Abstract:
Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a biased random key genetic algori...Show MoreMetadata
Abstract:
Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a biased random key genetic algorithm for finding approximate solutions for bound-constrained continuous global optimization problems subject to nonlinear constraints. Experimental results illustrate its effectiveness on some functions from CEC2006 benchmark (Liang et al. [2006]).
Published in: 2013 IEEE Congress on Evolutionary Computation
Date of Conference: 20-23 June 2013
Date Added to IEEE Xplore: 15 July 2013
ISBN Information: