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Abstract—This paper proposes and evaluates an evolutionary
multiobjective optimization algorithm (EMOA) that eliminates
dominance ranking in selection and performs indicator-based
selection with the R2 indicator. Although it is known that
the R2 indicator possesses desirable properties to quantify the
goodness of a solution or a solution set, few attempts have
been made until recently to investigate indicator-based EMOAs
with the R2 indicator. The proposed EMOA, called R2-IBEA, is
designed to obtain a diverse set of Pareto-approximated solutions
by correcting an inherent bias in the R2 indicator. (The R2
indicator has a stronger bias to the center of the Pareto front
than to its edges.) Experimental results demonstrate that R2-
IBEA outperforms existing indicator-based, decomposition-based
and dominance ranking based EMOAs in the optimality and
diversity of solutions. R2-IBEA successfully produces diverse
individuals that are distributed well in the objective space. It
is also empirically verified that R2-IBEA scales well from two-
dimensional to five-dimensional problems.

I. INTRODUCTION

This paper studies an indicator-based evolutionary algo-
rithm to solve multiobjective optimization problems (MOPs).
In general, an MOP is formally described as follows.

minimize F (x) = [f1(x), f2(x), · · · , fm(x)]T ∈ O
subject to x = [x1, x2, · · · , xn]T ∈ S

}
(1)

S denotes the decision variable space. x ∈ S denotes a
solution that consists of n decision variables. It is called an
individual in evolutionary multiobjective optimization algo-
rithms (EMOAs). F : Rn → Rm consists of m real-valued
objective functions, each of which maps a solution x to an
objective function value (or simply, an objective value) in the
objective space O. When m > 3, an MOP is often called high-
dimensional. The goal of an EMOA is to find an individual(s)
that minimize(s) objective values.

In MOPs, there rarely exists a single solution that is
optimum with respect to all objectives because objectives often
conflict with each other. Thus, EMOAs seek the optimal trade-
off individuals, or Pareto-optimal individuals, by considering
the trade-offs among conflicting objectives. The notion of
dominance plays an important role to seek Pareto optimality
in MOPs. An individual x ∈ S is said to dominate another
individual y ∈ S (denoted by x � y) iif fi(~x) ≤ fi(~y) ∀ i =
1, · · · ,m and fi(~x) < fi(~y) ∃ i = 1, · · · ,m.

EMOAs often rank individuals based on the dominance
relationships among them and exploit their ranks in selection
operators. This process is called dominance ranking.

A research trend in the design of EMOAs is to adopt
the notion of indicator-based selection, which augments or
replaces dominance ranking with quality indicators [1]. A
quality indicator measures the goodness of an individual or an
individual set. Recent research findings show that indicator-
based EMOAs often outperform traditional EMOAs that use
dominance ranking [2]–[6].

This paper proposes and evaluates an indicator-based
EMOA, called R2-IBEA, which eliminates dominance ranking
and performs selection with the R2 indicator [7]. The R2
indicator has been somewhat underrepresented although it
possesses desirable properties [8], [9]. To the best knowledge
of the authors of this paper, there exist only two lines of
research efforts to study the R2 indicator in the context of the
development of indicator-based EMOAs [8]–[11]. Along with
those existing work, this paper empirically evaluates R2-IBEA
with major test problems with two to five objective spaces for
better understanding the impacts of the R2 indicator on the
design and performance of indicator-based EMOAs.

This paper offers the following three contributions to the
design space of indicator-based EMOAs:

• Hypervolume-based weight vector generation. The R2
indicator usually requires a set of weight vectors that
are uniformly distributed in the objective space [8]–
[11]. The vector generation method in R2-IBEA is
designed to produce weight vectors so that they
uniformly disperse and maximize their hypervolume
in the objective space. It does not depend on the
dimensionality of the objective space.

• A binary R2 indicator. R2-IBEA leverages a binary
R2 indicator that determines a superior-inferior rela-
tionship (or the R2 relationship) between given two
individuals. This work is the first attempt to investigate
a binary R2 indicator while a unary R2 indicator has
been studied [8]–[11].

• Adaptive reference point adjustment. The R2 indicator
often requires the fixed reference point [8]–[11]. R2-
IBEA dynamically adjusts the location of the refer-
ence point according to the extent of the current-
generation individuals in the objective space. This



adaptive method is designed to aid R2-IBEA to obtain
a diverse and evenly-distributed set of individuals
by correcting an inherent exploration bias in the R2
indicator. (The R2 indicator has a stronger bias to the
center of the Pareto front than to its edges [9].)

Similar to existing indicator-based EMOAs [3]–[5], R2-
EMOA does not require a diversity preservation operator. It
pursues the optimality and diversity of individuals with the
R2 indicator.

This paper evaluates R2-EMOA with 10 well-known test
problems (15 problem instances in total) with two to five objec-
tives. Experimental results show that R2-IBEA is competitive
with existing indicator-based EMOAs (IBEA-ε2 [4] and R2-
EMOA [11]), a decomposition-based EMOA (MOEA/D [12])
and a traditional EMOA that uses dominance ranking in
selection (NSGA-II [13]) and R2-IBEA often outperforms
those existing EMOAs in terms of the optimality and diversity
of individuals. R2-IBEA successfully obtains diverse individ-
uals that are evenly-distributed in the objective space. It is
also empirically verified that R2-IBEA scales well from two-
dimensional to five-dimensional problems.

II. BACKGROUND: R2 INDICATOR

The R2 indicator was originally proposed to assess the
relative quality of two sets of individuals [7]. Assuming
the standard weighted Tchebycheff function with a particular
reference point z∗, the indicator can be used to assess the
quality of a single individual set (A) against z∗ [8], [9]:

R2(A,V, z∗) =
∑
v∈V

(
p(v)×min

a∈A
{ max
1≤j≤m

vj |z∗j − aj |}
)

(2)

V denotes a set of weight vectors. Each weight vector
v = (v1, ..., vm) ∈ V is placed in the m-dimensional objective
space. p denotes a probability distribution on V . Weight
vectors are often chosen uniformly distributed in the objective
space [8]–[11]. In this case, the R2 indicator is described as:

R2(A,V, z∗) =
1

|V|
∑
v∈V

min
a∈A
{ max
1≤j≤m

vj |z∗j − aj |} (3)

A utopian point is usually used as the reference
point z∗ [8]–[11]. A utopian point is a point that is never
dominated by any feasible solutions in the objective space.
For example, it is (0, 0) in a two-dimensional objective space
where each objective value is greater than or equal to 0.

A lower R2 value indicates that an individual setA is closer
to the reference point. R2({x},V, z∗) = 0 when an individual
x ∈ S is positioned on the reference point.

The R2 indicator possesses a desirable property of weak
monotonicity. When an individual x ∈ S dominates another in-
dividual y ∈ S (i.e., x � y), R2({x},V, z∗) ≤ R2({y},V, z∗).

III. RELATED WORK

The R2 indicator was originally proposed in [7], together
with two other variants: the R1 and R3 indicators. The R2
indicator is recommended as one of the best quality indicators
in [8], along with the hypervolume (HV) indicator [14] and
the ε2 indicator [4]. HV is known to be the only indicator that
preserves the property of strict monotonicity; i.e. HV ({x}) >
HV ({y}) if x � y. Although the R2 indicator is weakly
monotonic, it is computationally much less expensive than
the hypervolume indicator. The computational cost to compute
HV values grows exponentially as the number of objectives
increases [15]. The ε2 indicator is weak monotonic as well [4].

The HV indicator and its variants are used in several
indicator-based EMOAs [3], [5], [10], [16]. For example,
SMS-EMOA uses dominance ranking as the first criterion in
selection and a variant of the HV indicator as the second
selection criterion [3]. SPAM uses a unary R2 indicator, which
is described in Equation 3, as well as the HV indicator in
selection [10]. In contrast, R2-IBEA avoids the HV indicator
due to its high computational cost and uses a binary R2
indicator as the sole criterion in selection.

R2-EMOA extends SMS-EMOA by replacing the HV
indicator with a unary R2 indicator (Equation 3) [11]. It is
computationally less expensive than SMS-EMOA; however, it
still uses dominance ranking as the first criterion in selection.
In contrast, R2-IBEA never relies on dominance ranking but
leverages a binary R2 indicator.

SPAM and R2-EMOA use the fixed utopian point as the
reference point (z∗ in Equation 3) to compute R2 values.
Unlike them, R2-IBEA dynamically adjusts the location of the
reference point in each generation for attracting individuals to
extreme regions in the objective space.

IBEA avoids dominance ranking and uses a binary ε-
indicator (or a binary HV indicator) in selection [4]. IBEA is
similar to R2-IBEA in that both EMOAs eliminate dominance
ranking with a binary indicator. This work can be viewed as an
extension of IBEA with a binary R2 indicator and its associated
methods (i.e., weight vector generation and reference point
adjustment methods).

MOEA/D is similar to R2-IBEA in that both EMOAs use
the Tchebycheff function with uniformly distributed weight
vectors [12]. It decomposes an MOP into multiple scalar
optimization sub-problems. Each sub-problem corresponds to
a single Tchebycheff function. MOEA/D intends to optimize
multiple Tchebycheff function values while R2-IBEA aggre-
gates multiple Tchebycheff function values into a single (R2)
value and strives to optimize the aggregated value.

IV. R2-IBEA: R2 INDICATOR BASED EVOLUTIONARY
ALGORITHM

This section describes a method for weight vector gen-
eration and discuss R2-IBEA’s algorithmic structure and its
operators.

A. Hypervolume-based Weight Vector Generation

Algorithm 1 shows a method that R2-EMOA performs to
generate uniformly distributed weight vectors V (c.f. Equa-
tion 3 in Section III). This process is executed offline only



Algorithm 1 Weight Vector Generation in R2-IBEA
Require: tmax, the maximum number of iterations
Require: |V|, the number of weight vectors to be generated
Require: m, the number of objectives

1: t = 0
2: W = ∅
3: while t < tmax do
4: Randomly choose a vector x in [0, 1]m−1: x =

(x1, x2, ..., xm−1)
5: Sort xi in x in ascending order, such that x1 ≤ x2 ≤ ... ≤

xm−1

6: Create a vector w = (w1, w2, ..., wm−1, wm) = (x1, x2 −
x1, ..., xm−1 − xm−2, 1− xm−1)

7: W =W ∪ {w}
8: if |W| > |V| then
9: Calculate hypervolume contribution of each w ∈ W :

IHV (w) = HV (W)−HV (W \ {w})
10: w∗ = argminw∈W IHV (w)
11: W =W \ {w∗}
12: end if
13: t = t+ 1
14: end while

once. The objective space is assumed to be normalized into
[0, 1] in each dimension.

At each iteration, a vector x = (x1, x2, ..., xm−1) is
randomly chosen in [0, 1]m−1, following a uniform distribu-
tion (Line 4 in Algorithm 1). Then an m-dimensional vector
w is created with x1, x2, ..., xm−1 (Lines 5 and 6). Note that∑m
i=1 wi = 1. Since the mapping from x to w is linear, the

uniformity of distribution is preserved. As described in Line 8
to 12, the proposed method generates more vectors than |V|
(i.e., the required number of vectors) and removes excess
based on each vector’s hypervolume contribution (IHV (w) in
Algorithm 1, Line 9). It is designed to produce weight vectors
that uniformly disperse and maximize their hypervolume in the
objective space. The hypervolume indicator is used because it
can quantify the distribution of given vectors. In [17], it is
proved that, for a linear front, the hypervolume of vectors is
maximized when they are uniformly distributed.

The proposed method does not depend on the dimension-
ality of the objective space. It works in the same way for
low-dimensional to high-dimensional spaces, unlike an angular
method in [9]. Also, it can generate an arbitrary number
of weight vectors (|V|) in any dimensional spaces while a
coordinate-based method in [9], [12] cannot in three or higher
dimensional spaces. For example, in a three-dimensional space,
the method in [9], [12] can generate 91, 105 and 120 vectors
but cannot generate 92 to 104 and 106 to 119 vectors. In a
five-dimensional space, it can generate 35, 70 and 126 vectors
but cannot generate 36 to 69 and 71 to 125 vectors.

Figure 1 show the weight vectors generated by using the
proposed method with |V| = 100 and tmax = 10, 000.
(2.0, 2.0) is used as the reference point to compute hyper-
volume values.

B. Binary R2 Indicator

R2-IBEA performs parent selection and environmental
selection with a binary R2 indicator (IR2):
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Fig. 1: Generated Weight Vectors

IR2(x, y) = R2({x},V, z∗)−R2({x ∪ y},V, z∗) (4)

IR2 is designed to determine a superior-inferior relationship
between given two individuals (x and y) with two R2 values.
Each R2 value is obtained with Equation 3. If x � y,
IR2(x, y) = 0; otherwise, IR2(x, y) ≥ 0. Given the property
of weak monotonicity:

• IR2(x, y) ≤ IR2(y, x) if x � y

• IR2(x, y) ≥ IR2(y, x) if y � x

C. R2-IBEA’s Algorithmic Structure

Algorithm 2 shows R2-IBEA’s algorithmic structure, which
extends IBEA [4], an existing indicator-based EMOA.

In the 0-th generation (g = 0), µ individuals are ran-
domly generated as the initial population P0 (Line 2). In
each generation (g), a pair of individuals, called parents (p1
and p2), are chosen from the current population Pg with a
binary tournament operator (Lines 6 and 7). This operator
randomly draws two individuals from Pg , determines the
R2 relationship between them with the binary R2 indicator
described in Section IV-B, and selects a superior one as a
parent. If the two individuals yield the same IR2 value, one of
them is selected as a parent at random.

With the crossover rate Pc, two parents reproduce two off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [18] (Line 9). Polynomial mutation [13] is performed
on each offspring with the mutation rate Pm (Lines 10 to 15).



Algorithm 2 The Algorithmic Structure of R2-IBEA
1: g = 0
2: Pg = initializePopulation(µ)
3: while g < gmax do
4: Og = ∅
5: while |Og| < µ do do
6: p1 =binaryTounament(Pg)
7: p2 =binaryTounament(Pg)
8: if random() ≤ Pc then
9: {o1 , o2} = crossover(p1 , p2 )

10: if random() ≤ Pm then
11: o1 = mutation(o1 )
12: end if
13: if random() ≤ Pm then
14: o2 = mutation(o2 )
15: end if
16: Og = {o1 , o2} ∪ Og
17: end if
18: end while
19: Rg = Pg ∪ Og
20: Update the reference point z∗

21: Calculate the fitness of each individual xi ∈ Rg as: F (xi) =∑
yi∈Rg\{xi}−e

−IR2(yi,xi)/κ

22: while |Rg| > µ do
23: x∗ = argminxi∈Rg

F (xi)
24: Rg = Rg \ {x∗}
25: Update the fitness of each individual xi ∈ Rg as: F (xi) =

F (xi) + e−IR2(x
∗,xi)/κ

26: end while
27: g = g + 1
28: end while

Parent selection, crossover and mutation operators are repeat-
edly executed on Pg until µ offspring are reproduced (i.e.,
until |Og| = µ). The offspring (Og) are combined with the
population Pg to form Rg (|Rg| = 2µ), which is a pool of
candidates for the next-generation individuals (Line 19).

Environmental selection follows offspring reproduction
(Line 21 to 26). In Line 21 the fitness of each individual in
Rg is calculated by applying the individual’s IR2 value to an
exponential amplification function. Then, the worst individual
(i.e., the one with the lowest fitness) is removed from Rg
(Lines 23 and 24). In Line 25, fitness is recalculated for each
of the remaining individuals in Rg . By repeating this removal
process until |Rg| = µ, R2-IBEA selects µ individuals from
Rg as the individuals to be used in the next generation (g+1).

D. Adaptive Reference Point Adjustment

As described in Section II, the R2 indicator requires the
reference point (z∗ in Equation 2). All existing R2-based
EMOAs use the utopian point as the reference point [9], [11].
Given this location choice for the reference point, they often
fail to obtain extreme individuals particularly in the problems
that have convex Pareto fonts because the R2 indicator has an
inherent bias toward the center of a Pareto front [9].

In order to overcome this problem, R2-IBEA determines
the reference point so that it is far enough from the individuals
in the current population. It can be positioned even in the
infeasible region in the objective space. This is intended to
increase the density of weight vectors in extreme regions in the

feasible objective space. This density increase can contribute
to attract more extreme individuals.

R2-IBEA dynamically adjusts the coordinate of the refer-
ence point z∗ = (z∗1 , z

∗
2 , ..., z

∗
m) as follows:

z∗i = min
x∈Rg

{fi(x)} − max
j=1,..,m

{max
x∈Rg

{fj(x)} − min
x∈Rg

{fj(x)}}

(5)

This location adjustment is carried out in every generation
according to the extent of the individuals inRg in the objective
space. (See also Line 20 in Algorithm 2.)

Figure 2 illustrates an example selection of the reference
point (z∗) when |Rg| = 6. The coordinate of z∗ is computed
with the extent of those six individuals over the horizontal
objective (b) and the vertical objective (a).
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Fig. 2: An Example Reference Point Selection (b > a)

V. EXPERIMENTAL RESULTS

This section evaluates R2-IBEA with five ZDT family
problems [19] and five DTLZ family problems [20], and
compares R2-IBEA with existing EMOAs: IBEA-ε2 [4],
MOEA/D [12], R2-EMOA [11] and NSGA-II [13]. IBEA-
ε2 is an indicator-based EMOA that uses the ε2 indicator in
selection. NSGA-II is one of the most classical EMOAs, which
uses dominance ranking in selection.

A. Experimental Configurations

R2-IBEA was configured as shown in Table I. IBEA-ε2,
MOEA/D, R2-EMOA and NSGA-II were configured as de-
scribed in [4], [12], [11] and [13], respectively. The population
size µ is fixed to 100 in all EMOAs for all problems. The
number of weight vectors (|V|) is set to be equal to µ in R2-
IBEA, R2-EMOA and MOEA/D for all problems. The number
of objective function evaluations in each experiment is 50,000
for DTLZ3 and 30,000 for the other problems. This means
that the number of generations in an experiment (gmax) is 500
for DTLZ3 and 300 for the other problems. All experiments
were conducted with jMetal [21]. Each experimental result is
the average of 20 independent results.

Each ZDT problem has two objectives. ZDT1, ZDT2 and
ZDT3 have 30 decision variables each. ZDT4 and ZDT6
have 10 decision variables each. This experimental study



uses three-objective and five-objective DTLZ problems. When
three objectives are used, DTLZ1, DTLZ2, DTLZ3, DTLZ4
and DTLZ7 have 7, 12, 12, 12 and 22 decision variables,
respectively. When five objectives are used, they have 9, 14,
14, 14 and 24 decision variables, respectively. These are the
default settings in jMetal.

TABLE I: Experimental Configurations
Parameter Value

z∗ (Algorithm 1) (2.0, 2.0)
V (Equation 3) 100
µ (Algorithm 2) 100
Pc (Algorithm 2) 0.9
Pm (Algorithm 2) 1/ (# of decision variables)
κ (Algorithm 2) 0.005

gmax (Algorithm 2) 300 (all problems except DTLZ3)
500 (DTLZ3)

B. Evaluation Metrics

This paper uses the following evaluation metrics: hypervol-
ume ratio (HVR), generalized spread (GS), generational dis-
tance (GD), inverted generational distance (IGD) and epsilon
metrics.

HVR is calculated as the ratio of the hypervolume (HV ) of
non-dominated individuals (D) to the hypervolume of Pareto-
optimal solutions (P ∗) [22].

HV R =
HV (D)

HV (P ∗)
(6)

HV is the union of the volumes that non-dominated
individuals dominate [14]. (It is computed with the reference
point whose coordinate consists of the maximum objective
values.) Thus, HVR quantifies the optimality and diversity of
non-dominated individuals. A higher HVR indicates that non-
dominated individuals are closer to the Pareto front and more
diverse in the objective space.

GS is computed as follows:

GS(D,P ∗) =

∑m
i=1 d(ei, D) +

∑
x∈P∗ |d(x,D)− d̄|∑m

i=1 d(ei, D) + |P ∗|d̄
(7)

e1, ..., em are m extreme individuals in P ∗; i.e., ei is the in-
dividual that yields the best result in D with respect to the i-th
objective. d(x,D) is the minimum distance from an individual
x to the closest individual in D. d̄ = 1

|P∗|
∑
x∈P∗ d(x,D)

GS measures how evenly non-dominated individuals are
distributed in the objective space [23]. A lower GS indicates
that non-dominated individuals are distributed in the objective
space more evenly. GS is an extension to the spread metric,
which can be used in two dimensional problems only [13]. In
contrast, GS can be used in the problems with more than two
objectives.

GD is computed as follows.

GD =

|D|∑
i=1

d(di, P
∗)

|D|
(8)

d(di, P
∗) denotes the minimum distance from a non-

dominated individual di to the closest Pareto-optimal solution
in the objective space [24]. GD measures the optimality of
non-dominated individuals. A lower GD indicates that non-
dominated individuals are closer to the Pareto-optimal front.

IGD is computed as follows where d(vi, D) denotes the
minimum distance from a Pareto-optimal solution vi to the
closest non-dominated individual in the objective space [24].

IGD =

|P∗|∑
i=1

d(vi, D)

|P ∗|
(9)

IGD measures the optimality and diversity (more specifi-
cally, the extent) of non-dominated individuals. A lower IGD
indicates that non-dominated individuals are closer to the
Pareto-optimal front and their extent is wider.

The epsilon metric is computed as follows [25]:

Epsilon = infε{∀y ∈ P ∗,∃x ∈ D : yi ≥ xi − ε ∀i} (10)

It represents the minimum distance (ε value) by which each
individual in D can be translated in each dimension such that
the Pareto-optimal solutions P ∗ are weakly dominated.

For both HVR, GS, IGD and Epsilon metrics, P ∗ are taken
uniformly from the Pareto-optimal front. |P ∗| = 1,001, 1,001,
269, 1,001, 1,001, 10,000, 10,000, 4,000, 4,000 and 676 in
ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3,
DTLZ4 and DTLZ7. This is the default setting in jMetal.

C. Evaluation of Adaptive Reference Point Selection

This section evaluates R2-IBEA’s adaptive reference point
selection described in Section IV-D. Figure 3 shows the
individuals that R2-IBEA produces at the last generation
with and without adaptive reference point selection in ZDT4,
DTLZ1 and DTLZ7. (All individuals in the population are non-
dominated at the last generation.) ZDT4, DTLZ1 and DTLZ7
have a continuous and convex Pareto front, a continuous
and linear Pareto front and discontiguous and convex Pareto
fronts, respectively. When adaptive reference point selection
is disabled, R2-IBEA uses a Utopian point, (0, 0) or (0, 0, 0),
as the fixed reference point in every generation throughout an
experiment. All the other settings are identical between the
two configurations of R2-IBEA.

Figure 3 confirms that the R2 indicator favors balanced
individuals over extreme ones, as stated in [9], when it uses
a Utopian point as the reference point. Without adaptive
reference point selection, R2-IBEA fails to obtain extreme
individuals at the edges of a Pareto front (Figures 3a, 3c
and 3e). In contrast, R2-IBEA successfully explores the edges
of a Pareto front and obtains both balanced and extreme
individuals when it uses adaptive reference point selection
(Figures 3b, 3d and 3f). Moreover, the distribution of individu-
als is more even, compared to the cases with adaptive reference
point selection disabled. Figure 3 demonstrates that adaptive
reference point selection effectively corrects an inherent bias



of the R2 indicator toward the center of a Pareto front and
aids R2-IBEA to obtain a diverse and evenly-distributed set of
Pareto-approximated individuals.

D. Comparative Evaluation of R2-IBEA

This section compares R2-IBEA with four existing EMOAs
in terms of the optimality and diversity of individuals. Table II
shows the average HVR, GS, GD, IGD and epsilon values that
R2-IBEA and four other EMOAs yield at the last generation
in two-dimensional ZDT problems. A number in parentheses
indicates a standard deviation among 20 experiments. A bold
number indicates the best result among five EMOAs. A star
symbol (*) and a sharp symbol (#) are placed when a result
is statistically different from R2-IBEA’s result based on a
single-tail t-test or a Wilcoxon Mann Whitney (WMW) test,
respectively. The significance level of 95% is used in both
tests.

As shown in Table II, R2-IBEA yields the best HVR results
in three of five ZDT problems and significantly outperforms
all the other EMOAs with the significance level of 95% in both
t-test and WMW test. In GS, R2-IBEA performs best in three
of five ZDT problems. It yields the best GD value in a ZDT
problem, the best IGD results in two ZDT problems, and the
best epsilon values in three ZDT problems. In these problems,
R2-EMOA significantly outperforms the other EMOAs in both
t-test and WMW test.

Table III shows the HVR, GS, GD, IGD and epsilon results
in three-dimensional DTLZ problems. R2-IBEA yields the best
HVR and GS results in all DTLZ problems. In these two
metrics, R2-IBEA significantly outperforms four other EMOAs
in both t-test and WMW test. This superiority in HVR and GS
is consistent with the observation that Section V-C made for
Figures 3d and 3f. In GD and IGD, R2-IBEA outperforms four
other EMOAs in three DTLZ problems. R2-IBEA yields the
best epsilon values in four DTLZ problems. In these problems,
it significantly outperforms four other EMOAs in both t-test
and WMW test.

In HVR and IGD, R2-IBEA significantly outperforms
IBEA-ε2, in both t-test and WMW test, in all ZDT and
DTLZ problems except ZDT1. In GS, R2-IBEA significantly
outperforms IBEA-ε2, in both t-test and WMW test, in all ZDT
and DTLZ problems. In comparison to R2-EMOA, R2-IBEA
yields better HVR and IGD results in all ZDT and DTLZ
problems. R2-IBEA significantly outperforms R2-EMOA, in
WMW test, in all the problems. In GS, R2-IBEA outperforms
R2-EMOA, in both t-test and WMW test, in all problems
except ZDT3. These results demonstrate that R2-IBEA is
competitive with existing indicator-based EMOAs and often
yields superior performance over those existing EMOAs in
terms of both optimality and diversity.

In comparison to NSGA-II, R2-IBEA yields significantly-
better HVR results, in both t-test and WMW test, in all
ZDT and DTLZ problems except ZDT3. In GS, R2-IBEA
significantly outperforms NSGA-II, in WMW test, in all ZDT
and DTLZ problems except ZDT3. It yields significantly-better
GD and epsilon results, in both t-test and WMW test, in
eight of ten problems. In IGD, R2-IBEA outperforms NSGA-
II, in both t-test and WMW test, in five of the problems.

These results demonstrate that R2-IBEA maintains superior
performance over NSGA-II in both optimality and diversity.

Table IV shows the hypervolume (HV) results in five-
dimensional DTLZ problems. Due to lack of Pareto-optimal
solutions, HV is used instead of HVR. For the same reason,
GS, GD, IGD and epsilon metrics are not used. As illustrated
in Table IV, R2-IBEA significantly outperforms four other
EMOAs, in WMW test, in four of five problems. In DTLZ2,
IBEA-ε2 and R2-IBEA yield the best and second best HV
values, respectively. Note that R2-IBEA is more stable than
four other EMOAs; it constantly yields competitive results
in all five-dimensional DTLZ problems while other EMOAs
perform well in some problems and poorly in other problems.
For example, IBEA-ε2 yields the best HV value in DTLZ2;
however, its HV value is very low in DTLZ3. Tables II, III
and IV demonstrate that R2-IBEA scales better than four other
EMOAs from two-dimensional to five-dimensional problems.

It is noticeable in Tables II and III that standard deviations
are relatively high in ZDT4, DTLZ3 and DTLZ4. Therefore,
Figure 4 shows the boxplots for those problems in order to
examine the degree of dispersion and skewness in HVR, GS,
GD and IGD. A box in each boxplot contains the middle
50% of individuals. The upper edge of the box indicates the
75th percentile of individuals, and the lower edge indicates
the 25th percentile. The middle horizontal line in the box
indicates the 50th percentile (i.e., the median). The ends of a
vertical line indicate the minimum individual within 1.5 × IQR
(interquartile range) of the lower quartile and the maximum
individual within 1.5 × IQR of the upper quartile.

In ZDT4 and DTLZ3, R2-IBEA yields the best median
results and the minimum dispersion of individuals among five
EMOAs in all four metrics. In DTLZ4, R2-IBEA yields the
best median results in HVR, GS and IGD. The dispersion
of R2-IBEA individuals is minimum in HVR, GD and IGD.
Except for GS in DTLZ7, R2-IBEA achieves competitive
(often the best) performance among five EMOAs in median,
IQR and 1.5 × IQR metrics although it tends to produces a
few outliers in DTLZ4.

VI. CONCLUSIONS

This paper investigates an indicator-based EMOA, called
R2-IBEA, which leverages the R2 indicator in selection instead
of traditional dominance ranking. R2-IBEA uses a binary
R2 indicator that determines a superior-inferior relationship
between given two individuals by adaptively adjusting the
location of the reference point according to the extent of
the current-generation individuals in the objective space. Ex-
perimental results show that R2-IBEA outperforms existing
indicator-based, decomposition-based and dominance ranking
based EMOAs in the optimality and diversity of solutions.
R2-IBEA scales better than those existing EMOAs from two-
dimensional to five-dimensional problems. It is also verified
that R2-IBEA successfully produces a diverse set of individu-
als that are evenly distributed in the objective space.

Several future work is planned. R2-IBEA is planned to be
evaluated in more details; for example, with different settings
for parameters such as V and κ (Table I). More comprehen-
sive comparative study is planned as well. In addition, other
indicators than the hypervolume indicator will be considered



TABLE II: Comparison of R2-IBEA with Four Other EMOAs in ZDT problems (Two Objectives). * and # are placed when a
result is statistically different from R2-IBEA’s result based on a t-test or a WMW test, respectively.

Problem Algorithm HVR GS GD IGD Epsilon

ZDT1

R2-IBEA 0.99285(4.1E-4) 0.27544(0.02559) 5.0E-5(1.0E-5) 1.9E-4(3.0E-5) 0.00976(0.00258)
NSGAII 0.99032(4.2E-4)*# 0.38279(0.03301)*# 2.1E-4(3.0E-5)*# 1.9E-4(1.0E-5) 0.01409(0.0031)*#

MOEA/D 0.99151(4.0E-4)*# 0.29222(0.01406)*# 1.2E-4(3.0E-5)*# 1.7E-4(1.0E-5) 0.01112(0.00313)
IBEA-ε2 0.99329(1.1E-4)*# 0.2758(0.03273) 7.0E-5(3.0E-5)*# 1.5E-4(0.0)*# 0.00778(4.6E-4)*#

R2-EMOA 0.98633(0.01287)*# 0.51993(0.06544)*# 1.7E-4(4.0E-5)*# 5.7E-4(0.00109)# 0.03307(0.04692)*#

ZDT2

R2-IBEA 0.98662(2.0E-4) 0.22(0.03036) 5.0E-5(0.0) 2.8E-4(3.0E-5) 0.00724(5.2E-4)
NSGAII 0.98131(6.9E-4)*# 0.39562(0.04495)*# 1.6E-4(3.0E-5)*# 1.9E-4(1.0E-5)*# 0.01267(0.00153)*#

MOEA/D 0.98336(0.00105)*# 0.22738(0.05508) 1.0E-4(3.0E-5)*# 1.5E-4(1.0E-5)*# 0.00879(0.00203)*#
IBEA-ε2 0.98385(3.7E-4)*# 0.42629(0.02901)*# 4.0E-5(0.0)*# 4.1E-4(4.0E-5)*# 0.01143(0.00165)*#

R2-EMOA 0.78053(0.2073)*# 0.77447(0.14763)*# 4.0E-5(1.0E-5) 0.00503(0.00449)*# 0.38324(0.30858)*#

ZDT3

R2-IBEA 0.99636(0.00142) 0.69098(0.04225) 1.2E-4(1.0E-5) 7.2E-4(0.00103) 0.02195(0.06903)
NSGAII 0.99642(2.1E-4)# 0.39401(0.04603)*# 2.1E-4(1.0E-5)*# 2.6E-4(1.0E-5)# 0.00876(0.00156)#

MOEA/D 0.99281(2.7E-4)*# 0.88724(0.03942)*# 1.8E-4(1.0E-5)*# 5.6E-4(1.0E-5)# 0.01546(2.5E-4)#
IBEA-ε2 0.99071(3.0E-4)*# 0.80887(0.0184)*# 1.2E-4(1.0E-5) 0.00186(6.0E-5)*# 0.01951(0.00132)#

R2-EMOA 0.98903(0.00389)*# 0.50758(0.07712)*# 1.8E-4(2.0E-5)*# 0.00143(0.002)# 0.07941(0.12471)#

ZDT4

R2-IBEA 0.9898(0.00265) 0.50957(0.58085) 0.02806(0.07009) 1.7E-4(2.0E-5) 0.0094(0.00152)
NSGAII 0.98511(0.00272)*# 0.39987(0.04631)# 3.7E-4(1.2E-4)# 2.1E-4(2.0E-5)*# 0.0136(0.00179)*#

MOEA/D 0.98065(0.00559)*# 0.50646(0.18192)# 0.00135(0.00228)# 2.8E-4(6.0E-5)*# 0.01829(0.00344)*#
IBEA-ε2 0.79795(0.09022)*# 1.22203(0.06738)*# 5.1E-4(6.0E-5)# 0.00993(0.00397)*# 0.35924(0.12693)*#

R2-EMOA 0.8775(0.05538)*# 0.81222(0.06267)*# 3.3E-4(1.1E-4)# 0.00709(0.00267)*# 0.27767(0.08634)*#

ZDT6

R2-IBEA 0.99273(9.0E-4) 0.25747(0.02789) 5.6E-4(2.0E-5) 1.4E-4(1.0E-5) 0.00702(4.7E-4)
NSGAII 0.97976(0.00234)*# 0.362(0.03474)*# 7.2E-4(5.0E-5)*# 2.3E-4(3.0E-5)*# 0.01196(0.00131)*#

MOEA/D 0.96538(0.00498)*# 0.32407(0.04414)*# 0.00109(1.3E-4)*# 4.2E-4(7.0E-5)*# 0.01624(0.00272)*#
IBEA-ε2 0.98896(0.00136)*# 0.70287(0.04334)*# 4.5E-4(3.0E-5)*# 1.7E-4(1.0E-5)*# 0.0101(0.00121)*#

R2-EMOA 0.98343(0.00163)*# 0.46308(0.04175)*# 6.4E-4(3.0E-5)*# 2.6E-4(5.0E-5)*# 0.01258(0.00164)*#

and evaluated for R2-IBEA’s weight vector generation method
(Algorithm 1).
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TABLE IV: Comparison of R2-IBEA with Four Other EMOAs
in DTLZ problems with Five Objectives. * and # are placed
when a result is statistically different from R2-IBEA’s result
based on a t-test or a WMW test, respectively.

Problem Algorithm HV

DTLZ1

R2-IBEA 0.95229(9.2E-4)
NSGAII 0.0(0.0)*#

MOEA/D 0.84326(0.03249)*#
IBEA-ε2 0.35529(0.1649)*#

R2-EMOA 0.23187(0.23548)*#

DTLZ2

R2-IBEA 0.66312(0.00321)
NSGAII 0.19794(0.04368)*#

MOEA/D 0.43481(0.00453)*#
IBEA-ε2 0.66841(0.00143)*#

R2-EMOA 0.57899(0.01613)*#

DTLZ3

R2-IBEA 0.62426(0.01833)
NSGAII 0.0(0.0)*#

MOEA/D 0.16932(0.11391)*#
IBEA-ε2 0.00118(0.00235)*#

R2-EMOA 0.0(0.0)*#

DTLZ4

R2-IBEA 0.6605(0.02121)
NSGAII 0.23244(0.07753)*#

MOEA/D 0.41795(0.02613)*#
IBEA-ε2 0.65121(0.04147)#

R2-EMOA 0.44429(0.07888)*#

DTLZ7

R2-IBEA 0.20674(0.00418)
NSGAII 0.07111(0.01347)*#

MOEA/D 0.11086(0.01103)*#
IBEA-ε2 0.20075(0.00607)*#

R2-EMOA 0.10087(0.01433)*#
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Fig. 3: Pareto-approximated individuals in ZDT4, DTLZ1 and DTLZ7
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Fig. 4: Boxplots for ZDT4, DTLZ3 and DTLZ4


