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Combining Drift Analysis and Generalized Schema
Theory to Design Efficient Hybrid and/or Mixed

Strategy EAs
Boris Mitavskiy and Jun He

Abstract

Hybrid and mixed strategy EAs have become rather popular fortackling various complex and NP-hard optimization problems.
While empirical evidence suggests that such algorithms aresuccessful in practice, rather little theoretical supportfor their success
is available, not mentioning a solid mathematical foundation that would provide guidance towards an efficient design ofthis type
of EAs. In the current paper we develop a rigorous mathematical framework that suggests such designs based on generalized
schema theory, fitness levels and drift analysis. An example-application for tackling one of the classical NP-hard problems, the
“single-machine scheduling problem” is presented.

I. I NTRODUCTION

In recent years hybrid and/or mixed strategy EAs are frequently applied to tackle various NP-hard optimization problems.
Such algorithms exploit a variety of different recombination, mutation, and selection operators where these operators are chosen
with distinct probabilities depending on the current population, the individuals that are selected for recombinationor mutation,
and, sometimes, the time when the population arises. According to the empirical evidence, many such algorithms are rather
successful in practice (see, for instance, [1] and [2] and [3]). At the same time, rather little theoretical support or, the more
so, general guidance for the design of such EAs, exists in theliterature. This work is largely motivated by a special case
design of a hybrid1 + 1 EA on a single machine scheduling problem in [4], however, inthis paper, we aim to investigate
possible methodology for the design of population-based EAs of this type. In the current article we unify the theory of hybrid
and mixed strategy EAs into a common mathematical framework. This opens the door to various existent and well-developed
mathematical tools such as generalized schema theory, drift analysis and tail inequalities to design hybrid and mixed strategy
EAs for various specific problems with polynomial runtime guarantees to encounter a satisfactory solution (such as a solution
up to a desirable or allowable approximation ratio). The paper is organized in a straightforward fashion: In section II we set
up a rigorous mathematical framework that incorporates a wide class of hybrid and mixed strategy EAs. Next, in section III,
generalized schema theory is presented. In section IV the central idea of the article, namely the design of hybrid and mixed
strategy EAs for specific optimization problems, based on the notion of auxiliary fitness levels and schemata is provided.
These ideas can then be linked with classical tools from applied probability to analyze runtime complexity: for instance, in
section V, drift analysis methodology has been applied to analyze the conditions under which the expected runtime bounds are
polynomial. Finally, this approach is illustrated with a specific example application: designing a family of hybrid andmixed
strategy population-based EAs for the “single machine scheduling problem” (see [5] and [4] for a detailed description)with
expected polynomial time approximation ratio guarantees.

II. M ATHEMATICAL DESCRIPTION OFHYBRID AND M IXED STRATEGY EAS

While the families of recombination, mutation and selection operators are typically independent of population and the
iteration time at which the population is encountered, hybrid and mixed strategy EAs exploit several families of recombination,
mutation and selection operators. Furthermore, each pair(P, t) whereP is the population encountered attth iteration of a
given hybrid or mixed strategy EA, is equipped with a probability distribution over the various families of recombination,
mutation and selection transformations. Therefore, mathematically, mixed and hybrid EAs are fully determined in terms of the
following parameters:

1. A finite setΩ of candidate solutions that we call the search space.
2. A tuple of indexed families

({Fi}i∈I , {Mj}j∈J , Selq}q∈Q, {fl}l∈L∪{0})

where I, J , Q and L are various indexing sets (usually finite subsets ofN) while Fi, Mj, Selq are various families of
recombination, mutation and selection operators respectively and{fl}l∈L is the family of fitness functions. Among the fitness
functions, only the functionf0 is the objective function to be optimized. We will say that the remaining fitness functions are
auxiliary fitness functions. In practice these may be given implicitly, motivated by certain deterministic algorithms (such as the
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Jackson rule in case of the single machine scheduling problem). Recombination operators are usually mapsF : Ω2 → Ω that
take a pair of individuals(x, y) ∈ Ω2 to a single offspringF (x, y) ∈ Ω,1 while mutation operators are functionsM : Ω → Ω.
A selection operator is a functionSel : (Ωm)

2 → Ωm on the set of pairs of populations of sizem such that∀ two populations
~x = (x1, x2, . . . xm) and~y = (y1, y2, . . . ym) ∈ Ωm all the individuals of the populationSel(~x, ~y) are also the individuals
of the population~x or of the population~y: Sel(~x, ~y) = (z1, z2, . . . zm) ∈ Ωm and∀ i with 1 ≤ i ≤ m ∃ j with 1 ≤ j ≤ m
such thatzi = xj or zi = yj. It is also reasonable to assume that given any subsetS ∈ Ω such that all the individuals inS
appear either in the population~x or ~y, then the number of individuals from the subsetS that appear in the populationSel(~x, ~y)
does not depend on the specific location (indexing) of the elements fromS in the populations~x and~y. Most certainly it may
depend on all other parameters such as the fitness of the various individuals inS and even on whether or not these individuals
occur in the population~x or in the population~y.

3. To every pair(~x, t) where~x = (x1, x2, . . . xm) ∈ Ωm is a population attth iteration of the algorithm and to every pair
of individuals (xi, xj) in ~x assign probability distributionsPr

RecFamily
(~x, t), (xi, xj)

on the set indexing the families of recombination

transformations. and for every indexw ∈ I, a probability distributionPrRec, w
(~x, t), (xi, xj)

on the set of recombination transformations
Fw. For simplicity we shall assume that the pairs(xi, xj) are sampled uniformly at random (either with replacement or
without replacement) from the population~x. Once a pair(xi, xj) has been selected for recombination, it first selects a family
of recombination operators to use according to the probability distributionPrRecFamily

(~x, t), (xi, xj)
and then, once the indexw has been

chosen, it selects a specified transformation to use according to the probability distributionPrRec, w
(~x, t), (xi, xj)

on the family of
recombination transformationsFw. Mutation operators are selected analogously except that this time only a single individual,
sayxi, is selected uniformly at random from the population~x and selects a family of mutation transformationsMw according
to a probability distributionPrMutFamily

(~x, t), xi
on the indexing setJ of the families of mutation transformations. Afterwards, it

selects mutation transformations from the familyMw according to the probability distributionPrMut, w
(~x, t), xi

on the family of
mutation transformationsMw. Likewise, to every pair(~x, t) and a population~y ∈ Ωm we associate a probability distribution
PrSelFamily

(~x, t),~y on the indexing setQ of the families of selection transformations, and to every family of selection transformations

Selw we assign a probability distributionPrSel, w
(~x, t), ~y on the familySelw of selection transformations. Once an “intermediate”

population~y has been obtained from the population~x upon completion of recombination stage followed by mutation stage,
an appropriate family of selection transformationsSw is selected through sampling its index via the probability distribution
PrSelFamily

(~x, t),~y . Afterwards, an appropriate selection transformationSel is chosen from the family of selection transformations

Selw via the probability distributionPrSel, w
(~x, t), ~y.

A hybrid/mixed strategy EA cycles through the recombination, mutation and selection stages sufficiently long to encounter
a satisfactory solution. A single cycle consisting of thesethree consecutive stages is typically called a single iteration of the
algorithm that produces the next generation from the previous one.

III. G ENERALIZED SCHEMA THEORY

In the current section we will establish a very general version of the schema theorem that applies to the types of EAs fitting
the framework in the previous section. Suppose we are given any subsetS ⊆ Ω of the search space of an EA and a population
~x at tth iteration of the algorithm. Recall from the previous section that various individuals from the population~x are paired
up for recombination independentlym times with the aim of producing exactlym offsprings. Thus, the probability that an
individual from the setS appears at theith position of the “intermediate” population~xrec obtained from the population~x upon
completion of recombination can be computed as follows:

Lemma III.1. Continuing with the notation in the preceding paragraph, for a given pair of individuals(xi, xj) ∈ ~x2, let

Pr(S | (xi, xj)) =
∑

w∈I

F (xi, xj)∈S∑

F∈Fw

PrRecFamily
(~x, t), (xi, xj)

(i = w) · PrRec, w
(~x, t), (xi, xj)

(F ).

Furthermore, let

PrnonRepl(S | ~x, t) =

∑
i6=j Pr(S | (xi, xj))

m(m− 1)

and

PrRepl(S | ~x, t) =

∑
(i, j)∈{1, 2,...,m} Pr(S | (xi, xj))

m2

Then, in case when pairs of individuals are selected for recombination independently without replacement,∀ i with 1 ≤ i ≤ m,
the probability that theith individual in the intermediate population~xrec is in the setS is PrnonRepl(S | ~x, t). Likewise, in case
when pairs of individuals are selected for recombination independently with replacement, this probability isPrRepl(S | ~x, t).

1One may also allow generalm-ary operators. In case whenm = 1, i.e. when the recombination operators are unary, they are usually known as mutation
operators.
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Proof: According to the general framework in the previous section,if the individualsxi andxj have been selected for
recombination,Pr(S | (xi, xj)) is the probability that the offspring individual is an element of the subsetS ⊆ Ω is precisely
Pr(S | (xi, xj)). Since every pair is selected for recombination uniformly at random, the probability that the pair(xi, xj)

has been chosen for recombination and their offspring is inS is Pr(S | (xi, xj))
m(m−1) in case of sampling pairs without replacement

and Pr(S | (xi, xj))
m2 in case of sampling with replacement. The desired conclusion follows now by summing the probabilities of

pairwise disjoint events.
Since recombination takes place independently, the numberof individuals in the intermediate population~xrec is distributed

binomially with success probabilities
PrnonRepl(S | ~x, t) in case of sampling recombination pairs without replacement andPrRepl(S | ~x, t) in case of sampling
recombination pairs with replacement respectively, Chernoff tail inequality (see, for instance, chapter 1 of [6]) applies and
readily tells us the following.

Lemma III.2. Continuing with the notation in lemma III.1, letN(S, ~y) denote the random variable counting the total number
of individuals in the population~y of sizem that are in the setS. Then∀ δ ∈ [0, 1]

Pr(N(S, ~xrec) < (1 − δ)mP ) ≤ exp

(
−δ2

mP

2

)

while

Pr(N(S, ~xrec) > (1 + δ)mP ) ≤ exp

(
−δ2

mP

3

)

where

P =





Pr(S | (xi, xj))
m(m−1) in case of sampling pairs

without replacement
Pr(S | (xi, xj))

m2 in case of sampling pairs

with replacement

In some simplified cases (such as one in the current paper), more informative bounds may be used when the total number
N(S, ~xrec) is expected to be small but bigger than1.

Lemma III.3. Given a population~x = (x1, x2, . . . xm) and a schemaS, suppose∃ a schemaS0 such that∀ i and j ∈

{1, 2, . . .m}, as long asxi ∈ S0, Pr(S, |xi, xj) ≥ α. ThenPr(N(S, ~xrec) ≥ 1) ≥
(
1−

(
1− N(S0,~x

rec)
m

)m)
α.

Proof: According to the assumption, a sufficient condition to obtain an individual fitting the schemaS upon completion
of recombination is to select an individual fitting the schema S0 to be the first one in a recombination pair at least once after
m consecutive trials and, afterwards, to apply an appropriate recombination transformation with probability at least as large

asα. An individual fitting the schemaS0 is selected at least once with probability1−
(
1− N(S0,~x

rec)
m

)m

via considering the
complementary event implying the desired conclusion.

We now proceed to analyze the context of the next intermediate population~xmut obtained from the population

~xrec = (x̂1, x̂2, . . . , x̂m)

upon completion of mutation. When applying mutation operator to an individual in positioni (i.e. to x̂i), in order to obtain an
individual from the setS in the ith position of the population~xmut, we must select a mutation operator that sends the individual
x̂i to an element of the setS. This event happens with probability

Pr(S |xi) =
∑

w∈J

M(xi)∈S∑

M∈Mw

PrMutFamily
(~x, t), xi

(i = w) · PrMut, w
(~x, t), xi

(M). (1)

The indices of the individuals in the population~xrec can be partitioned into two disjoint subsets:

S ∩ ~xrec = {i | x̂i ∈ S} andS ∩ ~xrec = {i | x̂i /∈ S}. (2)

We now introduce the following probabilities:

Prmut(S |S) = min{Pr(S |xi) | i ∈ S ∩ ~xrec} (3)

to be the minimal probability of preserving theith individual that is already in the setS upon completion of mutation and

Prmut(S |S) = min{Pr(S |xi) | i ∈ S ∩ ~xrec} (4)
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to be the minimal probability of mutating theith individual that is not in the setS into one that is inS. Notice that the random
variableN(S, ~xmut) measuring the total number of individuals in the population~xmut from the setS (recall that this random
variable has been introduced in the statement of lemma III.2) is the sum of independent indicator random variables

Xi =

{
1 if the ith individual of ~xmut ∈ S

0 otherwise:

N(S, ~xmut) =

m∑

i=1

Xi =
∑

i∈S∩~xrec

Xi +
∑

i∈S∩~xrec

Xi. (5)

From the discussion preceding equation 1,

E(Xi) = Pr(Xi = 1) = Pr(S |xi)

so that, by linearity of expectation, we have

E(N(S, ~xmut)) =

m∑

i=1

E(Xi) =

m∑

i=1

Pr(S |xi)

=
∑

i∈S∩~xrec

Pr(S |xi) +
∑

i∈S∩~xrec

Pr(S |xi)

≥ Prmut(S |S) · |S ∩ ~xrec|+ Prmut(S |S) · |S ∩ ~xrec|

= Prmut(S |S) · |S ∩ ~xrec|+ Prmut(S |S) · (m− |S ∩ ~xrec|) .

In summary, we have deduced that if

µ = Prmut(S |S) · |S ∩ ~xrec|+ Prmut(S |S) · (m− |S ∩ ~xrec|)

then
µ ≤ E(N(S, ~xmut)). (6)

The classical Chernoff bound applies again now and tells us that ∀ δ ∈ [0, 1]

Pr
(
N(S, ~xmut) < (1− δ)µ

) thanks to inequality 6
≤ Pr

(
N(S, ~xmut) < (1− δ) ·E(N(S, ~xmut))

)

≤ exp

(
−
δ2

2
· E(N(S, ~xmut))

)
≤ exp

(
−
δ2

2
µ

)
. (7)

Observe that|S ∩ ~xrec| = N(S, ~xrec) (see lemma III.2), so that, according to lemma III.2, we can boundµ (see equation-
definition preceding equation 6) below as follows:∀ ǫ ∈ [0, 1]

Pr(µ ≥ Prmut(S |S) · (1− ǫ)mP ++Prmut(S |S) · (m− (1 + ǫ)mP )) ≥ 1− exp

(
−ǫ2

mP

2

)
− exp

(
−ǫ2

mP

3

)
(8)

whereP is the average probability of obtaining an element in the setS upon completion of recombination as introduced in
the statement of lemma III.2. Combining inequalities 7 and 8we finally deduce the following lower bound on the probability
of the number of occurrences of individuals from the setS occurring in the population~xmut: Let

µ = m
(
Prmut(S |S) · (1− ǫ)P + Prmut(S |S) (1− P (1 + ǫ))

)
(9)

Then we have

Pr
(
N(S, ~xmut) ≥ (1− δ)µ

)
≥ Pr

(
N(S, ~xmut) ≥ (1− δ)µ |µ ≥ µ

)
· Pr(µ ≥ µ)

via inequalities 7 and 8
≥

(
1− exp

(
−
δ2

2
µ

))
×

(
1− exp

(
−ǫ2

mP

2

)
− exp

(
−ǫ2

mP

3

))
. (10)

We summarize ineqaulity 10 in the following lemma.

Lemma III.4. Given a pair(~x, t) where~x is a population attth generation of an EA and any subsetS ∈ Ω, continuing with
the notation in lemmas III.1 and III.2, as well as equation-definitions 3, 4 and 9, select a pair of small numbers(δ, ǫ) ∈ [0, 1]2.
Then the probability that the total number of individuals inthe “intermediate” population obtained from the population ~x
upon completion of recombination followed by mutation is above the threshold(1− δ)µ is at least

(
1− exp

(
−
δ2

2
µ

))
×

(
1− exp

(
−ǫ2

mP

2

)
− exp

(
−ǫ2

mP

3

))
.
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Once again, in simplified constructions such as one presented in the current preliminary work, the following alternative
lemma is an immediate corollary of lemma III.3:

Lemma III.5. Continuing with the assumptions of lemma III.3, suppose, inaddition, that∀xi ∈ S the probabilityPr(S |xi) ≥
β. Then

Pr(N(S, ~xmut) ≥ 1) ≥

(
1−

(
1−

N(S0, ~x
rec)

m

)m)
α · β.

The following generalized schema theorem is nearly a restatement of lemma III.4 that takes into account generalized selection
as described in the previous section.

Theorem III.6. Let ~z denote the population obtained from the population~x upon completion of the recombination→ mutation
→ selection cycle (equivalently, the population~z is obtained from the populations~x and~xmut after selection). Recall from the
statement of lemma III.2 that the random variableN(S, ~z) counts the total number of individuals from the setS that appear
in the population~z. Repeat verbatim the first sentence of lemma III.4. Then∀n ∈ {1, 2, . . . ,m}

Pr(N(S, ~z) ≥ n)

≥Pr
(
N(S, ~z) ≥ n |N(S, ~xmut) ≥ (1− δ)µ

)(
1− exp

(
−
δ2

2
µ

))(
1− exp

(
−ǫ2

mP

2

)
− exp

(
−ǫ2

mP

3

))
.

Applying the classical Markov inequality (see, for instance, [6]), we immediately deduce the following.

Corollary III.7. Continuing with the notation and assumptions in theorem III.6, ∀ real k ∈
[
0, m

(1−δ)µ

]

E(N(S, ~z)) ≥⌈k(1− δ)µ⌉ ·

(
1− exp

(
−
δ2

2
µ

))
×

(
1− exp

(
−ǫ2

mP

2

)
− exp

(
−ǫ2

mP

3

))

×Pr
(
N(S, ~z) ≥ ⌈k(1− δ)µ⌉ |N(S, ~xmut) ≥ (1− δ)µ

)
.

The corresponding simplified schema theorem is a direct consequence of lemma III.5:

Corollary III.8. Continuing with the notation and assumptions in theorem III.6,

Pr(N(S, ~z) ≥ 1) ≥ αβPr (N(S, ~z) ≥ 1 |N(S, ~xmut) ≥ 1)

(
1−

(
1−

N(S0, ~x
rec)

m

)m)
.

IV. RECOMBINATION-INVARIANT SUBSETS, FITNESSLEVELS AND MUTATION-INVARIANT SUBSETS

While theorem III.6 and corollary III.7 are valid for arbitrary subsetsS ⊆ Ω, it is not in vain that most notions of schemata
(see, for instance, [7] and [8]) happen to berecombination-invariantsubsets of the search spaceΩ as defined precisely below:

Definition IV.1. Given a family of recombination transformationsF on a search spaceΩ, a recombination invariant subsetor,
alternatively, ageneralized schemawith respect to the family of recombination transformations F is a subsetH ⊆ Ω having
the property that∀x and y ∈ H and ∀ transformationT ∈ F the childT (x, y) ∈ H .

General mathematical properties of recombination-invariant subsets have been studied by several authors: see, for instance,
[9], [10], [11], [12], [13] and [14]. First of all, we list a few basic properties of families of recombination-invariantsubsets (see
[12] for a detailed exposition and an in-depth analysis of the relationship between the collections of recombination-invariant
subsets of the search space and the corresponding families of recombination transformations).

Proposition IV.1. Given any family of recombination transformationsF on the search spaceΩ, the corresponding family
of invariant subsets with respect to the familyF , call it SelF , is closed under arbitrary intersections, contains the∅ and
the whole search spaceΩ2. Furthermore, given any collection of subsetsS ⊆ P(Ω) of the search spaceΩ, the family
S = {

⋂
S∈T | T ⊆ S} ∪ {∅, Ω} is closed under arbitrary intersections, contains the∅ and the entire space, and∃ a family of

recombination transformationsF such thatSF = S. Consequently, the union of all families of recombination transformations
with the above property is the unique maximal (in the sense ofcontainment) family of recombination transformations, call it
F̃ , such thatSF̃ = S. We will say that the collection of recombination-invariant subsetsS is generated by the collection of
subsetsS or, alternatively, that the collection of subsetsS generates the collection of recombination invariant subsets of the
search spaceS.

The correspondence summarized in proposition IV.1 is knownin mathematics as a Galois connection3. One of the central ideas
of the current article is that recombination transformations should be designed based on the suitable families of recombination-
invariant subsets and below we will suggest how such families of recombination-invariant subsets may be selected to design
efficient algorithms. This design is largely based on the notion of a fitness level introduced below.

2such collections of subsets are also known as pre-topologies: see [10] and [11]
3see [15] for the notions of natural transformations, adjunctions and Galois connections i.e. natural transformationsbetween posets considered as categories.

No knowledge of category theory is necessary to understand the current paper though.
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Definition IV.2. Given a fitness functionf : Ω → [0,M ], thekth fitness levelof f is the pre-image

f−1([k, M ]) = {ω ∈ Ω | f(ω) ≥ k}.

Recall from section II that hybrid and mixed strategy EAs mayhave a large number of auxiliary fitness functions. The
auxiliary fitness functions are often defined implicitly in terms of a certain incremental deterministic algorithm to find a
satisfactory solution for a specific NP-hard optimization problem. We impose the following conditions on our Hybrid or mixed
strategy EA:

Condition 1. The total number of auxiliary fitness functions is bounded above by a polynomial of degreeρ in the size of
the problem instance (in other wards,L = O(nρ) whereL is the indexing set of the auxiliary fitness functions as in section II
andn is the size of the problem instance.

Condition 2. All of the auxiliary fitness functions are non-negative, integer valued4 and have a common range5 and there
are polynomially many auxiliary fitness levels:∀ l ∈ L fl : Ω → {0, 1, . . . ,M} andM ≤ O(nτ ) wheren is the size of an
instance of a specific optimization problem.

Condition 3. ∃ l ∈ L such that theM th fitness level of the auxiliary fitness functionfl consists of “satisfactory solutions”
(for instance, up to a specified approximation ratio) for theobjective fitness functionf0.

There is a number of ways to design the collections of recombination invariant subsets based on the fitness levels of
various auxiliary fitness functions to guarantee that the expected time (i.e. the expected number of iterations) an EA requires
to encounter a satisfactory solution is polynomial in the size of the input instance. Since the aim of the current paper isto
illustrate the general ideas for such designs, we present what is, perhaps, one of the simplest and the shortest methodologies.
For k ∈ {1, 2, . . .M}, let Sk =

⋃
l∈L f−1

l ([k, M ]) and letSk = {Sj |j ≥ k} ∪ {∅, Ω}. Observe that the collectionSk

of the unions of fitness levels at least as high ask is a collection of nested sets so that, in particular, it is closed under
arbitrary intersections. According to proposition IV.1 wemay select families of recombination transformationsFk such that
the corresponding families of invariant subsetsSFk

= Sk. In fact, all that we require is thatSFk
⊇ Sk i.e. that the family of

recombination transformationsFk preserves the unions oflth fitness levels across all of the auxiliary fitness functions.
We now turn our attention to mutation transformations. Invariant subsets for mutation transformations are defined in the

same fashion.

Definition IV.3. Given a familyM of mutation transformations, a subsetS ∈ Ω is invariant under the family of mutation
transformationsM if ∀x ∈ S and ∀M ∈ M the individualM(x) ∈ S as well. We writeSM to denote the collection of all
subsets that are invariant under the family of mutation transformationsM.

Families of mutation-invariant subsets enjoy the same properties as these of recombination-invariant subsets as described
in proposition IV.1.6 Once again, we design the families of mutation transformations based on preferable family of mutation-
invariant subsets. Just as the case with recombination, a vast number of designs are possible, yet, for illustrative purposes, we
select one of the simplest in the current article. We let the indexing family of our hybrid or mixed strategy EAJ = {1, 2, . . .M}
and for eachj ∈ J we select a family of mutation transformationsMj the collection of mutation-invariant subsets of which
is, just as in case of recombination,Sj = {Sq |q ≥ j} ∪ {∅, Ω} with Sq =

⋃
l∈L f−1

l ([q, M ]). There is a further requirement
on the families of mutation transformations though:

Condition 4. We require that the family of mutation transformationsMq for q = M (i.e. at the highest common auxiliary
fitness level) possesses the following property: wheneverl andk ≤ L, ∀x ∈ f−1

l ({M}) ∃ y ∈ f−1
k ({M}) and a sequence of

mutation transformationsT1, T2, . . . , Ti ∈ Ml such thaty = Ti ◦Ti−1 ◦ . . . ◦T1(x). We further require that∃ polynomialsnγ

andnλ such that∀ l andk ≤ L and∀x ∈ f−1
l ({M}) ∃ y ∈ f−1

k ({M}) such that the probability thaty is encountered after
O(nγ) applications of the mutation transformations from the families Ml is at leastΩ(n−λ) regardless of the population in
which the individualx appears and the iteration time at which the population arises.

The following simple lemma hints at the motivation for condition 4 in our design.

Lemma IV.2. Consider any Markov chain on the state spaceSM =
⋃

l∈L f−1
l ({M}) with the transition matrix

{px→y}x, y∈SM
defined as

px→y = µx{F |F ∈ MM andF (x) = y}

where{µx}x∈SM
is the collection of probability measures onMM satisfying condition 4 above. For anx ∈ SM let Tx denote

the random waiting time to encounter a “satisfactory” solution with respect to the objective fitness functionf0 for the first
time. Then∀x ∈ SM E(Tx) ≤ O

(
nγ+λ

)
.

Proof: According to condition 3,∃ l0 ∈ L such that anyy ∈ f−1
l0

({M}) is a satisfactory “satisfactory” solution with
respect to the objective fitness functionf0 so that for any givenx ∈ SM the random variableTx is bounded above by the

4This assumption does not reduce the generality since there are finitely many auxiliary fitness functions and one can always “shift all of them up” by an
additive positive constant.

5The assumption of having a common range can be alleviated at the cost of technical complications that divert attention away from the mainstream idea
of the current article.

6In fact, this applies to arbitrary families ofm-ary transformations onΩ and their corresponding families of invariant subsets.
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random timeTx→l0 of encountering an individualy ∈ f−1
l0

({M}) for the first time. Comparing the random timeTx→l0 with
a geometric random variableT with a unit step sizeO(nγ) and success probabilityΩ(n−λ), thanks to condition 4 we deduce
thatE(Tx→l0) ≤ nγE(T ) = O(nγ) · 1

Ω(n−λ)
= O

(
nγ+λ

)
as claimed.

The type of hybrid EA’s design suggested in the current article is largely based on the notion of an individual’s maximal
auxiliary fitness level introduced below:

Definition IV.4. For an individualx ∈ Ω the maximal auxiliary fitness levelof x is auxFit(x) = maxl∈L fl(x).

In other words, the maximal auxiliary fitness level of an individual x is the largest auxiliary fitness levelq of x so that
x “fits” the schemaSq that is invariant under the family of recombination transformationsFj for j ≥ q. A rather simple
complexity analysis presented in the current paper relies on applying the simplified version of schema theory from section III
to the special schemata introduced in the following definition:

Definition IV.5. Consider a hybrid or mixed strategy EA fitting the framework of the current article that uses populations of
sizem ≥ 2, and a population~x = {x1, x2, . . . xm}. Let AuxMax(~x) = max{auxFit(xi) | 1 ≤ i ≤ m} denote the maximal
auxiliary fitness level present in the population~x. We say that the schemaSAuxMax(~x) is the leading current schemawhile
the schemaSAuxMax(~x)+1 is the leading future schemaof the population~x.

One of the simplest (but not the only possible) designs of “efficient” hybrid or mixed strategy EAs is to concentrate the
probability distributionsPrRecFamily

(~x, t), (xi, xj)
on the set indexing the families of recombination transformations (recall that there are

as many of these as there are auxiliary fitness levels) on the indicesq ≥ auxFit(xi) wheneverauxFit(xi) = AuxMax(~x).
Likewise, the probability of selecting the families of mutation transformations,PrMutFamily

(~x, t), xi
, is also concentrated on the indices

q ≥ auxFit(xi) for the individualsxi fitting the leading current schema. Forq ∈ {1, 2, . . .M} let

PRec
Imp(q) = min{Pr

RecFamily
(~x, t), (xi, xj)

(w > q) | auxFit(xi) = q, xj ∈ Ω}

and
PMut
Imp (q) = min{Pr

MutFamily
(~x, t), xi

(w ≥ q) | auxFit(xi) = q}. (11)

denote the minimal probabilities of improving the auxiliary fitness levelq after applying recombination and mutation transfor-
mations respectively. We assume that all the probabilitiesof typesPRec

Imp(q) andPMut
Imp (q) are positive.

In the current paper we do not assume much about selection apart from preserving the highest auxiliary as well as the
highest objective fitness levels. Formally this can be defined as follows.

Definition IV.6. We say that a selection transformationSel : (Ωm)2 → Ωm is hybrid-elitist if ∀~x and ~y ∈ Ωm

AuxMax(Sel(~x, ~y)) = max{AuxMax(~x), AuxMax(~y)}

and
max{f0(Sel(~x, ~y)) | 1 ≤ i ≤ m} = max{max{f0(xi) | 1 ≤ i ≤ m}, max{f0(yi) | 1 ≤ i ≤ m}}

Applying corollary III.8 withS0 being the leading current schema andS being the leading future schema as in definition IV.5
and observing thatN(SAuxMax(~x), ~x

rec) ≥ 1 by definition IV.5, we immediately deduce the following fact.

Lemma IV.3. Suppose we are given a hybrid or mixed strategy EA with constant population sizem that exploits hybrid-elitist
selection. Then

Pr(N(SAuxMax(~x)+1, ~z) ≥ 1) ≥

(
1−

(
1−

1

m

)m)
× PRec

Imp(AuxMax(~x)) · PMut
Imp (AuxMax(~x) + 1)

>(1− exp(−1)) · PRec
Imp(AuxMax(~x)) · PMut

Imp (AuxMax(~x) + 1)

where, as usual,~z denotes the population obtained from the population~x upon completion of a single recombination−→
mutation−→ selection cycle.

V. DRIFT ANALYSIS AND SIMPLE RUNTIME COMPLEXITY BOUNDS

Drift analysis methodology invented in [16] has been introduced into the evolutionary computation theory for estimating the
expected run-time complexity in [17], quickly gained popularity and has been modified and enhanced in a number of ways.
In the current article we will use the additive variable drift analysis version established in [18]. For the sake of completeness,
the necessary definition and the relevant lemma are stated below.

Definition V.1. Let (X , {px→y}x, y∈X ) denote a Markov chain with finite state spaceX and transition probabilitiespx→y for
x and y ∈ X . Let A ⊆ X . A distance functionD on X with respect toA is any functionD : X → [0,∞) with the property
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that D(x) = 0 if and only if x ∈ A. Let {Xt}∞t=0 denote the stochastic process associated with the Markov chain X . We are
interested in the following waiting time random variable:

T (x |X0 = ξ0) = min{t |Xt(x) ∈ A}

under the assumption thatX0(x) = ξ0 with probability 1 (i.e. the chain starts at a specifiedξ0 ∈ X ).

A simple complexity bound appearing in the current paper is based on the following additive variable drift lemma from
[18].

Lemma V.1. Suppose we are given a Markov chain
(X , {px→y}x, y∈X ), a subsetA ⊆ X and a distance functionD : X → [0,∞) as described in definition V.1. Suppose also that
for every integerk ∈ N∪{0} ∃ a constantlk ∈ (0,∞) such that∀x ∈ Ac with ⌈D(x)⌉ ≥ k (hereAc denotes the complement
of A in X ) we haveD(x)−

∑
y∈X px→yD(y) ≥ lk. Then

E(T (x |X0 = ξ0)) ≤

⌈D(ξ0)⌉∑

k=1

1

lk
.

Given a hybrid or mixed strategyEA with the highest auxiliary fitness levelM satisfying conditions1, 2 and3 that exploits
hybrid-elitist selection, we apply lemma V.1 to the Markov chain X of all populations of sizem, Ωm with the probability
p~x→~z being the probability that the population~z is obtained from the population~x upon completion of a recombination−→
mutation−→ selection cycle. The set

A = {~x | ~x ∈ Ωm andAuxMax(~x) = M}

is the set of all populations containing an individual of thehighest auxiliary fitness level and the distance functionD : X →
{0, 1, . . . ,M} defined asD(~x) = M −AuxMax(~x). According to lemma IV.3, wheneverAuxMax(~x) = q

Pr(D(~x)−D(~z) ≥ 1 | p~x→~z 6= 0) ≥

(
1−

(
1−

1

m

)m)
· PRec

Imp(q) · P
Mut
Imp (q + 1)

>(1− exp(−1))PRec
Imp(q) · P

Mut
Imp (q + 1)

Furthermore, thanks to the assumption that our EA exploits ahybrid-elitist selection, wheneverp~x→~z 6= 0 D(~x)−D(~z) ≥ 0.
Now, letting

lk(m) =

(
1−

(
1−

1

m

)m)
· PRec

Imp(k) · P
Mut
Imp (k + 1) (12)

and
lk = (1− exp(−1)) · PRec

Imp(k) · P
Mut
Imp (k + 1) (13)

we deduce that the worst case expected runtime complexity upper bound to reach the highest auxiliary fitness level for
a hybrid or mixed strategy EA that exploits hybrid-elitist selection (and hence must have a population sizem ≥ 2) is∑M−1

k=0
1

lk(m) ≤
∑M−1

k=0
1
lk

. If we assume, in addition, that our EA satisfies condition2 in section IV thenM = O(nτ ).
Furthermore, conditions1, 3 and4 allow us to apply lemma IV.2 and to deduce the following expected runtime result.

Theorem V.2. Suppose a given hybrid or mixed strategy EA that employs hybrid-elitist selection satisfies conditions1, 2, 3
and 4 in section IV. Then the worst-case expected runtime for the EA to reach a satisfactory solution is bounded above by

M−1∑

k=0

1

lk(m)
+ nγ+λ ≤

M−1∑

k=0

1

lk
+ nγ+λ.

In the next section we illustrate an application of theorem V.2 and, more importantly, the methodology developed in
sections III and IV as well as in the current section with a single machine scheduling problem.

VI. A N EXAMPLE APPLICATION: SINGLE MACHINE SCHEDULING PROBLEM

One of many classical NP-hard combinatorial optimization problems is the single machine scheduling problem (see chapter
on scheduling problems by Leslie Hall in [5]). The instance of the problem of sizen consists of a sequence of ordered triples
{ji}ni=1 whereji = (ri, pi, qi) with ri, pi andqi ∈ [0, ∞) standing for “release time”, “processing time” and “delivery time”
of the job ji respectively. Each of the jobs has to be processed on a singlemachine, call itM , without interruption and it
starts getting delivered immediately after being processed. There is no restriction on the total number of jobs being delivered
simultaneously, yet a job can start getting processed no earlier than its release timeri and only when the machine is available
(i.e. not processing another job). The jobs can be processedin any order and the objective is to minimize the “maximal lateness”
of the schedule: i.e. the time instant when the last job has been just delivered. Thus, the search spaceΩ = {π |π : In →
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In is a permutation} whereIn = {1, 2, . . . , n} so that everyπ ∈ Ω determines the schedule(jπ(1), jπ(2), . . . , jπ(n)). Let sπ(i)
denote the time when the jobjπ(i) starts processing. Then themaximal latenessof the scheduleπ is Jπ = max1≤i≤n{sπ(i) +
pπ(i)+qπ(i)}. and the objective is to find a permutationσ ∈ Ω such thatJσ = J∗ = min{Jπ |π ∈ Ω}. Let nowP =

∑n
i=1 pi and

let ǫ > 0 be given. Letδ = ǫP and letBǫ = {i | pi ≥ δ}. Then|Bǫ| ≤
P
ǫP

= 1
ǫ
. LetΦ = {φ : Bǫ → In |φ is one-to-one} denote

the set ofrepositioning mapsand notice that the total number of such repositioning maps is bounded above as|Φ| = n|Bǫ| ≤ n
1

ǫ

(this verifies condition 1 in the upcoming design). The following notion is crucial in determining the auxiliary fitness functions
(see [4] for a significantly more detailed exposition).

Definition VI.1. We say that a scheduleπ ∈ Ω is (k, ǫ, φ)-Jackson if∀h ≤ k if h = φ(i) for somei ∈ In thenπ(i) = h = φ(i)
or else leta(h − 1) denote the time when the jobπ(h − 1) has just finished being processed and consider the set of all the
jobsAh = {u |u /∈ Bǫ and ru ≥ a(h− 1)}. It is then required thatqπ(h) = max{qu |u ∈ Ah}.

Plainly speaking, the idea behind definition VI.1 is the stepwise implementation of the “partial Jackson rule”: whenever the
machine is available, as long as a long-processing job (withpi ≥ δ) is not one booked to be scheduled at timeh, then schedule
a job with “short” processing time that has the longest delivery time next. Our set of auxiliary fitness functions is indexed
by the family of repositioning mapsΦ and∀ φ ∈ Φ andπ ∈ Ω, fφ(π) = max{k |k ∈ In andπ is (k, ǫ, φ) − Jackson}. The
following clever result that is implicitly established in [5] and enforces condition 3 to hold in our design appears below:

Theorem VI.1. ∃ a repositioning mapφ ∈ Φ such thatfφ(π) = n =⇒ f0(π) = Jπ ≤ J∗(1 + ǫ).

Since there are totallyn = n1 auxiliary fitness levels, condition 2 is fulfilled automatically. The only remaining part is to
design the families of recombination and mutation transformations preserving the “auxiliary cross-fitness level schemata” and the
highest auxiliary fitness level mutation transformations according to the recipe in section IV. This can be done in a vastnumber
of ways (see [12] for a detailed analysis of the relationshipbetween families of recombination-invariant subsets and the families
of recombination transformations fixing them). Here is one possibility. For an auxiliary fitness leveli we define the family of
hybrid recombination transformationsFi = {F i

ζ | ζ ∈ SIn−i
} whereIn−i denotes the indexing set{1, 2, . . . , n−i} while SIn−i

denotes the group of all permutations on the setSIn−i
as follows. Select a permutationζ on In−i. Given a pair of permutations

(π, σ) ∈ Ω2 with π = (π(1), π(2), . . . , π(n)) andσ = (σ(1), σ(2), . . . , σ(n)), let F i
ζ(π, σ) = η = (η(1), η(2), . . . , η(n))

with η(l) = π(l) whenever1 ≤ l ≤ i. Now extract a subsequence of jobs inσ that do not appear among the firsti jobs in π
and notice that there must be exactlyn − i such jobs. The ordering of these jobs inσ can be represented by a permutation
ω ∈ SIn−i

and the compositionζ ◦ ω produces another ordering of these remaining jobs. We schedule them all right after
the jobη(i) = π(i) in the scheduleη in the orderingζ ◦ ω. Observe that ifauxFit(π) = i and a transformationF i

ζ ∈ Fi is
selected uniformly at random, then∀σ ∈ Ω the probability thatauxFit(F i

ζ(π, σ)) > i is at least 1
n−i

since at least one of
the n − i jobs that do not appear among the firsti jobs in π, when scheduled after the jobjπ(i) must improve the auxiliary
fitness level for at least one of the auxiliary fitness functions. The next step is to design mutation transformations and,once
again, the number of ways to do so is countless. Here we present the following very simple design: for an auxiliary fitness
level i, let Mi = {M i

a, b | a andb ∈ In} whereM i
a, b(π) = π̃ andπ̃ = π unlessπ(a) or π(b) ∈ Bǫ in which case the positions

of these jobs are swapped and then, if at least one of the jobs that has been swapped appears below theith position, the
partial Jackson rule with respect to the new positioningφ̃ of the jobs inBǫ is applied starting with the lowest index of one
of the repositioned job up to theith fitness level of the auxiliary fitness functionf

φ̃
thereby obtaining a new schedulẽπ. It

follows then thatf
φ̃
(π) ≥ i = auxFit(π). We equip each family of mutation transformationsMi with the uniform probability

distribution. To apply theorem V.2, all that remains now is to check condition 4 in section IV. Here we use the classical fact
“about card shuffling via random transpositions”, the simplest analysis of which is presented as an elegant illustration of the
Markov chain coupling methodology in Chapter 4-3, section 1.7 of [19], it easily follows that if we are given a scheduleπ
with auxFit(π) = n (the highest auxiliary fitness level) and another scheduleσ with auxFit(σ) = n, afterO(n2) time steps,
the probability that the scheduleσ has been encountered after repeated application of the mutation transformations from the
family Mn is at leastΩ(n

1

ǫ ), thereby establishing the desired condition 4. We are now ina position to apply theorem V.2 to
deduce that the expected runtime until encountering a population containing a scheduleπ with f0(π) = Jπ ≤ J∗(1 + ǫ) is no
bigger than

∑n−1
i=0

1
n−i

+O(n2+ 1

ǫ ) = Θ(ln(n)) +O(n2+ 1

ǫ ) = O(n2+ 1

ǫ ).

VII. C ONCLUSION

While classical schema theory has been widely criticized inthe setting of traditional EAs: see, for instance, section 3.2
of [20], it’s quite remarkable to observe that in case of mixed strategy and hybrid EAs it can be used for intelligent design
guidance as well as to understand the success behind this novel kind of EAs. The current paper presents only preliminary
and highly simplified analysis that may be altered and improved in a number of ways. For instance, the generalized schema
theorem III.6 motivates runtime analysis based on the ideasin [4] in place of drift analysis methodology to design and analyze
hybrid and/or mixed strategy EAs where the runtime to encounter a satisfactory solution is polynomial with overwhelmingly
high probability. This work is postponed for the future research. Nonetheless, the authors believe that the core ideas of designing
the collections of generalized schemata (see definition IV.1) based on the auxiliary fitness levels in a similar manner tothe
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way it’s been done in section IV and then designing the families of recombination and mutation transformations based on the
corresponding families of generalized schemata, opens thedoor to understanding and designing efficient hybrid and mixed
strategy EAs.
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