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Combining Drift Analysis and Generalized Schema
Theory to Design Efficient Hybrid and/or Mixed
Strategy EAs
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Abstract

Hybrid and mixed strategy EAs have become rather populataftkliing various complex and NP-hard optimization prokdem
While empirical evidence suggests that such algorithmsaceessful in practice, rather little theoretical supporttheir success
is available, not mentioning a solid mathematical fouratathat would provide guidance towards an efficient desigthisftype
of EAs. In the current paper we develop a rigorous mathemlaframework that suggests such designs based on gendralize
schema theory, fitness levels and drift analysis. An examappgication for tackling one of the classical NP-hard peafs, the
“single-machine scheduling problem” is presented.

I. INTRODUCTION

In recent years hybrid and/or mixed strategy EAs are fretip@pplied to tackle various NP-hard optimization probtem
Such algorithms exploit a variety of different recombipatimutation, and selection operators where these opsraterchosen
with distinct probabilities depending on the current papioin, the individuals that are selected for recombinatiomutation,
and, sometimes, the time when the population arises. Aocaprh the empirical evidence, many such algorithms areerath
successful in practice (see, for instance, [1] énd [2] afyl & the same time, rather little theoretical support e tmore
so, general guidance for the design of such EAs, exists ifitdwature. This work is largely motivated by a special case
design of a hybridl + 1 EA on a single machine scheduling problem [in [4], howeverthis paper, we aim to investigate
possible methodology for the design of population-based B#this type. In the current article we unify the theory obhg
and mixed strategy EAs into a common mathematical framewfhis opens the door to various existent and well-developed
mathematical tools such as generalized schema theoryadafysis and tail inequalities to design hybrid and mixedtegy
EAs for various specific problems with polynomial runtimeagantees to encounter a satisfactory solution (such asutcsol
up to a desirable or allowable approximation ratio). Thegoap organized in a straightforward fashion: In secfidn d set
up a rigorous mathematical framework that incorporatesdewilass of hybrid and mixed strategy EAs. Next, in sediidn I
generalized schema theory is presented. In seffibn IV thealedea of the article, namely the design of hybrid and edix
strategy EAs for specific optimization problems, based annbtion of auxiliary fithess levels and schemata is provided
These ideas can then be linked with classical tools fromieggrobability to analyze runtime complexity: for instandn
sectior Y, drift analysis methodology has been applied tyae the conditions under which the expected runtime bsame
polynomial. Finally, this approach is illustrated with aesgic example application: designing a family of hybrid amiked
strategy population-based EAs for the “single machine dulireg problem” (seel[5] and [4] for a detailed descriptianjh
expected polynomial time approximation ratio guarantees.

Il. MATHEMATICAL DESCRIPTION OFHYBRID AND MIXED STRATEGY EAS

While the families of recombination, mutation and selactimperators are typically independent of population and the
iteration time at which the population is encountered, ld/Bnd mixed strategy EAs exploit several families of recaration,
mutation and selection operators. Furthermore, each (fait) where P is the population encountered #t iteration of a
given hybrid or mixed strategy EA, is equipped with a probgbdistribution over the various families of recombirati
mutation and selection transformations. Therefore, nma#tieally, mixed and hybrid EAs are fully determined in terof the
following parameters:

1. A finite setQ) of candidate solutions that we call the search space.

2. A tuple of indexed families

({fi}iela {Mj}jeJa Selq}qu, {fl}leLu{O})

where I, J, @ and L are various indexing sets (usually finite subsetNgfwhile F;, M, Sel, are various families of

recombination, mutation and selection operators resggtand{ f;},c, is the family of fithess functions. Among the fitness
functions, only the functiory, is the objective function to be optimized. We will say thag¢ ttemaining fitness functions are
auxiliary fitness functiondn practice these may be given implicitly, motivated bytagr deterministic algorithms (such as the
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Jackson rule in case of the single machine scheduling prgblRecombination operators are usually m&ps Q? — Q that
take a pair of individualgz, y) € Q? to a single offspring?’(z, y) € Q[ while mutation operators are functiong : Q2 — Q.
A selection operator is a functiosie/ : (Qm)2 — Q™ on the set of pairs of populations of size such thatv two populations
Z = (1, x2,... Tyym) @aNAY = (y1, Yo, ... ym) € Q™ all the individuals of the populatio§el(Z, i) are also the individuals
of the populationZ or of the populationy: Sel(Z,¥) = (21, 22,... zm) € Q™ andViwith 1 <i<m Jjwith1 <j<m
such thatz; = z; or z; = y;. It is also reasonable to assume that given any supset? such that all the individuals iy
appear either in the populatiahor ¢, then the number of individuals from the subsethat appear in the populaticsel(Z, i)
does not depend on the specific location (indexing) of thmeitgs fromS in the populations’ andy. Most certainly it may
depend on all other parameters such as the fitness of theausandividuals inS and even on whether or not these individuals
occur in the populatio or in the populationy.

3. To every pair(#, t) whereZ = (x1, 2, ... z,,) € Q™ is a population at" iteration of the algorithm and to every pair

of individuals (z;, =;) in & assign probability distribution:i?r(RECF)"“(“;Iy +,) On the set indexing the families of recombination

transformations. and for every indexe I, a probability dlstrlbut|0rPr?e°;“”(z ;) ON the set of recombination transformations
Fuw- For simplicity we shall assume that the pairs, ;) are sampled umformly at random (either with replacement or
without replacement) from the populatiah Once a pail(z;, =;) has been selected for recombination, it first selects a yamil

of recombination operators to use according to the proipablistribution Pr?ecf)ar(“m"y 25) and then, once the index has been

chosen, it selects a specified transformation to use acwptdi the probability distributiorPr(Rf‘"ﬂt;”( wirzy) ON the family of

recombination transformatioris,,. Mutation operators are selected analogously except himatime onIy a single individual,
sayz;, is selected uniformly at random from the populatiband selects a family of mutation transformatiows, according

to a probability distributionPr?’;“ttF)a’;‘L'y on the indexing set/ of the families of mutation transformations. Afterwards, i
MUt v on the family of

selects mutation transformations from the family,, according to the probability distributioz‘?r(m .2
mutation transformationd,,. Likewise, to every pai(Z, t) and a populatiory € 2 we associate a probab|I|ty distribution
preeFamly o the indexing se@ of the families of selection transformations, and to evemypify of selection transformations

(Z,1),7
Sel,, we assign a probability d|str|but|oﬁ’r(seL;f ~ on the family Sel,, of selection transformations. Once an “intermediate”
populationy has been obtained from the populattﬁmpon completion of recombination stage followed by mutatitage,
an a&g{mpnate family of selection transformatiofs is selected through sampling its index via the probabilistribution
(I .7 "W Afterwards, an appropriate selection transformatttyi is chosen from the family of selection transformations
Sel,, via the probability distributionPrs’y .
A hybrid/mixed strategy EA cycles through the recombinatimutation and selection stages sufficiently long to entaun
a satisfactory solution. A single cycle consisting of thés®e consecutive stages is typically called a single titameof the

algorithm that produces the next generation from the previme.

Ill. GENERALIZED SCHEMA THEORY

In the current section we will establish a very general wersif the schema theorem that applies to the types of EAsdfittin
the framework in the previous section. Suppose we are gikgrsabsetS C Q2 of the search space of an EA and a population
# at t" iteration of the algorithm. Recall from the previous seattbat various individuals from the populatiahare paired
up for recombination independently times with the aim of producing exactly. offsprings. Thus, the probability that an
individual from the setS appears at thé" position of the “intermediate” populatiafi®® obtained from the populatio upon
completion of recombination can be computed as follows:

Lemma Ill.1. Continuing with the notation in the preceding paragraptr, éogiven pair of individuals(z;, x;) € 72, let

F(zi,xz;)€S
RecFamil . Rec w
Pr(S|(z, o)) =3 > Prigo e ey =) Priiy e, . (F).
wel FeFy

Furthermore, let
Zi;ﬁj Pr(S|(z;, x;))

m(m — 1)

Z(i,j)e{l,Q,...,m} Pr(S|(xi, z;))

m2
Then, in case when pairs of individuals are selected for m@zioation independently without replacement,with 1 < i < m,
the probability that the™" individual in the intermediate populatiaff® is in the setS is Pr™onferl(S | Z, t). Likewise, in case
when pairs of individuals are selected for recombinatiodeipendently with replacement, this probabilityfs#er! (S | Z, t).

PTnonRepl(S | f, t) —

and

Prier(s| @, 1) =

10ne may also allow generah-ary operators. In case when = 1, i.e. when the recombination operators are unary, they sually known as mutation
operators.



Proof: According to the general framework in the previous sectibthe individualsz; andz; have been selected for
recombinationPr(S | (z;, z;)) is the probability that the offspring individual is an elem@f the subsef C Q is precisely
Pr(S|(x;, zj)). Since every pair is selected for recombination uniformtiyremdom, the probability that the paft;, =;)
has been chosen for recombination and their offspring iS ia PriS|(@i2i) jn case of sampling pairs without replacement

m(m—1)

andM in case of sampling with replacement. The desired conalusibiows now by summing the probabilities of
pairwise d|310|nt events. [ |

Since recombination takes place independently, the nuwibisdividuals in the intermediate populatiaf® is distributed
binomially with success probabilities
Prrenfierl (g 7 1) in case of sampling recombination pairs without replacensen Pr?<P!(S | #, t) in case of sampling
recombination pairs with replacement respectively, Cofrtail inequality (see, for instance, chapter 1 pf [6]) &pp and
readily tells us the following.

Lemma 11l.2. Continuing with the notation in lemniaTll.1, 1& (.S, ) denote the random variable counting the total number
of individuals in the populatiory of sizem that are in the setS. ThenVé € [0, 1]

Pr(N(8,7) < (1 - §)mP) < exp <_52m—P>

2
while
Pr(N(S,7®%) > (1+6)mP) < exp <—62mTP>
where
% in case of sampling pairs
p_ without replacement
W in case of sampling pairs

with replacement

In some simplified cases (such as one in the current paperg mfiormative bounds may be used when the total number
N(S, 7% is expected to be small but bigger than

Lemma Ill.3. Given a populationt = (1, x2,...x,,) and a schemas, supposed a schemaS; such thatvi and j €
{1, 2,...m}, as long asz; € Sy, Pr(S, |z;, ;) > a. ThenPr(N(S,Z*) > 1) > (1 - (1 - M) )a.

m

Proof: According to the assumption, a sufficient condition to abtan individual fitting the schem&8 upon completion
of recombination is to select an individual fitting the sclaefj to be the first one in a recombination pair at least once after
m consecutive trials and, afterwards, to apply an apprapri@tombination transformation with prorlr:l)ability at leastlarge
asa. An individual fitting the schem&, is selected at least once with probability- (1 — N(S“Tfm)) via considering the
complementary event implying the desired conclusion. [ ]
We now proceed to analyze the context of the next intermegiapulationz™ obtained from the population

7= (21, T2, ..., Tm)
upon completion of mutation. When applying mutation oparéd an individual in position (i.e. to &;), in order to obtain an
individual from the sefS in thes™ position of the populatio®™", we must select a mutation operator that sends the individua
Z; to an element of the sef. This event happens with probability

M(x;)eS
MutF | Mut, w
Pr(S|z) =Y > Prisymi=w)- Prist, (M). (1)
weJ MeMy,

The indices of the individuals in the populatiaff® can be partitioned into two disjoint subsets:

Sni™={i|3; € S} andSNi™ = {i|i; ¢ S}. 2)
We now introduce the following probabilities:
Prmt(S]8) = min{Pr(S|x;) |i € SN i™%} (3)

to be the minimal probability of preserving th# individual that is already in the set upon completion of mutation and

Prmt($|8) = min{ Pr(S| @) |i € $ N3 @



to be the minimal probability of mutating th# individual that is not in the sef into one that is inS. Notice that the random
variable N (S, 7™ measuring the total number of individuals in the populatiiii* from the setS (recall that this random
variable has been introduced in the statement of leinm3) id.the sum of independent indicator random variables

~_J1 ifthe i™ individual of 7™t ¢ §
‘10 otherwise:

N(S, ;emut):ixi: Yoox+ ) A ()
i=1

i€ SNzree i€ Snarec
From the discussion preceding equafidon 1,

so that, by linearity of expectation, we have
E(N(S, ™) =Y BE(X;) =Y Pr(S|z)
=1 =1

= > Pr(Slm)+ Y. Pr(S|w)

i€ SNzree ieSniree
> Prmut(S1S) - 1S Na®e + Prmt(S]S) - |S N a
= Pr™t(S18) - |S Nz + Prmvt(S18S) - (m — |S N 3Y).
In summary, we have deduced that if
w=Prm(S|S)-|SNIZ + Prm(S|S) - (m—|SNz™)
then
j < E(N(S, #™), ()

The classical Chernoff bound applies again now and tellhasvt§ € [0, 1]
thanks to inequaliti16
Pr (N(S, ™) < (1 = 6)u) < Pr (N(S, 2™ < (1 =4) - E(N(S, 2™))
2 2
<o (-5 B0V ™)) < exp (-5 @)
Observe thatS N 7% = N(S, 7 (see lemmallLPR), so that, according to lemmalll.2, we canrd 1 (see equation-
definition preceding equatidd 6) below as follow&: € [0, 1]
Pr(u > Prmt(S|S) - (1 —e)ymP + +Pr™(S|S)- (m — (1 + e)mP)) > 1 —exp (_EzmTP> — exp (_EzmTP) (8)

where P is the average probability of obtaining an element in theSetpon completion of recombination as introduced in
the statement of lemniall.2. Combining inequalifiés 7 Bhdaesfinally deduce the following lower bound on the probapilit
of the number of occurrences of individuals from the Setccurring in the populatioa™"; Let

p=m (Prm“t(s 1S)- (1= €)P + Prmut(S|8) (1— P(1+ e))) 9)
Then we have

Pr(N(S, 2™ > (1 —0)p) = Pr (N(S, &™) > (1 — &)pu|p > p) - Prip > p)

via inequalitiel7 anfl8, 2
> (1 — exp <_%H>) X (1 — exp (—EQmTP> — exp (—EQmTP)) . (10)

We summarize inegaulify 10 in the following lemma.

Lemma Ill.4. Given a pair(Z, t) whereZ is a population at'" generation of an EA and any subsgtc (2, continuing with
the notation in lemmdsTIll1 ard1Il.2, as well as equaticefiditiond3[# andl9, select a pair of small numbgise) € [0, 1]2.
Then the probability that the total number of individualstire “intermediate” population obtained from the populatia’
upon completion of recombination followed by mutation is\abthe threshold1 — §)u is at least

(- (52)) < (- (-4 -om (-5))



Once again, in simplified constructions such as one preddnt¢he current preliminary work, the following alternagiv
lemma is an immediate corollary of lemraTll.3:

Lemma II.5. Continuing with the assumptions of lemmalll.3, supposediition, thatv «; € S the probabilityPr(S| ;) >

5. Then e m
Pr(N(S,#™ > 1) > (1 - (1 - %) ) a-B.

The following generalized schema theorem is nearly a mstamnt of lemm&TILK that takes into account generalizegcsiein
as described in the previous section.

Theorem III.6. Letz denote the population obtained from the populatibnapon completion of the recombinatien mutation
— selection cycle (equivalently, the populatigns obtained from the populatiorg and £™ after selection). Recall from the
statement of lemn{aTlll2 that the random varialNé.S, z) counts the total number of individuals from the Sethat appear
in the populationz. Repeat verbatim the first sentence of lenimallll.4. There {1, 2,...,m}

Pr(N(S, 2) > n)
mP

e (318,901 305: 59 > 1) (1 o (~210) ) (1 o () exp (20

Applying the classical Markov inequality (see, for instanf]), we immediately deduce the following.

Corollary 11.7. Continuing with the notation and assumptions in theoken@/W real & [O, ﬁ}

s 205 (1o £2) (e (22) e 22)

xPr(N(S, 2) > [k(1 = §)u] | N(S, Z™) > (1 - 6)u) .
The corresponding simplified schema theorem is a directezprence of lemmiaII]5:

Corollary 111.8. Continuing with the notation and assumptions in theoken@|!

Pr(N(S, 2) > 1) > aBPr (N(S, 2) > 1| N(S, 2™ > 1) (1 - (1 - %)m) :

IV. RECOMBINATION-INVARIANT SUBSETS FITNESSLEVELS AND MUTATION-INVARIANT SUBSETS

While theoreni III.6 and corollardy 1IT17 are valid for arkiny subsetss C , it is not in vain that most notions of schemata
(see, for instancel, [7] andl[8]) happen todeeombination-invariansubsets of the search spdeeas defined precisely below:

Definition IV.1. Given a family of recombination transformatio#son a search spacg, a recombination invariant subset,
alternatively, ageneralized schemaith respect to the family of recombination transforma$iof is a subsetd C 2 having
the property thatvz andy € H and¥ transformationT” € F the childT(z, y) € H.

General mathematical properties of recombination-imrarsubsets have been studied by several authors: seesfande,
[9], [10], [11], [12], [13] and [14]. First of all, we list a f& basic properties of families of recombination-invarianbsets (see
[12] for a detailed exposition and an in-depth analysis @f tblationship between the collections of recombinatioraiiant
subsets of the search space and the corresponding fanfillesambination transformations).

Proposition IV.1. Given any family of recombination transformatioffson the search spacg, the corresponding family
of invariant subsets with respect to the famify call it Selr, is closed under arbitrary intersections, contains theand
the whole search spacﬁ@. Furthermore, given any collection of subse&sC P(Q2) of the search spac€, the family
S={Nger | T S SHU{0, O} is closed under arbitrary intersections, contains thand the entire space, anéla family of
recombination transformationg such thatSr = S. Consequently, the union of all families of recombinati@nsformations
with the above property is the unique maximal (in the senseonfainment) family of recombination transformationsl| da
F, such thatSz = S. We will say that the collection of recombination-invariaubsetsS is generated by the collection of
subsetsS or, alternatively, that the collection of subsefsgenerates the collection of recombination invariant subs# the
search spaces.

The correspondence summarized in proposition IV.1 is kniownathematics as a Galois connedfio@ne of the central ideas
of the current article is that recombination transformadishould be designed based on the suitable families of teioaton-
invariant subsets and below we will suggest how such familierecombination-invariant subsets may be selected tgmles
efficient algorithms. This design is largely based on théomoof a fitness level introduced below.

2such collections of subsets are also known as pre-topalogie[[10] and [11]
3see[[15] for the notions of natural transformations, adjons and Galois connections i.e. natural transformatlmetsreen posets considered as categories.
No knowledge of category theory is necessary to understaacurrent paper though.



Definition IV.2. Given a fitness functiorfi : Q — [0, M], the k" fitness levelof f is the pre-image
FH(k, M) = {w € Q| f(w) > k}.

Recall from sectioii ]l that hybrid and mixed strategy EAs nieye a large number of auxiliary fitness functions. The
auxiliary fitness functions are often defined implicitly iarins of a certain incremental deterministic algorithm tal fan
satisfactory solution for a specific NP-hard optimizationlgem. We impose the following conditions on our Hybrid oixed
strategy EA:

Condition 1. The total number of auxiliary fithess functions is boundedvabby a polynomial of degree in the size of
the problem instance (in other wards= O(n”) whereL is the indexing set of the auxiliary fitness functions as ictisal[ll
andn is the size of the problem instance.

Condition 2. All of the auxiliary fitness functions are non-negative giger valuell and have a common ra@and there
are polynomially many auxiliary fitness levelel € L f; : Q@ — {0, 1,...,M} and M < O(n") wheren is the size of an
instance of a specific optimization problem.

Condition 3. 31 € L such that thel/™ fitness level of the auxiliary fitness functigfy consists of “satisfactory solutions”
(for instance, up to a specified approximation ratio) for tigective fithess functiorfy.

There is a number of ways to design the collections of recoatlin invariant subsets based on the fitness levels of
various auxiliary fitness functions to guarantee that theeeted time (i.e. the expected number of iterations) an Epires
to encounter a satisfactory solution is polynomial in theesdf the input instance. Since the aim of the current pap&y is
illustrate the general ideas for such designs, we preseat ishperhaps, one of the simplest and the shortest metbgidsl
Fork € {1,2,...M}, let S, = Uc; £ "([k, M]) and letS, = {S;|j > k} U {0, Q}. Observe that the collectios
of the unions of fitness levels at least as highkas a collection of nested sets so that, in particular, it @set under
arbitrary intersections. According to proposition IV.1 wey select families of recombination transformatiofis such that
the corresponding families of invariant subséts, = Si. In fact, all that we require is thaiz, O S i.e. that the family of
recombination transformatior&, preserves the unions @f fitness levels across all of the auxiliary fitness functions.

We now turn our attention to mutation transformations. tiarst subsets for mutation transformations are defined én th
same fashion.

Definition IV.3. Given a familyM of mutation transformations, a subs&te ) is invariant under the family of mutation
transformationsM if Vo € S andV M € M the individual M (z) € S as well. We writeSx to denote the collection of all
subsets that are invariant under the family of mutation sfanmationsM.

Families of mutation-invariant subsets enjoy the same gnt@gs as these of recombination-invariant subsets asidedc
in propositior[EE Once again, we design the families of mutation transforomatibbased on preferable family of mutation-
invariant subsets. Just as the case with recombinationstanuanber of designs are possible, yet, for illustrativeppses, we
select one of the simplest in the current article. We lettiieking family of our hybrid or mixed strategy EA= {1, 2,... M}
and for eachj € J we select a family of mutation transformationd; the collection of mutation-invariant subsets of which
is, just as in case of recombinatia®; = {S, |¢ > j} U {0, @} with S, = U, f; *([¢, M]). There is a further requirement
on the families of mutation transformations though:

Condition 4. We require that the family of mutation transformatiofs, for ¢ = M (i.e. at the highest common auxiliary
fitness level) possesses the following property: wheneeerdk < L,V € f; ' ({M}) 3y € f, ' ({M}) and a sequence of
mutation transformation®;, Ts,...,T; € M; such thaty = T;0T;_1 o...oTy(x). We further require thadl polynomialsn”
andn” such thaty! andk < L andVz € f; '({M}) 3y € £, ({M}) such that the probability that is encountered after
O(n") applications of the mutation transformations from the fa@siM; is at least2(n~*) regardless of the population in
which the individualr appears and the iteration time at which the population sirise

The following simple lemma hints at the motivation for caimh 4 in our design.

Lemma IV.2. Consider any Markov chain on the state spate = |,., f; " ({}M}) with the transition matrix

{pm—ﬁy}m,yesM defined as
Pr—y = Mm{F | Fe My and F(x) = y}

where{u.}.cs,, is the collection of probability measures avi ,; satisfying condition 4 above. For anc Sy, let T,, denote
the random waiting time to encounter a “satisfactory” satut with respect to the objective fitness functifinfor the first
time. Thervz € Sy E(T,) < O (n7 ).

Proof: According to condition 331y € L such that any € flgl({M}) is a satisfactory “satisfactory” solution with
respect to the objective fitness functigin so that for any giverx € Sy, the random variabld’, is bounded above by the

4This assumption does not reduce the generality since theréiritely many auxiliary fitness functions and one can abvéshift all of them up” by an
additive positive constant.

5The assumption of having a common range can be alleviatedeatdst of technical complications that divert attentiorayarom the mainstream idea
of the current article.

8In fact, this applies to arbitrary families ef-ary transformations of and their corresponding families of invariant subsets.



random timeT,_,;, of encountering an individug) € flzl({M}) for the first time. Comparing the random tirfig_,;, with

a geometric random variablg with a unit step size&)(n”) and success probabilitg(n~*), thanks to condition 4 we deduce

that E(T,_;,) < nVE(T) = O(n") - m =0 (n"™) as claimed. [ ]
The type of hybrid EA's design suggested in the current lertis largely based on the notion of an individual's maximal

auxiliary fitness level introduced below:

Definition 1V.4. For an individualz € © the maximal auxiliary fitness levedf x is aux Fit(z) = maxjer fi(x).

In other words, the maximal auxiliary fitness level of an indiial = is the largest auxiliary fitness level of 2 so that
x “fits” the schemas, that is invariant under the family of recombination tramsefations; for j > ¢. A rather simple
complexity analysis presented in the current paper relieapplying the simplified version of schema theory from sedfill
to the special schemata introduced in the following definiti

Definition IV.5. Consider a hybrid or mixed strategy EA fitting the framewoflkthe current article that uses populations of
sizem > 2, and a populationt = {z1, z2, ...z, }. Let AuzMax(Z) = max{auzFit(x;)|1 < i < m} denote the maximal
auxiliary fitness level present in the populatigh We say that the scheny, . irq.(7) iS theleading current schemanhile
the schemab 4. vrax(z)+1 1S theleading future schemaf the populationz.

One of the simplest (but not the only possible) designs dficieht” hybrid or mixed strategy EAs is to concentrate the
probability d|str|butlonsl%fe"F;”(“gi'y »,) on the set indexing the families of recombination transfations (recall that there are
as many of these as there are auxiliary fitness levels) omtliedsq > auxzF'it(z;) whenevetauz F'it(z;) = AuxMaz(Z).
Likewise, the probability of selecting the families of mtita transformationsPr“" ™ is also concentrated on the indices

(mt)z’

q > auzFit(z;) for the individualsz; fitting the leading current schema. Foe {1, 2,... M} let

Piec(q) = mln{PrR;Ct';""r(ngiy oW >0) |auxFit(z;) = q, xj € Q}

and

Pﬁ%t( )= min{Pr?;%tgérETy(w > q) | auxFit(z;) = q}. (11)

denote the minimal probabilities of improving the auxiiditness levely after applying recombination and mutation transfor-
mations respectively. We assume that all the probabiltlfes'pesPﬁgg( ) and P}‘gg( ) are positive.
In the current paper we do not assume much about selectianh fapa preserving the highest auxiliary as well as the

highest objective fitness levels. Formally this can be ddfia® follows.
Definition IV.6. We say that a selection transformatidiel : (2™)? — Q™ is hybrid-elitist if vZ and i € Q™
AuxMax(Sel(Z, §)) = max{ AuzMaz(Z), AuzMaz(y)}

and
max{ fo(Sel(Z, ¥)) |1 < i <m} = max{max{fo(z;) |1 <i<m}, max{fo(y:) |1 <i<m}}

Applying corollanyIIL.8 with Sy being the leading current schema ahtieing the leading future schema as in definifion]IV.5
and observing thalV (S suz raz(z), £°°) > 1 by definition[V.5, we immediately deduce the following fact

Lemma IV.3. Suppose we are given a hybrid or mixed strategy EA with cahgt@pulation sizen that exploits hybrid-elitist
selection. Then

PHY Stuotastsyenn? 2 02 (1= (1= 20 ) ) x Phsp (AusMaa(@) - PR (AusMas(2) + 1)

m

>(1 —exp(—1)) - PF(AurMax(Z)) - PP (AuxMax(Z) 4 1)

Imp Imp

where, as usual? denotes the population obtained from the populatibmpon completion of a single recombinatien
mutation— selection cycle.

V. DRIFT ANALYSIS AND SIMPLE RUNTIME COMPLEXITY BOUNDS

Drift analysis methodology invented in [16] has been introed into the evolutionary computation theory for estimgtihe
expected run-time complexity in_[17], quickly gained paogmity and has been modified and enhanced in a number of ways.
In the current article we will use the additive variable fahalysis version established [n [18]. For the sake of ceteplkess,
the necessary definition and the relevant lemma are stated.be

Definition V.1. Let (X, {py—y}=, yex) denote a Markov chain with finite state spateand transition probabilitie,,_,, for
xandy € X. Let A C X. A distance functiorD on X" with respect toA is any functionD : X — [0, c0) with the property



that D(z) = 0 if and only ifz € A. Let {X,}$°, denote the stochastic process associated with the Markain cti. We are
interested in the following waiting time random variable:

T(x| Xo = &) = min{t | X;(x) € A}
under the assumption thaf,(x) = & with probability 1 (i.e. the chain starts at a specifigd € X).

A simple complexity bound appearing in the current paperased on the following additive variable drift lemma from
[18].

Lemma V.1. Suppose we are given a Markov chain

(X, {pz—y}a,yex), a subsetd C X and a distance functio® : X — [0, c0) as described in definitidn V.1. Suppose also that
for every integelt € NU{0} 3 a constant, € (0, c0) such thatvx € A° with [D(x)] > k (here A° denotes the complement
of Ain X) we haveD(z) — >, c v Pa—syD(y) > li. Then

[D(£0)] 1
E(T(x| Xy = < —.
T Xo-ans 3 ¢

Given a hybrid or mixed strategig A with the highest auxiliary fitness lev@ll satisfying conditiond, 2 and3 that exploits
hybrid-elitist selection, we apply lemnia V.1 to the Markdvan X of all populations of sizen, Q™ with the probability
pz—z being the probability that the populatiahis obtained from the populatiofi upon completion of a recombinatioh—
mutation— selection cycle. The set

A={Z|7 e Q™ and AuzMax(Z) = M}

is the set of all populations containing an individual of thighest auxiliary fitness level and the distance function X —
{0, 1,..., M} defined asD (%) = M — AuzMax(Z). According to lemmaIVR, whenevetuzMaz(T) = ¢

PrD@) - D@ 2 11pes £ 02 (1= (1= 1)) - Plig(o) - P+ 1)
>(1 — exp(—1)) Pfsg(a) - PR (0 + 1)

—

Furthermore, thanks to the assumption that our EA explohglaid-elitist selection, whenever:_, > # 0 D(Z) — D(2) > 0.
Now, letting

lg(m) = (1 — (1 — %) ) -P}fﬁg(k) ~P}‘,{$(k +1) (12)
and
Iy = (1 —exp(=1)) - Pfiee (k) - Prysl(k+1) (13)

we deduce that the worst case expected runtime complexipgrupound to reach the highest auxiliary fitness level for
a hybrid or mixed strategy EA that exploits hybrid-elitigtlection (and hence must have a population size> 2) is
St ﬁ <t ;- If we assume, in addition, that our EA satisfies conditibin sectionIV thenM = O(n").
Furthermore, conditions, 3 and4 allow us to apply lemm&TV]2 and to deduce the following expdauntime result.

Theorem V.2. Suppose a given hybrid or mixed strategy EA that employsidvgltitist selection satisfies conditioris 2, 3
and 4 in section IV. Then the worst-case expected runtime for thadereach a satisfactory solution is bounded above by

M- M1
+n A < — 4+
e S

In the next section we illustrate an application of theofe ®nd, more importantly, the methodology developed in
sectiong Il and1V as well as in the current section with agermachine scheduling problem.

VI. AN EXAMPLE APPLICATION: SINGLE MACHINE SCHEDULING PROBLEM

One of many classical NP-hard combinatorial optimizatioobfems is the single machine scheduling problem (see ehapt
on scheduling problems by Leslie Hall inl [5]). The instanéehe problem of size: consists of a sequence of ordered triples
{ji}, wherej; = (r;, pi, ¢;) with 7;, p; andg; € [0, co) standing for “release time”, “processing time” and “detiéime”
of the job j; respectively. Each of the jobs has to be processed on a simagbhine, call itM, without interruption and it
starts getting delivered immediately after being procgs$bere is no restriction on the total number of jobs beiniyded
simultaneously, yet a job can start getting processed rieetran its release time; and only when the machine is available
(i.e. not processing another job). The jobs can be processad/ order and the objective is to minimize the “maximadtetss”

of the schedule: i.e. the time instant when the last job han ljest delivered. Thus, the search spére= {7 |7 : I, —



I, is a permutatiohwherel,, = {1, 2,...,n} so that everyr € ) determines the schedulg.(1), jx(2),- - -+ Jr(n))- LELSx(s)
denote the time when the johy ;) starts processing. Then tneaximal latenessf the scheduler is J, = maxlgign{sﬂ.(i) +
Pr(i)+4x(i) }- and the objective is to find a permutatiere Q2 such that/, = J* = min{J, |7 € Q}. LetnowP = > piand
lete > 0 be given. Let = eP and letB, = {i|p; > 6}. Then|B.| < & = 1. Let® = {¢: B. — I, | ¢ is one-to-on denote
the set ofrepositioning mapand notice that the total number of such repositioning majp®unded above a&| = n!5<! < ne
(this verifies condition 1 in the upcoming design). The falilag notion is crucial in determining the auxiliary fitnessittions

(see [[4] for a significantly more detailed exposition).

Definition VI.1. We say that a schedulec Qs (k, €, ¢)-Jackson iV h < k if h = ¢(i) for somei € I,, thenw(i) = h = ¢(i)
or else leta(h — 1) denote the time when the jol{h — 1) has just finished being processed and consider the set ofiall t
jobs Ay, = {u|u ¢ Bc andr, > a(h —1)}. It is then required that,,) = max{q, |u € Ap}.

Plainly speaking, the idea behind definition YI.1 is the stise implementation of the “partial Jackson rule”: wheneabhe
machine is available, as long as a long-processing job (with §) is not one booked to be scheduled at timehen schedule
a job with “short” processing time that has the longest @eglivtime next. Our set of auxiliary fitness functions is ineléx
by the family of repositioning map& andV ¢ € ® andr € Q, f4(m) = max{k |k € I,, and~r is (k, €, ¢) — Jacksoh. The
following clever result that is implicitly established iB][and enforces condition 3 to hold in our design appearswielo

Theorem VI.1. 3 a repositioning mapp € ® such thatf,(n7) =n = fo(r) = J. < J*(1 +¢€).

Since there are totally = n! auxiliary fitness levels, condition 2 is fulfilled automatily. The only remaining part is to
design the families of recombination and mutation trarmsfitions preserving the “auxiliary cross-fitness level seiga” and the
highest auxiliary fitness level mutation transformatioosading to the recipe in sectign]lV. This can be done in a mastber
of ways (see[12] for a detailed analysis of the relationfl@fween families of recombination-invariant subsets aedamilies
of recombination transformations fixing them). Here is onegibility. For an auxiliary fitness levélwe define the family of
hybrid recombination transformatiots = {Fg |¢ € Sp,_,} wherel,,_; denotes the indexing sét, 2,...,n—i} while Sy, _,
denotes the group of all permutations on the&et , as follows. Select a permutatignon I,,_;. Given a pair of permutations
(m, o) € Q2 with 7 = (7(1), 7(2),...,7m(n)) ando = (o(1), 0(2),...,0(n)), let Fg(ﬂ', o) =n=(n(), n?2),...,9(n))
with n(l) = w(1) wheneverl <[ <. Now extract a subsequence of jobsdrthat do not appear among the fiisjobs in 7
and notice that there must be exactly- 7 such jobs. The ordering of these jobsdncan be represented by a permutation
w € &i,_, and the compositiod o w produces another ordering of these remaining jobs. We sitddbdem all right after
the jobn(i) = #(i) in the schedule) in the ordering{ o w. Observe that ifwuz Fit(7) = i and a transformatiorﬂf“ci € F;is
selected uniformly at random, theto € Q the probability thatuuz Fit(F}(w, o)) > i is at least—L- since at least one of
the n — 7 jobs that do not appear among the firgbbs in 7, when scheduled after the joly ;) must improve the auxiliary
fitness level for at least one of the auxiliary fitness funwiioThe next step is to design mutation transformations ance
again, the number of ways to do so is countless. Here we préserfollowing very simple design: for an auxiliary fithess
level i, let M; = {M ,|a andb € I,,} whereM_ () =7 andT = = unlessr(a) or =(b) € B, in which case the positions
of these jobs are swapped and then, if at least one of the faishis been swapped appears belowithgosition, the
partial Jackson rule with respect to the new positioningf the jobs inB. is applied starting with the lowest index of one
of the repositioned job up to th& fitness level of the auxiliary fitness functiq;f;g thereby obtaining a new schedute It
follows then thatf(;(w) > 1 = auzFit(r). We equip each family of mutation transformatioks; with the uniform probability
distribution. To apply theoremn M.2, all that remains nowdscheck condition 4 in sectidn V. Here we use the classicat fa
“about card shuffling via random transpositions”, the siesplanalysis of which is presented as an elegant illustratfahe
Markov chain coupling methodology in Chapter 4-3, section df [1€], it easily follows that if we are given a schedute
with auz Fit(m) = n (the highest auxiliary fitness level) and another schedubdth aux Fit(o) = n, afterO(n?) time steps,
the probability that the schedute has been encountered after repeated application of thetioruteansformations from the
family M,, is at Ieaslﬂ(n%), thereby establishing the desired condition 4. We are now frosition to apply theorem V.2 to
deduce that the expected runtime until encountering a ptipal containing a schedutewith fy(7) = J, < J*(1+¢) is no
bigger thany>""' - + O(n2+%) = O(In(n)) + O(n2+t¢) = O(n2+%).

=0 n—1

VII. CONCLUSION

While classical schema theory has been widely criticizedhim setting of traditional EAs: see, for instance, sectiadh 3

of [20], it's quite remarkable to observe that in case of rdistrategy and hybrid EAs it can be used for intelligent desig
guidance as well as to understand the success behind thid kiod of EAs. The current paper presents only preliminary
and highly simplified analysis that may be altered and impdon a number of ways. For instance, the generalized schema
theorent IIl.6 motivates runtime analysis based on the idef#] in place of drift analysis methodology to design anclsme
hybrid and/or mixed strategy EAs where the runtime to entaua satisfactory solution is polynomial with overwhelgiyn

high probability. This work is postponed for the future r@s#h. Nonetheless, the authors believe that the core ideesigning

the collections of generalized schemata (see definifiofl) Ilased on the auxiliary fitness levels in a similar mannehéo
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way it's been done in sectidn]V and then designing the fa®ibf recombination and mutation transformations baseden t
corresponding families of generalized schemata, opensltloe to understanding and designing efficient hybrid andehix
strategy EAs.
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