (24%) of greed'd continuous optimization problenis [12]. CRO mimics the
house gas emission][1], which has been recognized as bishaviour of molecules in a chemical reaction. It has been
of the major cause of global climate change. To alleviakSed effectively in solving many real-world problersi[13[].
such emissions, incentives have been provided to encourifydhis work, we use CRO to find optimal solutions of our
the adoption of electric vehicles (EVs). The next-generati ProPosed EVUC problem.

EVs have drawn the interest of researchers in recent years, arje main contribution of this paper is a new formulation of

they have the capability of performing vehicle-to-grid G2 e ioint scheduling of V2G and UC. Compared with previous
operation|[2]. V2G technology [3] is regarded as an impdrtag, mjations, our new formulation introduces additionahe
application of smart grid technology. An EV may be usedyaints to make it more practical. We also perform simatai

as energy storage which allows the bi-directional eléyric y, jemonstrate that CRO is a good method for solving this
flow between the vehicle’s battery and the electric pOW%Ii,Oblem

grid [4][5]. V2G can efficiently flatten the load profile of the
electric system with optimal scheduling of charging (giagd-  The rest of the paper is organized as follows. The related
vehicle, G2V) and discharging (V2G) behavior, which cawork is presented in Section Il. Section Il introduces the
potentially reduce the total system running cost and greapbmenclature we use in this paper. Section IV formulates the
house gas emissionl[6]. EVUC problem and the implementation of CRO to solve this
Recently, a number of algorithms for scheduling the chargroblem is described in Section V. We will demonstrate the
ing and discharging of electric vehicles have been proposexperiment instance and the simulation results in Sectibn V
[2I[7][B][8][10]. However, the algorithms proposed inl[2hd accompanied with analysis and discussion. Finally we will
[8] only consider EV charging during the scheduling processonclude this paper in Section VII.
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[l. RELATED WORK P!

Existing work of V2G operation scheduling of EVs can U
be divided into two classes: charging-only scheduling and
bi-directional scheduling. In charging-only schedulirthe fFep)
algorithms try to optimize the electricity flow from the powe
grid to the batteries of EVs. For example, Shresétaal. Uc;
optimized the EV charging cycles to off-peak periods to DC;
flatten the demand curve, in order to reduce the charging cosf bi, ci
[15]. Mets et al. presented a smart energy control strategy P
to charge residential plug-in hybrid EVs (PHEVS) to smooth B
the system load profilé_[7]. However, with the development Timr
of V2G technology, bi-directional charging, i.e., V2G and
G2V, is possible, and bi-directional scheduling algorithas
attracted much research recently. The role of EVs in the powe
system may change during the day from loads to sources, and’p
vice versa. Binary particle swarm optimization was emptbye Pp
to tackle the V2G scheduling problem to minimize the total Ppy
running cost and reduce green house gas emissidd in [9] and
[10]. Han et al. proposed an aggregator for V2G frequency
regulation in [16], aiming to maximize the revenue.

CRO is a recently proposed metaheuristic, which has been
developed intensely in the past few years. CRO was originall MUT;
designed to solve combinatorial optimization problem&lij | MDT;
where CRO is adopted to solve the Quadratic AssignmentTf
Problem, the Resource-Constraint Project Scheduling -Prob
lem, and the Channel Assignment Problem. The Cognitive
Radio Spectrum Allocation Problem is addressedin [17]. Yu
et al. proposed and solved a Sensor Deployment Problem withU R
CRO in [14]. Lamet al. analyzed the convergence of CRO for DRR;
combinatorial optimization in([18]. Laret al. also proposed ERP
Real-Coded CRO, a variant of CRO, to solve continuous Em
optimization problems in[[19]. Yiet al. solved an Artificial
Neural Network training problem in [13], and proposed saler
perturbation functions for RCCRO i [20].

Researchers have been using metaheuristics to solve UC and
its related problems for many years. Mantastyal. proposed a ER"
hybrid algorithm integrating genetic algorithm, tabu sbeand
simulated annealing to solve UC in|21]. Rajenal. proposed
an evolutionary programming-based tabu search method fo
the same problem in_[22]. Yousugt al. proposed a binary
particle swarm optimization to solve the UC with renewabl
energy sources i [10]. Chen proposed an expert system
elite particle swarm optimization algorithm to solve UC ir{O
[11]. As CRO has been applied to solve related power syst
optimization problems, e.g.[ [28][24] and has demonstrate
outstanding performance, we adopt CRO to solve this EVU®
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Power output of unit at time¢.

State of uniti at time¢. 1 is online and O is
offline.

Fuel cost of uniti when generating?® power
output.

Start-up cost of unit.

Shut-down cost of unit.

Fuel cost coefficients of unit

Maximum power output of unit.

Minimum power output of unit.

The set of time intervals when unitmust be
online.

The set of time intervals when unitmust be
offline.

System load demand at tinte

Spinning reserve at time

The amount of power discharged from EV
through V2G at timet. A positive value rep-
resents discharging to the power grid (V2G) and
a negative value represents charging from the
power grid (G2V).

Minimal uptime of uniti.

Minimal downtime of unit.

The number of continuous online or offline time
intervals before time: for unit i. A possitive
value represents online state and a negative rep-
resents offline state.

Maximum up-ramp rate limit of unit.

Maximum down-ramp rate limit of unit.

Battery capacity of EVin.

The amount of electricity hold by EVh at time

t.

Charging frequency of EVn.

The set of time intervals when EVs are charging
from the power grid7 "% = {¢#|VP%,, < 0}.
Total electricity consumed by EVh in a com-
plete scheduling period.

IV. EVUC PROBLEM FORMULATION

The purpose of UC problem is to determine the schedule
of the start up and shut down of power generator units, such
t?g t the total power output meets the fluctuating load over
e scheduling period at minimal co$t [11]. EVs connected
the grid can act as loads, sources, or energy storages. The
UC problem can be formulated as a constrained nonlinear
timization problem if we divide the scheduling periodoint

time intervals as follows:

problem.

IIl. NOMENCLATURE

Total number of time intervals.
The index of a time interval.
Length of a time interval.
Total number of thermal units.
The index of a thermal unit.
Total number of EVs.

The index of an EV.
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overP! fori=1,2,---,1, t=1,2,---,T.

In power systems, the fuel cost of a thermal unit is usually
formulated as a quadratic function:

FEC(P) = ai + biP + ¢; P*. (2)



This objective function of EVUC is subject to two classes 2) Charging Frequency Limitin order to save the battery
of constraints: UC and EV constraints. The former constsairlife, it is suggested to limit the charging frequency of EVs
are introduced by the original UC problem]11] and the latt§d25]. So the maximum amount of electricity charged to EVs
ones are introduced due to the special characteristics sf EV6 limited:

M
A. UC Constraints > Phy x At <) (ESP x freq,,). (10)

When considering UC constraints, we can consider the LT ehare m=1

collection of EVs as a new type of unit which can generate 3) Battery Electricity BalanceThe total electricity stored

or consume power at different times. in the batteries of EVs shall remain the same after a complete
1) Generation ConstraintsEvery online unit has genera-scheduling period, otherwise the EV system may have all
tion limits: its electricity depleted, or charged to capacity, rendgtin
L incapable of providing regulation service. In this proceks
P <P/ <P i=12---,I, t=12---,T. (3) energyconsumed by EVs themselves shall also be considered.

Assume that the total number of EVs in the system, re.,

~2) Must-run and Must-off UnitsSometimes units are as-js constant during the scheduling period. This constrant i
signed to be in a must-run or must-off status to meet differegymulated as follows:

requirements: - "
Uf =1 fort € Timr @ S Phy x A+ Y B =0, (11)
Ul=0 forte Timo =1 m=—1

3) System Power Balanc&he generation and demand of V. ALGORITHM DESIGN

the system must be identical: In this section, we will first briefly review CRO. Then the
detailed implementation of our proposed methodology well b
! presented.
> PlU/+Ppy —Ph=0 t=12---T. (5)
i=1 A. A Brief Review of CRO

4) Spinning Reserve Constraintsi order to prevent power CRO mimics the behavior of molecules in a chemical

supply interruptions, an adequate amount of spinning vesefeaction. Consider a closed container with some molecules.
is essential for a power system: Each molecule has a molecular structure, which is used to

represent a feasible solution, and different kinds of eperg

ro_ which represent some solution quality-related paramefess

> RU + Py — Ph—Psg >0 (6) lime evolves, the molecules move around randomly and eollid

i=1 ' with the container wall or with each other. The collisions
t=1,2,.--,T modify the molecular structures of participated molecules

according to some predefined rules. If the modification cdwuse
by the collision accords with the energy conservation laent
the modification is accepted and the molecular structuee, i.
a feasible solution, is potentially improved. CRO utilizess
mH > MUT, xU (1= UY) kind of modifications to perform optimization tasks. _
> MDTix(l—Uf‘l)Uf @) In CRO, ther_e are four k|.n§:is of elementary rea}gtlons,
namely, on-wall ineffective collisionop-wall), decomposition
=120 t=1,2---,T (deg, inter-molecular ineffective collisionrter), and synthe-
6) Ramp Rate LimitA unit cannot change its power outpu Sis @yn. In each |ter_at|on .Of CRO, only one out of these
. . : .~ four elementary reactions will occur. Among these elenmgnta
too rapidly. The range is constrained by the ramp rate Ilmltrseactions;on—wall anddectake one molecule as input (parent
jo pit—l <URR i=1,2,---,I, t=1,2,---,T modlecule) wlhileiﬂter and syr; tak:a (tv;/o moleculeson-wall
t—1 ¢ . - . and synemploy the input molecule(s) to generate one output
P -PsDRR i=12-,1 1=12---,T (child molecule) whiledecandinter generate two. The occur-
B. EV Constraints rence of these elementary reactions are controlled byrdiite
o . . parameters. Although they are quite different in terms of
1) Capacity I__|m|t: The to_tal _"”T‘O“”‘ of electnmty_ which inputs and outputs, they share a common characteristichwhic
can b_e s'_[ored in the EVs is limited by the capacity of th(?istinguishes CRO with other metaheuristics. All elemgnta
batteries in the EVs: reactions satisfy the energy conservation law, i.e., treggn

5) Minimal Uptime and DowntimeA unit must be online
or offline for a certain number of time intervals before it ca
be shut down or started up:

M M in the whole system remains the same before and after the
Z ECa _ Z E' >0 t=1,2,---,T. (9) elementary reaction. Interested readers can refef told@p]|

m=1 m=1 for details.



B. Encoding Scheme again sequentially until no violation is found. As this resion

As stated in Sectiofi IV, we us€ to represent the total is a time-consuming task, we will discard this solution and
number of time intervals and to represent the set of units.9enerate a new one if the solution still cannot pass all the
So we can use & x I binary matrix to represent the schedul&onstraint checks after 10 recursions. Thus we can guarante
of online status of thermal units, where 1's stand for onlin@® UC part of our generated initial solution satisfy Coaistis
and 0’s for offline. Besides this typical encoding schemeafor@). (6), and [(¥).
canonical UC problem, we also append a vector of lerigth  FOr the EV part of an initial solution, we suppose that no
to represent the power output of all EVs. So a typical sotutimart operation, i.e., having EVs as storages or sourcesr®c

s for the EVUC problem is composed of two parts: an UdD the scheduling period. 1\%0 the total amount of electricity
part and an EV part as follows: charged to the EVs iy, _, ES". This amount is first
evenly distributed to all time intervals. Then we check this
solution against Constraintl(6), which is the only consirai
vt vy - Ul Phy this solution may violate. If this constraint is violatetheh
v¢ uvi - U} Pi, we calculate the excessive electricify, at timet., when
§= : : : the maximum power output of all online thermal units cannot

satisfy the requirement of demand and spinning reserve:

T "
T
uc EV Eey = Pp+Psp — Ppy — ZEUf (12)

C. Initial Solution Generation i=1

As a feasible solution of EVUC can be divided into tWOTh|s excessive electricity then is divided evenly and dlslped_
parts, we initialize them separately. Instead of randonely-g to all time intervals whose maximum power outputs can satisf

erating binary numbers for the UC part (as is usually tH@e spinning reserve requirement. This process repeatsiant

case when using metaheuristic to solve other optimizatidfi'® interval violates constrairffl(6). Here is an examplep-S
there are three thermal units with= [100, 100, 100]T,

problems), we use a heuristic proposed [in] [11] to generd}8S€ e > 10U]
this part. Note that this heuristic, or so-called “Expers@yn the demands and spinning reserves c]\>4f the three time inserval
Pre-dispatch” cannot guarantee the solutions generates nare Pp + P§p = [80,290,170]T, and -, | ER" = 50. After
good performance. For the EV part, we will dispatch the E{€ first step of even dispatch, a possible solution is:
charges evenly without violating the constraints.

The main idea of the initial solution generator of the UC part

proposed in[[I1] is that an initial solution will go through a Lo 0 —16.667 Lo =20
UC constraints to check whether any violation occurs. When b =16.667 1 = 11 1 —10
’ 1 1 0 -16.667 1 1 0 -20

a solution violates any constraint, it will be repaired gsin

some predefined “rules”. This process can be further dividétbwever, the excessive electricity in the second time viatler

into three steps: a) check Constrainlt (4), b) check Comstraviolates Constraint[{6). So the excessive electridity, =

@), and c) check Constraintl(7). Other UC constraints will90 — (—16.667) — 300 = 6.667 is dispatched to the other two

be satisfied in the process of Economic Dispatch (ED), whig¢ime intervals, rendering the solution feasible. Up to nberé

will be introduced later. Interested reader can refefiq fad is no smart operation in our initial solution. The Consttgin

details of this initial solution generation heuristic. @), (I0), and[(I1) are naturally satisfied, otherwise thesEV
However, this method has a serious drawback. As the stépghe system would not have enough electricity to function,

previously stated are performed sequentially, it is hidiigly —and this is not an acceptable situation.

that the repair function in Step ¢ may potentially make the i

solution violate Constrainf16) again, despite this soluthas D- Neighborhood Search Operator

just passed the checks in Steps a and b. Here is an exampl@he neighborhood search operator, which modifies one

Suppose a thermal unitwith MUT; = M DT; = 3. The unit feasible solution and attempts to find another one, is enaploy

state of unit; in a solution which just passed Step a and im all four elementary reactions in our CRO implementation

check is[---,1,1,1,1,0,0,1,1,1,1,---]7. As this sequence for this problem. As each solution can be divided into two

does not satisfyM DT;, either state of the two underscoregarts, we will modify them separately.

time intervals must be changed to 0. However, this changel) UC Part Modification: At the beginning, the neighbor-

potentially decreases the maximum power output of this tinl@od search operator will first generate a random position in

interval, which may in return violate Constraift (6). Moveo, the 7' x I binary matrix except those must-run and most-

as there is no feedback scheme in this method, this violatiofi positions. The state in this position is then toggled,,i.

will still be retained without repair and the solution beasn U! « 1 — U}. Then the newly generated solution will be

infeasible. In order to overcome this drawback, we add checked against Constrainfd (6) afdl (7). If either one of the

simple recursive scheme to the original method: every mwlut constraints is violated, the modification is discarded aral t

after going through all the steps will go through these cbeckolution is reverted to the original state. In such cases, th



: : . TABLE |
algorithm will go on to modify the EV output values. However, CAPACITY AND COST COEFFICIENTS OFTHERMAL UNITS

if the algorithm successfully modifies one position in the UC _
part without violating the constraints, the EV output value_Unit  P(MW)  P(MW)  a;($h)  b;($MWh)  c;($IMWh?)

will not be changed. An example of the operation of this 1 455 150 1000 16.19 0.00048
. . 2 455 150 970 17.26 0.00031
neighborhood search operator is as follows: 3 130 20 700 16.6 0.002
4 130 20 680 16.5 0.00211

5 162 25 450 19.7 0.00398

6 80 20 370 22.26 0.00712

L0 0 =20 110 =20 7 85 25 480 27.74 0.0079

1 11 —-10|=1]1 1 1 =10 8 55 10 660 25.92 0.00413

1 1 0 =20 1 1 0 -2 9 55 10 665 27.27 0.00222

10 55 10 670 27.79 0.00173

where the neighborhood search operator toggles the state of

the second unit on the first time interval from offline to oelin

which is bolded in the above transformation. Finally, for syn we compare the performance of the two input
2) EV Part Modification:|If the UC part modification does solutions, pick the better one, and perform the neighbathoo

not successfully change any state, the algorithm will modikearch on it.

the EV part values. In order not to violate Constralni] (11),

the sum of all EV output values shall keep unchanged. So We Economic Dispatch

first select two random time intervals,. and tq.. from T, Up to now our solution is a binary matrix and a real-

assign one of them to be the time interval for which we decidgimber vector. However the EVUC problem requires the

to increase the EV output (increase V2G or decrease G2¥hwer outputs of the units instead of the online status. So

and the other to be the time interval for decreasing the EWe algorithm must dispatch the load demand to all online

output. As Constrain{{6) limits the maximum power that thanits, and this process is called Economic Dispatch (ED).[27

selected outputs can increase/decrease, we first deteth@ineln EVUC, we use the lambda iteration method for economic

increase/decrease rangas dispatch in the UC problem as this method is guaranteed to
7] find the optimal ED solution with a small enough estimation
- min(PBnc _ Pgncv _ Z(&)’ error [28].
] =t (13) VI. SIMULATION RESULTS AND DISCUSSION
Z(E) } Plosyy _ plass _ plc). Our proposed approach was implemented in C++ on an Intel

Core i5 3.1-GHz processor with MinGW compiler. We analyze
i . . . . . the efficiency of V2G as well as the performance of CRO with
The first term in themin operator is the maximum increase )

. . a test system of up to 40 units.
range fort,c and the second term is the maximum de-

crease range fotgec With this range, we draw a randoma, Testing Instance

increase/decrease value~ N(0,7/3). If the absolute value In our simulation, an independent system operator (ISO)
of v is larger thanr, this v will be discarded and we randomly f a 10-unit systerr,1 is considered with 50 000 GVs. This
Qraw anot_her one.from the dist.ribution. Thig process wi O has been considered in many investigati@ms[@]m][ll]
geralliteedutgt'rlnzd];?atsr']tgqé}\l/ iugo’uq]\/lzludersav(\)l?ihzhtl\?vg Isret\r/]i((e)TJslwe consider a 24-hour scheduling horizon. Tdble | gives the
sglpe cted time in'?ervals i o P P Xapacity and cost coefficients of these thermal units anteTab
e [Mgives the time-dependent parameters of these therm#d.uni

Phve « Pgre + v In this system, the system reserve is set to 10% of the total

(14) demand (load demand and EV charging demand), the shut

_ ) _ ) down cost is ignored, and the start-up cost is calculateagusi
This operation may violate Constrainfd (9) afd] (10). In such

cases, this modification on EV output values is reverted bad t o UC® MDT; < -7} < MDT; + T
neighborhood search operator will do nothing in the current™ ~* — Ucfold —rt > MDT; 4 T
elementary reaction.

i=1

Pyt « P — |vl.

(15)

_ whereTr°!? is the extra time needed for urnitto completely

E. Elementary Reactions cool down besided/ DT;. So the start-up cost is temperature

In our proposed methodology, we employ the neighborhodépendent where a cold unit requifé§°° to start-up while
search operator in all four elementary reactions, naroely a warm unit requires less costC™. The load demands for
wall, deg inter, andsyn Foron-wall, the neighborhood searchthe 24 hours are presented in Tablé IlI. This load profile does
operator can be employed as described befored€ome first not include the energy consumed by EVs.
copy the input molecular structure to the two output molesul  In order to have a complete assessment of the proposed al-
and then perform neighborhood search on them separatelgrithm, we also made a 20- and 40-unit system by duplicating
We treat inter as two on-walls occurring simultaneously. the 10-unit system and scaling the load demands as well as



TABLE Il TABLE IV

TIME-DEPENDENTPARAMETERS OFTHERMAL UNITS CRO RARAMETER VALUES
Unit MUT;, MDT, t}(h) UCM($) UCPYS$) 1) Parameter Value
1 8 8 5 4500 9000 8 Initial population size 5
2 8 8 5 5000 10000 8 Initial molecular kinetic energy 100
3 5 5 4 550 1100 -5 Initial central energy buffer size 0
4 5 5 4 560 1120 -5 Collision rate 0.05
5 6 6 4 900 1800 -6 Energy loss rate 0.05
6 3 3 2 170 340 -3 Decomposition threshold 10 000
7 3 3 2 260 520 -3 Synthesis threshold 100 000
8 1 1 0 30 60 -1
9 1 1 0 30 60 -1 TABLE VII
10 1 1 0 30 60 1 BESTRUNNING COSTCOMPARISON BETWEENTWO MODELS
TABLE Il Units  Load Leveling V2G difference
SYSTEM LOAD DEMAND (WITHOUT EVS DEMAND, IN MW) 10 $572,467.30 $564,727.87 -$7,739.43
20  $1,145,196.73  $1,128,131.28 -$17,065.45
Hour 1 2 3 4 5 6 7 8 40  $2,286,394.59 $2,257,690.96 -$28703.63
Demand 700 750 850 950 1000 1100 1150 1200
Hour 9 10 11 12 13 14 15 16

Demand 1300 1400 1450 1500 1400 1300 1200 1050 . , -
Hour 17 18 19 20 71 27 23 54C. Comparing CRO with Other Metaheuristics

Demand 1000 1100 1200 1400 1300 1100 900 800

In order to demonstrate the superiority of CRO in solving
EVUC, we compare the simulation result of CRO with other

metaheuristics on 10-, 20-, and 40-unit systems. The select

the system capacity (in terms of EV number) in proportion Qetaheuristics are all algorithms with excellent perfanoe

the system size. For 20-unit system, there are 100 000 E Solving UC and related probl Th 291 OIEA
and the load demand for the first hour is 1 400 MW. Su%o ving and related problems. These are EP [29], Q

. e L , SA [31], LRPSO [[32], and ES-EPSO [11]. As there
configuration is also studied iG.JL1]. is no published results on our proposed EVUC problem, we

The EV parameter values_use(:aipn this paper are as followsy)jement these algorithms according to the descripticthén
average EV battery capacitgVe® = 15kWh, charging ., esnonding literature. The function evaluation linsitset

frequencyfreq = 1&?& and average EV energy consumption, 54 00g. The parameter values are selected according to the
over 24 hoursEVen = 8.22kWh. All these numbers are published records. Every algorithm is tested over all syste
Br 100 times. The simulation results are presented in Table

EVUC are listed in Tabld_IV. We select these parame

values using a trial-and-error method, which has been usegrom the results we can see CRO outperforms other al-

in [12][20]. gorithms in every test on both the comparison of best cost
and the mean cost. The superiority is enhanced when the

problem size increases. In terms of computational time,EP i

In order to demonstrate the advantage of our V2G schemg fastest algorithm but the advantage over CRO is nedgigib
compared with the current E\_/ charging-only schedulinmmost 95% the of total time of CRO, EP, QIEA, and SA
scheme, we propose and investigate two models represenfidgmployed to solve ED using the lambda iteration method,
the two schemes, respectively. which is not avoidable in all UC simulations. As to LRPSO

1) Load-Leveling Model:In this model, EVs are chargedang ES-EPSO, the relatively high computational compleiti

through thermal units using load-leveling optimizationo Nof the algorithms make them less competitive.
V2G operations are made. In this model, Constrdint (10) in

EVUC becomes VIlI. CONCLUSION

B. Analysis on V2G Efficiency

Phy <0 t=1,2,--- T (16) In this paper, we propose a new optimization problem,
namely, joint scheduling of EVs and UC, called EVUC.
The simulation results for this model is presented in Tallle \Our formulation can overcome the drawbacks of previous
2) V2G Model: In this model, EVs are charged througtformulations. The main idea of the problem is to employ EVs
thermal units as loads and discharged to the grid as sour@es.power sources and storages at different times, instead of
The simulation results for this model is presented in TaHle Vonly using them as loads. The major improvement of our
From TabledV an@WI we can see that, the total runnirfgrmulation with previous formulations is that we consider
cost is reduced by $7738.63 every 24-hour cycle, due to Ve special characteristics of EVs while optimizing theatot
operations. This phenomenon can also be observed in #ystem running cost. This improvement makes our model more
simulations on the 20- and 40-unit systems, whose resulealistic and also more effective at reducing the totalesyst
are presented in Table_VII. All the simulation results showunning cost. In order to assess the efficiency of our formu-
that introducing V2G technology to existing power system cdation, we employ CRO to solve the optimization problem.
effectively reduce the running cost. The simulation results indicate that our proposed scheduli



TABLE V
BESTSCHEDULING AND DISPATCH OF10-UNIT SYSTEM WITHOUT V2G USING CRO

h\unit 1 2 3 4 5 6 7 8 9 10] V2G | Load Reserve
1| 455.00 324.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.009.98| 700 16.67%
2 | 455.00 324.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (0.0@29.65 750 16.72%
3 | 455.00 324.33 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.069.33 | 850 14.37%
4 | 455.00 324.77 130.00 130.00 0.00 0.00 0.00 0.00 0.00 .089.77 950 12.52%
5 | 455.00 324.19 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D.064.19 | 1000 25.17%
6 | 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D.000.00 | 1100 21.09%
7 | 455.00 410.02 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D.000.02 | 1150 15.82%
8 | 455.00 455.00 130.00 130.00 30.01 0.00 0.00 0.00 0.00 D.000.01 | 1200 11.00%
9 | 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00.00 | 1300 15.15%
10 | 455.00 455.00 130.00 130.00 162.00 33.00 25.00 10.00 0.0000 0. 0.00 | 1400 10.86%
11 | 455.00 455.00 130.00 130.00 162.00 73.00 25.00 10.00 0.00.000 0.00 | 1450 10.83%
12 | 455.00 455.00 130.00 130.00 162.00 80.00 25.00 43.00 10.00.001 0.00| 1500 10.80%
13 | 455.00 455.00 130.00 130.00 162.00 33.01 25.00 10.00 0.0000 p. -0.01 | 1400 10.86%
14 | 455.00 455.00 130.00 130.00 85.02 20.00 25.00 0.00 0.00 0.00.02 | 1300 15.15%
15 | 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 D.000.00 | 1200  11.00%
16 | 455.00 323.64 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D.003.64 | 1050 25.23%
17 | 455.00 324.47 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D.664.47 | 1000 25.13%
18 | 455.00 360.06 130.00 130.00 25.00 0.00 0.00 0.00 0.00 D0.000.06 | 1100 21.08%
19 | 455.00 440.01 130.00 130.00 25.00 20.00 0.00 0.00 0.00 D.000.01 | 1200 17.67%
20 | 455.00 455.00 130.00 130.00 162.00 33.01 25.00 0.00 0.00 0010. -0.01 | 1400 10.86%
21 | 455.00 455.00 130.00 130.00 85.02 20.00 25.00 0.00 0.00 0.060.02 | 1300 15.15%
22 | 455.00 455.00 130.00 0.00 35.00 0.00 25.00 0.00 0.00 .000.00 | 1100 17.00%
23 | 455.00 324.79 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.069.79 900 14.31%
24 | 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 800 13.75%
Expected running cost = $572467.30
TABLE VIl ) ) )
COMPARISON OFSOLUTION PERFORMANCE OFCROAND OTHER [2] Y. He, B. Venkatesh, and L. Guan, "Optimal scheduling @brarging
ALGORITHMS and discharging of electric vehicledEEE Trans. Smart Gridvol. 3,
no. 3, pp. 1095-1105, 2012.
Units _Algorithm __ Best Cost(3)  Mean Cosi(3) Mean Time(s)  [3] H. Lund and W. Kempton, “Integration of renewable enero
10 CRO 564,727.87 565,019.42 502 the transportation and electricity sectors through vZypergy Policy
QIEA 565,294.13 565,364.46 217 [4] A. Y. S. Lam, K.-C. Leung, and V. O. K. Li, “Capacity managent
SA 567,639.85 568,249.21 2.09 of vehicle-to-grid system for power regulation servicen,Proc. IEEE
LRPSO 566,912.80 567,438.57 2.85 Intl. Conf. Smart Grid Comm. (IEEE SmartGridComnipinan City,
ES-EPSO 565,047.61 565,497.39 2.96 Taiwan, Nov. 2012, pp. 1-6.
20 CRO 1,128,131.28 1,129,473.01 3.48 [5] A.Y.S. Lam, L. Huang, A. Silva, and W. Saad, “A multi-layenarket
EP 1,131,524.73 1,136,132.33 3.44 for vehicle-to-grid energy trading in the smart grid,” Proc. IEEE
QIEA 1,130,148.48 1,130,578.16 3.7 INFOCOM Workshop on Green Networking and Smart Griliar.
SA  1,134,861.47  1,136,905.79 3.61 2012, pp. 85-90.
LRPSO 1,133,126.98 1,133,913.37 5.41 [6] D. Kum, H. Peng, and N. K. Bucknor, “Optimal energy andadyst
ES-EPSO  1,129,632.35 1,130,975.40 5.69 temperature management of plug-in hybrid electric vebid mini-
20 CRO 2,257,690.96 2,250,279.49 5.09 mum fuel consumption and tail-pipe emissionEEEE Trans. Control
EP 2,263,546.88  2,272,957.50 5.95 Sys. Tech.vol. 21, no. 1, pp. 14-26, 2013.
QIEA  2,260,964.88 2,261,157.61 6.31 [7] K. Mets, T. Verschueren, W. Haerick, C. Develder, and F.TDrck,
SA  2,269,970.59 2,273,957.16 6.22 “Optimizing smart energy control strategies for plug-inbhy electric
LRPSO 2,266,485.37 2,267,800.28 10.32 vehicle charging,” inProc. IEEE/IFIP Netw. Oper. Manage. Symp.
ES-EPSO  2,259,141.88 2,261,421.76 10.8 (NOMS) Apr. 2010, pp. 293-299.

(8]

algorithm can significantly reduce the running cost while

maintaining sufficient spinning reserve to handle emergend®!
situations. Moreover, we compare the simulation results of
CRO with a wide range of other metaheuristics with excelleni] —, “Resource scheduling under uncertainty in a smaiti gvith
performance in solving similar problems in previous litera.
CRO outperforms all other compared metaheuristics in terrm]
of both the best cost and the mean cost, and the simulati@n tim

needed is among the shortest. All these phenomenon show that pp. 780-789, 2012.
CRO is an efficient method for our proposed EVUC problenHL.Z]
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