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Abstract— Bilevel programming problems are often found in
practice. In this paper, we handle one such bilevel application
problem from the domain of environmental economics. The
problem is a Stakelberg game with multiple objectives at the
upper level, and a single objective at the lower level. The
leader in this case is the regulating authority, and it tries
to maximize its total tax revenue over multiple periods while
trying to minimize the environmental damages caused by a
mining company. The follower is the mining company whose
sole objective is to maximize its total profit over multiple periods
under the limitations set by the leader. The solution to the model
contains the optimal taxation and extraction decisions to be
made by the players in each of the time periods. We construct
a simplistic model for the Stackelberg game and provide an
analytical solution to the problem. Thereafter, the model is
extended to incorporate realism and is solved using a bilevel
evolutionary algorithm capable of handling multiple objectives.

Index Terms— Stackelberg games, multi-criteria decision
making, genetic algorithm, bilevel programming, environmental
economics

I. I NTRODUCTION

We present and solve a multi-objective Stackelberg compe-
tition model found in the field of environmental economics,
where the aim of a regulating authority is to earn revenues
through taxes and regulate the environmental damages caused
by a gold mining company. The regulating agency in such
a problem is usually the government which acts as a leader.
The mining firm is the follower, which reacts rationally to the
decisions of the leader in order to maximize its own profit. In
this problem, the leader has two objectives while the follower
has one. In this strategic game, the leader solves the problem
to find his optimal strategy, assuming that he possesses all
necessary information about the follower. This gives rise
to two levels of optimization tasks, with one optimization
problem nested within the other. Such problems are also
commonly referred to as bilevel optimization problems [2]
in the literature.

The problem in this paper involves finding optimal actions
for the government over multiple time periods for which
the mine operates, with one objective being overall tax
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revenue maximization, and the other being preservation of
the environment by way of pollution minimization. The
actions of the leader consist of choosing the optimal tax
structure. The follower chooses an optimal technology to
match the tax structure as well as makes optimal extraction
decisions in order to maximize the expected profits. Such
a problem frequently arises for authorities making environ-
mental regulatory decisions. Due to the difficulties involved
in handling such environmental problems, the authorities
usually choose a satisfying solution, instead of solving the
problem to optimality.

There have been many studies concerning bilevel opti-
mization problems [5], [19], [9], and their practical applica-
tions are well documented in the literature [2]. Such problems
differ from common optimization problems because they
contain a nested optimization task within the constraints of
the outer problem. The main optimization task is usually
termed as the upper level problem, and the nested optimiza-
tion task is referred to as the lower level problem. Due to
the tiered structure of the overall problem, a solution to the
upper level problem may be feasible only if it is also an
optimal solution to the lower level problem. This requirement
makes finding a solution to bilevel optimization problems
particularly challenging.

Bilevel problems are often solved using approximate so-
lution methodologies, which may not necessarily lead to an
optimal solution [4], [2], [14] for a complex case. Some
common techniques employed by researchers and practition-
ers in handling such problems include the Karush-Kuhn-
Tucker approach [12], [4], the use of penalty functions [1],
and Branch-and-bound techniques [3]. Further useful insight
and discussion on the subject of bilevel programming may
be found in [5] and [19]. Another approach for handling
complicated bilevel optimization problems are evolutionary
algorithms, which have proven to be potent tools for handling
such tasks in the recent past [21], [20].

The presence of multiple objectives appends further chal-
lenges to a bilevel programming problem. The difficulties
involved in handling such problems have deterred researchers
from working on effective methodologies for solving multi-
objective bilevel problems. Practical applications are also rare
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because practitioners often tend to pose such problems with
a single objective, though the inherent nature of the problem
might involve multiple objectives. Despite these challenges
recently there has been interest in these problems [10], [17],
[8], [18], [15], [22].

The paper is structured in the following manner. In Section
II we provide a description of a multi-objective bilevel
problem. Section III outlines the case study of the paper.
Section IV develops the model used in this study by first
providing a closed-form solution to a simple formulation of
the problem and then by presenting and solving an extended
dynamic model with more realism. Section V describes the
solution procedure employed to solve the extended model.
Section VI discusses the results obtained through the solution
process. Section VII summarizes and concludes the paper.

II. D ESCRIPTION OF AMULTI -OBJECTIVEBILEVEL

PROBLEM

A general multi-objective bilevel optimization problem has
two levels of multi-objective optimization tasks. However,
the problem considered in this paper has two objectives at
the upper level, and only a single objective at the lower level.
Such a multi-objective bilevel optimization problem can be
described as follows:

Max(xu,xl) F(x) = (F1(x), F2(x)) ,
subject to xl ∈ argmax

(xl)

{

f(x)
∣

∣g(x) ≥ 0,h(x) = 0
}

,

G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)
In the above formulation,F1(x), F2(x) are upper level

objective functions, andf(x) is the lower level objective
function. The functionsg(x) andh(x) determine the feasible
space for the lower level problem. The decision vector isx

which comprises of two smaller vectorsxu and xl, such
that x = (xu,xl). The lower level optimization problem
is optimized only with respect to the variablesxl, while
the variablesxu act as fixed parameters for the problem.
Therefore, the solution set of the lower level problem can be
represented as a function ofxu, or asx∗

l (xu). This means
that the upper level variables (xu) act as a parameter to
the lower level problem, and hence the lower level optimal
solutions (x∗

l ) are a function of the upper level vectorxu.
The functionsG(x) andH(x) along with the optimality to
the lower level problem determine the feasible space for the
upper level optimization problem.

III. M INING VS ENVIRONMENTAL DAMAGE : A CASE

STUDY

Kuusamo region lies in the northern part of Finland. It
is well known for its natural beauty and is a popular tourist
resort. Recently, there has been a lot of interest in this region,
as it is considered to be a “highly prospective Palaeopro-
terozoic Kuusamo Schist Belt” [13], which contains large
amounts of gold deposits. One of the companies, Dragon
Mining [13], which is an Australia-based company primarily
operating in the Nordic region has been performing drill tests

to evaluate the mining prospects. The average gold content
in the ore is expected to be around 4.9 grams per ton [16],
which is worth millions of Euros considering the overall
deposits present in the area. Though the mining project would
lead to a large amount of gold resources and also generate
a number of jobs, it is being opposed for the fear of the
harm which it might cause to the environment. There are
three main reasons for the opposition against the gold mining
operations in Kuusamo. Firstly, the river Kitkajoki is located
in Kuusamo, and the environmentalists fear that the run-
off water generated from the gold mining operations might
pollute the river water. Secondly, the ore contains uranium,
which if mined, would blemish the reputation of the tourist
resort. Thirdly, the visible open-pit mines located next tothe
Ruka slopes, will be a big turn-off for skiing and hiking
enthusiasts.

Under such a situation, it is the onus of the government
to make a decision, whether to allow mining and to what
extent. The government here has primarily two objectives:
the first objective is to maximize the revenues generated
by the mining project, which may include the additional
jobs, taxes, etc; and the second objective is to minimize
the harm caused to the environment as a result of mining.
Obviously, there is a trade-off between the two objectives,
and the government as a decision maker needs to choose one
of the preferred trade-off solutions. The government is aware
that the mining company has a sole objective of maximizing
its profit under the constraints set by the government. In this
scenario, the government would like to have a tax structure
such that it is able to maximize its own revenues in addition
to being able to restrain the mining company from causing
extensive damage to the environment. There is a hierarchy
in the problem, which arises from the manner in which the
two entities operate. The government has higher control of
the situation and decides the terms and conditions for the
mining company to operate in. Therefore, in this framework,
we observe that the government acts as a leader, and the
mining company acts as a follower.

As a leader, it is possible for the government to opti-
mally regulate the problem in its favour, provided that it
has complete knowledge of the follower’s strategies. If the
government decides to tax the mining company based on
each unit of gold it produces, then for any given tax struc-
ture, the mining company will solve its own optimization
problem to maximize its profit. However, if the government
already takes the mining company’s optimization task into
account, then it would be possible for them to generate their
own optimal strategies. The overall problem appears as a
bilevel optimization task, where for each tax structure, the
government observes how the company acts and then chooses
that particular tax structure which suits it the most, taking
the actions of the mining company into account. It should
be noted that in spite of different objectives appearing in the
problem, it is not possible to handle such a problem as a
simple multi-objective optimization task. The reason for this
is that the leader cannot evaluate any of its own strategies



without knowing the strategy of the follower, which it obtains
only by solving a nested optimization problem.

The model considered in this paper does not attempt to
resolve the decision of establishing the mine or to argue
for the benefits or detriments of any decision taken by the
government. What it does attempt to produce is an optimal
set of decisions for the government from which it might want
to choose the most preferred one.

IV. PROBLEM FORMULATION

In this section, we present the models used in our analysis.
We begin by showing an analytical solution to a simple
multi-objective bilevel optimization problem. This model
demonstrates the procedure for solving problems of this type
as long as the functions are continuous, differentiable and
convex. In the following subsection, we present an extended
version of this model. This larger model incorporates a dy-
namic aspect and several other improvements, like alternative
technologies and non-linear cost functions, which make the
model more realistic and therefore more representative of the
actual problem.

In both parts, the described situation is viewed from
the perspective of the regulating entity at the upper level,
which we will refer to as the “government”, which acts
much like the leader in a classic Stackelberg competition.
The follower in this setting is the mining firm, which is
commonly referred to throughout the paper as simply the
“mine”. Since the problem has multiple objectives at the
upper level, the solution of the bilevel problem leads to a
Pareto-optimal frontier. After having obtained the optimal
trade-off solutions, the government is faced with a multi-
criteria decision making problem, whereby it must effectively
balance the optimal revenue it receives from taxation with
the reduction in overall welfare caused by the pollution.
The leader’s choice for higher taxes and pollution reduction
conflicts with the follower’s choice of profit maximization,
leading to a Stackelberg competition with the leader having
the first mover’s advantage.

A. Basic Analytical Model

We start with the simple problem as viewed by the govern-
ment. The government tries to maximize overall welfare by
imposing a tax on the mine and collecting the largest possible
tax revenue while at the same time trying to minimize the
amount of pollution produced by the mine. This problem can
be described as follows.

max
τ,q

F(q, τ) = (R,−D) (2)

s.t. q ∈ argmax
q

{

π(q) = p(q)q − c(q)−R

π(q) ≥ 0

}

(3)

q ≥ 0, τ ≥ 0. (4)

In (2), the first objective deals with the tax revenue, where
R = τq; τ is the per unit tax imposed on the mine, andq is
the amount of metal extracted from the ore by the latter. The
second objective denotes the environmental damage caused

by the mine that the government ultimately wants to mini-
mize.D = kq, wherek is the pollution coefficient signifying
the negative impact of extraction on the environment. The
damages are thus linear and scale proportionately with the
amount of gold extracted from the earth since a larger base
of operation implies larger environmental damage.

Equation (3) gives the profit of the mine, wherep(q)q
(price function times amount of metal extracted) is the
revenue function, andc(q) is the extraction cost function
followed by the additional tax levied on the mine. The mine
is most likely to be a price taker when it comes to the price
of gold and must base its mining decisions on the possible
price paid by their customers. It would therefore be plausible
to replace the price function for gold in the above equation
by a constant. However, given the assumption that the mine
can extract a large amount of ore, and subsequently gold, at
one time, it would be possible for it to affect the price of
gold slightly. Therefore, we assume the price function to be
linear with a small slope. Extraction cost is considered to be
quadratic since extracting ore that lies deeper underground
tends to get increasingly expensive. Thus, we have the
following model:

max
τ,q

F(q, τ) = (τq,−kq) (5)

s.t.

q ∈ argmax
q











π(q) =(α− βq)q−

(δq2 + γq + φ)− τq

π(q) ≥ 0











(6)

q ≥ 0, τ ≥ 0, (7)

whereα, β, δ, γ, φ are constants, andφ represents the fixed
costs of setting up operations. The parameters are chosen
as α = 100, β = 1, δ = 1, γ = 1 and φ = 0. It is in
the interest of the leader that the follower always extracts
ore from the mine. If the follower does not make any
extraction, then the revenues earned by the leader will also
be zero. When the parameterφ is zero, the constraint at
the lower level is always satisfied. Therefore, we solve the
follower’s optimization problem in an unconstrained manner.
By applying the standard First-Order Approach, we find the
points at which the follower’s profit is maximized.

dπ

dq
= α− 2βq − 2δq − γ − τ = 0. (8)

Simply rearranging some terms in this equation yields the
optimum expression for the extraction amount,q, in terms
of the tax variable,τ :

q = q(τ) =
α− γ − τ

2(β + δ)
. (9)

We attempt to solve the multi-objective problem at the upper
level using a weighted sum approach. Therefore, we frame
the government’s weighted single objective function as

F (q, τ, w) = wτq − (1 − w)kq, (10)



where(w, 1−w) represents the weights for each of the ob-
jectives. Inserting the expression forq into the government’s
optimization problem and rearranging, we get the following:

F (τ, w) = (wτ + wk − k)
α− γ − τ

2(β + δ)
. (11)

Following the same procedure as we used for the lower level
optimization problem, we set the first-order differential of the
leader’s problem to zero and solve for the optimal tax rate.

dF

dτ
=

w(α − γ − τ)

2(β + δ)
−

wτ + wk − k

2(β + δ)
= 0. (12)

Combining like terms, simplifying, and rearranging slightly
yields the optimal choice of tax,τ∗, in terms of the constant
parameters of the model and the government’s preference
parameter,w.

2wτ = w(α − γ − k) + k, (13)

τ∗(w) =
α− γ − k

2
+

k

2w
. (14)

We can now replace the tax parameter in the mine’s opti-
mization problem by its respective representation above and
solve for the optimal output of the mine.

q =
α− γ

2(β + δ)
−

α− γ − k

2 · 2(β + δ)
−

k

2w · 2(β + δ)
. (15)

Again, combining like terms and rearranging slightly gives
us the optimal extraction quantity of the mine,q∗, in terms of
the constant parameters of the model and the government’s
preference weight,w.

q∗(w) =
w(α − γ)− (1− w)k

4w(β + δ)
. (16)

Therefore, the government can influence the extraction rate
of the mine based on its own preferences for tax revenue ver-
sus environmental conservation, if it has information about
the mine’s costs. By varying the government’s preference
weights, it is possible to generate the entire Pareto-optimal
frontier for the multi-objective bilevel problem. From (16),
after substituting the parameter values we find thatw < 0.01
generates infeasible solutions (q < 0). Therefore, the Pareto
frontier is generated using weights0.01 ≤ w ≤ 1. We present
the Pareto-optimal frontier for this simple model in Figure
1. Figure 2 represents the revenues of the government and
the profit of the company. We observe that with increasing
damage to the environment revenues of the government as
well as profit of the company rises.

B. Extended Multi-Objective Model

We next consider an extended version of this model. The
main differences between this model and the simple model
in the previous section are incorporation of multiple time-
periods, variable price for different periods, inclusion of
several different technology options for the mine to choose
from, and incorporation of different types of costs. Solving
the problem in multiple time-periods leads to a significant
increase in the number of variables, choice of different
technology options introduces discreteness into the problem,
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and incorporation of complex cost functions introduces non-
differentiability. With these extensions, it is very difficult
to handle the problem using an analytical approach or a
classical optimization algorithm. Therefore, after providing
a description of the extended model and the complexities,
we discuss the solution procedure used to handle this model.

We keep most of the notation from the previous simple
model the same with only a few exceptions. With the addition
of more time periods into the model, a subscriptt = 1, . . . , T
is added to the variables that potentially change from one
period to the next. The mine’s only endogenous variable in
each period is the decision of the extraction amount. Thus,
a strategy of the mine for the duration of the game is then
given asq = (q1, q2, . . . , qT ). The government influences
the mine by varying the tax rate. Therefore, a strategy for



the government for the duration of the game is given by
τ = (τ1, τ2, . . . , τT ). Most of the literature focuses around a
tax rate that is kept constant by the government once set [6],
[7], [11]. However, in such a framework, a constant tax rate
might not be an optimal strategy, and it would be appropriate
for the government to vary the tax rate throughout the life
of the mine. The technology alternatives are represented by
a discrete variablea. Therefore, the pollution coefficientk
is a function ofa; k is larger for a technology which causes
more damage to the environment, and smaller for the tech-
nology which causes less damage to the environment.Thus,
the multi-period multi-objective bilevel optimization problem
can be presented as follows.

max
τ ,q,a

F(q, τ , a) =

(

T
∑

t=1

τtqt,−

T
∑

t=1

k(a)qt

)

(17)

s.t. q ∈ argmax
q,a

{

Π(q, a) =

T
∑

t=1

πt(qt, a)

}

, (18)

qt ≥ 0 ∀ t ∈ {1, . . . , T },

T
∑

t=1

qt ≤ S, (19)

whereS is the overall available stock of the resource in the
area. It is noteworthy that the stock constraint is irrelevant,
as it is not profitable for the mine to extract the entire
available stock because the extraction costs rise significantly.
The costs increase with deep mining, and moreover the
concentration of the gold in the ore becomes smaller when
the majority of the stock is extracted, making any further
extraction non-profitable. Therefore, we ignore the stock
constraint hereafter.

The mine’s profit function for each period,πt, is defined
as

πt(qt, a) = (αt − βtqt)qt − ceri (qt, a)

− c
ep
i (q1, . . . , qt, a)− τtqt. (20)

The first product term(αt − βtqt) in (20) represents the
price function over time. The price function for gold is
determined exogenously based on future market conditions
and the amount of gold extracted by the company. This
reflects our assumption that the price of gold may change
from one period to another. Parameterαt reflects the market
conditions in a particular period, and parameterβt reflects the
small impact on the price of gold caused by the extraction.
The equation contains two cost terms,ceri and c

ep
i . The

first cost term represents the extraction rate cost, i.e. rate
at which the company extracts the ore in a particular period.
This term restricts the company from extracting the entire
ore in a single period, as it is practically infeasible. If it
were practically feasible, the company would extract the
entire ore in the period when the tax rate is lowest. The
second cost term represents extraction and purification cost,
which depends on the total amount of ore extracted in the
current period as well as the previous periods, and the
metal concentration in it. As the company goes for deep
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mining, the ore extraction costs may rise. Moreover, the
concentration of gold in the ore may vary in different strata.
Though it depends on a mine as to how the concentration of
metal varies in different strata, we do not make any specific
assumptions about it. Rather we combine the costs of the
two factors into a single increasing cost function.

The extraction rate cost is modeled using a quadratic
function as follows:

ceri (qt, a) = αer(a)q2t + βer(a)qt + γer(a), (21)

where the coefficients depend upon the choice of technology
a. The extraction and purification cost is modeled by a
piecewise linear function, as it varies based on the depth
of the strata and the purity available in that strata. Instead
of providing a mathematical formulation, we provide a
graphical representation for this function in Figure 3, which
is easier to understand. If one decides to mine quantityq

of gold from the mine, then the y-axis gives the extraction
and purification cost involved in mining that amount of gold
from the mine. The figure is partitioned into 4 vertical parts,
where each part represents a strata. The amount of gold
available in each strata is given byQS1, QS2, QS3 andQS4.
A higher slope represents higher costs of extraction. For the
function shown in Figure 3, the purification and extraction
costs increase as one goes from one strata to the other.
However, this might not be necessary and entirely depends on
the mine. The considered cost function is a piecewise linear
curve, which can be completely defined using 8 parameters
for four strata; namelyQS1, QS2, QS3, QS4, S1, S2, S3 and
S4.

Next, we provide the parameters for the multi-objective
bilevel program, which we attempt to solve using an evolu-
tionary scheme. For the follower, there are four technology



alternatives available. Each of the technology alternatives
has its own cost and pollution coefficients. The higher the
pollution coefficient, the more is the environmental damage.
The mining location has five different strata, and the com-
pany operates for 5 periods/years (T = 5). Table I contains
the parameters corresponding to each technology alternative.
The mine has five different strata, and the amount of gold
in each strata is given as:(QS1, QS2, QS3, QS4, QS5) =
(20, 20, 20, 20, 20). The parameters for the price function
are: α = (50, 55, 60, 65, 70), β = (0.1, 0.1, 0.1, 0.1, 0.1).
The discounting coefficient is assumed to ber = 0.0 in
the computations.

TABLE I

PARAMETERS FOR EACH TECHNOLOGY ALTERNATIVE.

Parameters a = 1 a = 2 a = 3 a = 4

k 3 5 8 10
αer 0.5 0.4 0.3 0.3
βer 5 4 4 2
γer 10 8 5 5
S1 1 1 0.8 0.6
S2 1.5 1.4 1.2 0.9
S3 2.25 1.96 1.8 1.35
S4 3.375 2.744 2.7 2.025
S5 5.063 3.842 4.05 3.038

V. SOLUTION METHODOLOGY

We solve the extended multi-objective stackelberg model
using a recently proposed Hybrid Bilevel Evolutionary Multi-
objective Optimization (H-BLEMO) Algorithm [8]. In this
section, we briefly outline the working principle of the
procedure using a sketch shown in Figure 4.

The algorithm starts with an initial population marked with
upper level generation counterT = 0. It is of sizeNu and
contains a subpopulation of lower level variable setxl for
each upper level variable setxu. Initially, the subpopulation
size (N (0)

l ) is kept identical for eachxu variable set, but
it is allowed to change adaptively with generationT . An
empty archiveA0 is also initialized at the start. For each
xu, a lower level evolutionary optimization is performed on
the corresponding subpopulation having variablesxl alone
for a small number of generations at which the specified
lower level termination criterion is satisfied. Thereafter, a
local search is performed until the local search termination
criterion is met. The archive is maintained at the upper level,
containing solution vectors(xua

,xla), which are optimal at
the lower level and non-dominated at the upper level. The
solutions in the archive are updated after every lower level
call. The members of the lower level population undergoing
a local search are lower level optimal solutions and hence are
assigned an ‘optimality tag’. These local searched solutions
(xl) are then combined with correspondingxu variables and
become eligible to enter the archive if it is non-dominated
when compared to the existing members of the archive. The
dominated members in the archive are then eliminated. The
solutions obtained from the lower level (xl) are combined
with correspondingxu variables and are processed by the

upper level genetic operators to create a new upper level
population. This process is continued until an upper level
termination criterion is satisfied. The H-BLEMO algorithm is
computationally fast and capable of handling a large number
of variables.

t=0
NSGA−II Local search

t=1

Lower level

t=t*

T=0
T=1

Upper level NSGA−II

x_l x_l x_l

Archive

x_u ND
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Archive

Fig. 4

A SKETCH OF THEH-BLEMO PROCEDURE[8].

VI. RESULTS

In this section, we present the results obtained using the
H-BLEMO algorithm on the simple analytical model as well
as the extended multi-objective bilevel model. We execute
the H-BLEMO algorithm on the simple analytical model,
and we observe that the algorithm is able to converge to the
bilevel Pareto-optimal frontier. Figure 5 shows the approxi-
mate Pareto-optimal frontier obtained using the H-BLEMO
approach on the simple analytical model. Thereafter, we
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execute the algorithm on the extended bilevel model. Firstly,
we consider the extended multi-objective bilevel model as
a whole with all of the available technologies and try
to generate the approximated Pareto-optimal frontier. The
approximate Pareto optimal frontier is shown in Figure 6.
The parts of the frontier which correspond to different
technologies have been marked in the figure. A preferred
region is assumed for the government, which is also marked
in the figure. We have solved the extended model considering
one technology at a time, and generated the Pareto-optimal
frontier corresponding to each technology. Different frontiers
for each of the technologies are given in Figure 7. The

parts of the different technology frontiers which participate
in the combined frontier have been highlighted. The figures
represent a maximization frontier, since we handle the mod-
els as bilevel multi-objective maximization problems. We
are maximizing the revenues and the negative of pollution
damage at the upper level, which produces the trade-off fron-
tiers. It can be observed that each of the trade-off frontiers
bear a discontinuity, which is caused by the piecewise linear
extraction and purification cost. Whenever there is a change
in strata, the slope of the piecewise linear extraction cost
function changes, which causes discontinuities in the Pareto-
frontiers of the respective technologies. Next, we analyze



the solutions in the preferred region. Each solution in the
preferred region has its own production level and represents
a corresponding tax structure. Figures 8 and 9 show the
optimal production levels and the optimal taxation strategies
during the 5 year time period for the mining company and
the government respectively.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we present an application problem with a
multi-objective bilevel optimization task. The model involves
a Stackelberg competition between a regulating authority and
a mining firm. The problem is inspired by a recent contro-
versy in Finland on the harmful impact of gold mining on
the environment in the Kuusamo region. We have analyzed
the problem from the government’s perspective assuming that
the government has complete knowledge about the possible
actions of the mining company. An analytical example has
been provided to give the readers an insight into multi-
objective bilevel programming, and then an extended model
has been solved using a hybrid bilevel evolutionary multi-
objective optimization algorithm. The solution methodology
employed in this problem was effective in handling the
bilevel problem and produced a set of trade-off solutions
based on which the leader may make a suitable decision. Our
future work on the subject would be focused on incorporating
further realism into the model by incorporating a third player
into the problem. The player could be one or more tourism
companies or the local community, which have been resisting
the mining operations in the Kuusamo region. Incorporation
of the third entity would allow the government to make an
optimal decision, which would be targeted at maximizing the
overall welfare.
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