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Abstract—Learning classifiers from datasets is a central prob-
lem in data mining and machine learning research. ABC-Miner
is an Ant-based Bayesian Classification algorithm that employs
the Ant Colony Optimization (ACO) meta-heuristics to learn the
structure of Bayesian Augmented Naı̈ve-Bayes (BAN) Classifiers.
One of the most important aspects of the ACO algorithm is
the choice of the quality measure used to evaluate a candidate
solution to update pheromone. In this paper, we explore the
use of various classification quality measures for evaluating
the BAN classifiers constructed by the ants. The aim of this
investigation is to discover how the use of different evaluation
measures affects the quality of the output classifier in terms
of predictive accuracy. In our experiments, we use 6 different
classification measures on 25 benchmark datasets. We found that
the hypothesis that different measures produce different results
is acceptable according to the Friedman’s statistical test.

I. INTRODUCTION

Data mining, a research field involving concepts and meth-
ods from artificial intelligence, machine learning and statistics,
aims at discovering useful patterns in real-world datasets.
Classification is one of the widely studied data mining tasks,
in which the aim is to learn a model used to predict the
class of unlabelled cases [1]. While the literature includes
several approaches for tackling this problem, such as decision
trees , artificial neural networks and classification rules [2],
[1], the Bayesian approach for classification aims to model
the (in)dependences relationships between the input domain
variables given the class variable in a probabilistic network
[3]. Bayesian network (BN) classifiers are used to predict
the class of a case by computing the class with the highest
posterior probability given the case’s predictor attribute values,
and learning effective BN classifiers – in terms of predictive
accuracy – is our focus in this work.

ABC-Miner [4], recently introduced by the authors, is a
classification algorithm that learns the structure of a Bayesian
Augmented Naı̈ve-Bayes (BAN) network using Ant Colony
Optimization (ACO) – a global-search meta-heuristics for
solving combinatorial optimization problems [5]. The Ant-
based Bayesian Classification algorithm showed predictive
effectiveness compared to other Bayesian classification algo-

rithms, namely: Naı̈ve-Bayes, Tree Augmented Naı̈ve-Bayes
(TAN) and General Baysian Network (GBN) [4]. Moreover,
experiments also showed that the use of accuracy – a clas-
sification quality measure – as a quality evaluation measure
during the algorithm’s training phase is more effective than
the use of conventional Bayesian scoring functions.

The motivation behind this work is based on the previous
conclusion; since ABC-Miner showed classification effective-
ness, we carry on extending the algorithm. In addition, one
of the most important aspects of the ACO algorithm is the
choice of the quality measure used to evaluate a candidate
solution to update pheromone. In this paper, we explore the
use of various classification quality measures for evaluating
the BN classifiers constructed by the ants in the ABC-Miner
algorithm. The aim of this investigation is to discover how
the use of different evaluation measures affects the quality of
the output classifier in terms of predictive accuracy. In our
experiments, we explore the use of 6 different classification
measures on 25 UCI repository [6] benchmark datasets.

The rest of the paper is organized as follows. In Section 2
we provide a background on Bayesian Network classifiers. In
Section 3 we provide a brief overview on Ant Colony Opti-
mization. We describe our Ant-based Bayesian Classification
Algorithm in Section 4. In Section 5 we discuss the concepts
of the classification quality measure and its related use as
search heuristics, then we exhibit the measures used in the
current work. Our experimental setup is described in Section
6, followed by the computational results in Section 7. Finally,
we conclude with some general remarks and directions for
future research in Section 8.

II. BAYESIAN NETWORKS BACKGROUND

In the context of reasoning with uncertainty, Bayesian
networks (BN) is a popular and statistically-sound type of
method for modelling (in)dependence relationships between
variables in a given data set[7]. A BN is a type of graphical
model in the form of a directed acyclic graph (DAG), where
nodes represent the variables (also called attributes or features)
and edges represent probabilistic dependences between the



variables. Each node (variable) in a BN is associated with
a conditional probability table, which specifies the probability
for each value of that variable given each configuration of
values of its parents in the network. Note that a Bayesian
network is built to answer probabilistic queries about any
node(s) in the network.

Bayesian network classifiers are a specific type of proba-
bilistic graphical model which is also represented in the form
of a DAG, but, unlike BNs, Bayesian network classifiers are
built to answer probabilistic queries about just one specific
node: the class attribute. Hence, the class node has a special
role in a Bayesian network classifier, and it is set as the parent
of all other variables. A Bayesian network classifier is used
to calculate the probability of each value (label) c of the class
variable C given a case x (an instance of the input attributes
X = {X1, X2, ..., Xn}), and then assign to that case the class
label with the highest probability, as in the following formulas:

C(x) = argmax
∀c∈C

P (C = c|x = x1, x2, ..., xn), (1)

letting Pa(Xi) be the set of parent predictor variables of Xi

in the network, according to the Bayes’ Theorem:

posterior probability︷ ︸︸ ︷
P (c|x1, x2, ..., xn)α

prior probability︷︸︸︷
P (c)

n∏
i=1

likelihood︷ ︸︸ ︷
P (xi|Pa(Xi), c) (2)

Broadly speaking, several types of BN classifiers have
been proposed in the literature, varying from the simple
Naı̈ve-Bayes, to increasingly more complex types of Bayesian
network classifiers like TAN, BAN, and GBN. Naı̈ve-Bayes
makes the very strong (and unrealistic) assumption that at-
tributes are independent from each other given the class;
which, in terms of a graphical model, means that each variable
has a single parent node in the network: the class variable.

The aforementioned more complex types of BN classifiers
mitigate Naı̈ve-Bayes’ limitation by allowing more complex
types of variable dependence to be represented in the network
[8], [9]. Hence, in a TAN structure, dependences between
predictor attributes can be represented as a tree where each
predictor attribute can have another predictor attribute as its
parent, in addition to the class variable that is the parent of all
attributes. In a BAN structure, dependences between predictor
attributes can be represented by any DAG or by a DAG where a
predictor attribute can have at most k-parents, again in addition
to the class variable that is the parent of all attributes.

In contrast to the previous types of BN classifiers, in a GBN
structure, the class variable can be either a parent or a child of
any predictor attribute. In this case, the system initially builds
a general-purpose BN (treating the class variable as any other
node), and then it extracts the Markov blanket of the class node
and use the set of nodes and edges in that Markov blanket as
a Bayesian network classifier. For a review and comparison of
various BN classifiers, see [8], [9].

The problem of learning a BN classifier from a given
dataset D consists of two phases, namely learning the structure
and the parameters of the network. Parameter learning is, by

comparison, the simpler phase. In this phase, the conditional
probability table (CPT) of each variable Xi is often con-
structed by estimating, from the data, the likelihood of each
value of that variable given each combination of values of
its parent variables Pa(Xi) in the network structure G. The
likelihood of the dataset D given a network G is denoted by
P (D|G). In the structure learning phase, one typically wants
to find the network G that maximizes P (D|G) for a given
D, which is the role of BN structure learning. A popular
approach to this problem, in data mining and machine learning,
is to specify a network scoring function, f , that evaluates
the quality of each G with respect to D. Then one uses a
search method to try to find the network structure with the
best possible value of that scoring function, in the space of
candidate network structures [8].

Most BN-classifier structure learning algorithms proposed
in the literature are deterministic and greedy – adding or
removing just one edge at a time to the current network and
then evaluating the new network. Such greedy methods are
likely to get trapped into local optima in the search space.
Since learning the optimal BN structure from a dataset is
NP-complete, using a search method that guarantees to find
the optimal network (based on exhaustive search) would be
practical only for simple and small problems. Hence, in the
case of large and complex problems, heuristic methods are
needed to try to find a near-optimal solution in an acceptable
time. In this context, stochastic meta-heuristic global search
methods like ACO, which are less likely to get trapped into
local optima, are worth exploring as a search method to build
Bayesian network classifiers.

III. ANT COLONY OPTIMIZATION

Inspired by the behaviour of natural ant colonies, Dorigo
et al. [5], [10] have defined Ant Colony Optimization (ACO)
as a meta-heuristic that can be applied to solve optimization
problems, and ACO has been widely used in combinatorial
optimization problems. The basic principle of ACO is that a
population of artificial ants cooperates with each other to find
the best path in a graph, representing a candidate solution to
the target problem, analogously to the way that natural ants
cooperate to find the shortest path between two points like
their nest and a food source.

In ACO each artificial ant constructs a candidate solution
to the target problem, represented by a path in a “construc-
tion graph”. Ants cooperate via indirect communication, by
depositing artificial pheromone (some type of information) on
the nodes or edges of the construction graph. More precisely,
an ant deposits pheromone on the nodes or edges of the path
corresponding to its constructed solution, and the amount of
pheromone deposited is proportional to the quality of that so-
lution. The larger the amount of pheromone on a node or edge,
the larger the probability that other ants will decide to visit that
node or edge when constructing their solution, incorporating
an aspect of global search into an ACO algorithm.

In addition, the probability of an ant choosing a node
or edge also depends on the value of a heuristic function



associated with that node or edge that evaluates the desirability
of nodes or edges in a local fashion. In order to design an ACO
algorithm to solve a specific type of problem, the following
components of the algorithm should be designed:
Construction Graph - This graph defines the search space to
be explored by the ACO algorithm. Each ant incrementally
constructs a candidate by visiting nodes and edges in the
graph, corresponding to different combinations of components
of a candidate solution.
Heuristic Function - This is a function that uses some
problem-specific information to evaluate the quality of each
candidate-solution component available in the construction
graph. The value of this function influences an ant’s choice of
which components will be used for constructing its candidate
solution.
State Transition Rule - This is a probabilistic transition
rule that determines how each ant decides which search state
(corresponding to a node or edge in the construction graph)
will be visited next, in order to continue the construction of
its candidate solution. This rule is based on both the heuristic
function value η and the pheromone amount τ associated with
the candidate-solution components.
Quality Evaluation Measure - This is a problem-specific
function used to evaluate the quality of a candidate solution
constructed by an ant. The higher the quality of a solution
constructed by an ant, the more pheromone will be deposited
on the construction graph components used in that solution,
which will encourage other ants to select those components in
future iterations of the ACO algorithm.
Pheromone Update Strategy - This involves formulas to
use for pheromone reinforcement and evaporation. Pheromone
reinforcement is applied on construction graph components
occurring in the constructed solution in proportion to that
solution’s quality, while pheromone evaporation is applied
on the whole construction graph to avoid stagnation and
premature convergence.
Local Search - An optional procedure to improve the quality
of a constructed solution. This can be performed on each
constructed candidate solution, or just on the best solution
among the colony to reduce computational time.

ACO algorithms have been successful in solving several
combinatorial optimization problems, including classification
rule discovery [11], [12], [13], [14], [15] and general purpose
BN construction [16], [17], [18]. However, ABC-Miner [4],
recently introduced by the authors, is the first ACO algorithm
to learn BN classifiers. This algorithm is briefly described
in the next section, in order to make the paper more self-
contained.

IV. THE ABC-MINER ALGORITHM

ABC-Miner is an ACO algorithm that learns a BN classifier
by searching for the best possible Structure of a Bayesian
network Augmented Naive Bayes (BAN) having at most k-
dependences (parents) at each variable node [4]. Algorithm 1
outlines the ABC-Miner procedures.

Algorithm 1 Pseudo-code of ABC-Miner.
Begin
BNC(gbest) = ϕ;
t = 1;
InitializePheromoneAmounts();
InitializeHeuristicV alues();
repeat

BNC(tbest) = ϕ;
Q(tbest) = 0;
for i = 1 → colony size do

BNC(i) = CreateSolution(ant(i));
Q(i) = ComputeQuality(BNC(i));
if Q(i) > Q(tbest) then

BNC(tbest) = BNC(i);
Q(tbest) = Q(i);

end if
end for
PerformLocalSearch(BNC(tbest));
UpdatePheromone();
if Q(tbest) > Q(gbest) then

BNC(gbest) = BNC(tbest);
Q(gbest) = Q(tbest);

end if
t = t+ 1;

until t = max iterations or Convergence()
return BNC(gbest);
End

The construction graph consists of all the edges of the form
X → Y where X ̸= Y and X,Y belong to the set of predictor
attributes in the dataset. These edges represent probabilistic
attribute dependences in a BN classifier.

In essence, at each iteration, each ant incrementally con-
structs a candidate solution (i.e., a BN classifier). Then the
quality of each candidate BN classifier is measured. The
best solution produced in the colony at the current iteration
undergoes local search, and then the BN classifier resulting
from that local search is used to update the pheromone in the
construction graph path corresponding to that classifier. After
that, the system compares the quality of the current iteration’s
best solution Q(tbest) with the quality of the global best
solution Q(gbest), in order to keep track of the best solution
found along the entire search so far. This is repeated until the
algorithm converges, or the predefined maximum number of
iterations is reached.

Algorithm 2 shows the construction of a candidate BN
classifier. An ant starts by considering a very simple BN
classifier structure, namely a Naı̈ve-Bayes structure, where
each variable has just one parent, namely the class variable.
Then the ant incrementally builds a more complex network,
in the form of a Bayesian Augmented Naı̈ve-Bayes (BAN)
structure, by adding one edge at a time to the current network
structure.

The selection of the edge to be added at each step is based
on both the heuristic value (computed using conditional mutual



Algorithm 2 Pseudo-code of Solution Creation Procedure.
Begin CreateSolution()
BNC ← {Naı̈ve-Bayes structure};
k = ant.SelectMaxParents();
while GetV alidEdges() <> ϕ do

{i→ j} = ant.SelectEdgeProbablistically();
BNC = BNC ∪ {i→ j};
RemoveInvalidEdges(BNC, k);

end while
BNC.LearnParameters();
return BNC;
End

information [4]) and the pheromone amount associated with
each valid candidate edge that could be added at this step,
using the following probabilistic state transition formula:

Pij =
[τij(t)]

α · [ηij ]β∑
a

∑
b [τab(t)]

α · [ηab]β
, (3)

where Pij is the probability of selecting the edge i → j,
τij(t) is the amount of pheromone associated with edge i→ j
at iteration t and ηij is the heuristic information for edge
i→ j. The exponents α and β are used to adjust the relative
importance of the pheromone (τ ) and heuristic information
(η), respectively, and are set using the “ants with personality”
approach [14]. An edge is valid to be added to the current
partial BN classifier if the inclusion of that edge in the
classifier does not create a directed cycle and does not exceed
the upper limit of k parents for the current node (a limit chosen
by the current ant). Once an edge is added to the current
partial BN classifier, all the invalid edges are eliminated from
the construction graph available for that ant. This process is
repeated until no valid edges are available for that ant.

When the BN structure constructed by an ant is finished,
the CPT (Conditional Probability Table) is computed for each
variable, producing a complete BN classifier. Then the quality
of the solution is evaluated and all the edges become available
for constructing further candidate solutions.

The ABC-Miner algorithm evaluates the quality of the
candidate constructed BN classifier during the training phase
using accuracy [4], a conventional predictive measure, since
the goal is to build a BN only for predicting the value of a
specific class attribute, unlike conventional BN learning algo-
rithms whose scoring function does not distinguish between
the predictor and the class attributes.

In [4] it is reported that the ABC-Miner algorithm
has obtained good predictive accuracy compared to other
well-known conventional Bayesian classification algorithms,
namely: Naı̈ve-Bayes, TAN and GBN. Thus, it seems worth
to further investigate the effectiveness of new variations of
that algorithm. One of the most important aspects of an ACO
algorithm for classification is the choice of the quality measure
used to evaluate a candidate classifier and so for pheromone
updating. In this context, we explore the use of different
classification quality measures – besides accuracy, which

was used originally by the algorithm – to investigate how the
use of different evaluation measures affects the quality of the
output BN classifier.

V. CLASSIFIER QUALITY MEASURES

Measuring the predictive performance of a classification
model (classifier) is based on the counts of the cases (vali-
dation cases in the training phase and test cases in the test
phase) correctly and incorrectly predicted by the classifier.
These counts are organized in a tabular structure known as
a confusion matrix, as represented in Table I. The entries of
the confusion matrix are defined as follows:

TABLE I
CONFUSION MATRIX

Predicted
Class

Positive Negative
Actual
Class Positive TP FN

Negative FP TN

TP The count of cases that belong to the positive class and
are predicted as positive (true positives).

FP The count of cases that belong to the negative class and
are predicted as positive (false positives).

TN The count of cases that belong to the negative class and
are predicted as negative (true negatives).

FN The count of cases that belong to the positive class and
are predicted as negative (false negatives).

SM The total count of cases (TP + FP + TN + FN).
For binary classification problems, where the class variable

has exactly two values, only one confusion matrix is computed.
However, in multi-class problems, where the class variable has
more than two values, several matrices are computed, one for
each class value considered as the positive class, with all the
other classes grouped together to form the negative class.

One common approach for calculating the overall classifier
quality from several confusion matrices is to calculate the
quality on each class using a specific measure with each
confusion matrix separately, and take the average of the
qualities calculated across all the classes. Such an averaging
approach is robust against the class imbalance problem, where
in some datasets a class value has a dominant count of cases
or where some class values have a much fewer count of cases.
We employ this approach in our experiments.

Various classification quality evaluation measures are
formulated using these elements of the confusion matrix,
with different biases and quality aspects’ importance. Several
works aimed to study the effectiveness of these measures,
yet in different classification contexts such as classification
rule induction [19], [20], [21], [22], which highlighted
the importance of rule quality measure chosen to be used
to guide the search. We explore the effect of these various
classifications quality evaluation measures in guiding the ACO
search to construct effective Bayesian network classifiers.



The following presents the 6 quality measures explored in
our work.

Accuracy (Equation 4) - The baseline measure which is
used in the original ABC-Miner [4] to evaluate the candidate
constructed Bayesian network classifiers. Accuracy measures
the ratio of the count of correctly classified cases (TP + TN)
over the sum of counts of all the cases.

Accuracy =
TP + TN

SM
(4)

F-measure (Equation 6) - Widely used in the context of in-
formation retrieval and text classification systems. It calculates
a harmonic mean between precision and recall.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(5)

F −measure =
2.P recision.Recall

Precision+Recall
(6)

Sensitivity × Specificity (Equation 7) - Used in
the Ant-Miner [13] and in the cAnt-MinerPB [20] classifica-
tion rule discovery algorithms . Sensitivity measures the ratio
of the count of true positives to the count of all the positive
cases, and the specificity measures the ratio of the count of
true negatives to the count of all the negative cases.

Sensitivity × Specificity =
TP

TP + FN
.

TN

TN + FP
(7)

Jaccard Coefficient (Equation 8) - It calculates the
similarity between sample sets. In the classification context, it
measures the accuracy only with respect to the true positive
count, neglecting the true negatives. This measure has been
used in [20], [19] as a classification rule quality function,
where it was one of the best performing functions.

Jaccard =
TP

TP + FP + FN
(8)

M-estimate (Equation 9) - a parametric function with the
parameter m, where was set to 22.4 as found to be the best
value by Janssen and Fürnkranz in [22].

M − estimate =
TP +m. TP

SM

TP + FP +m
(9)

Klösgen (Equation 10) - When ω = 0, the measure acts as
the precision (Equation 5). As ω increases the measure acts in
a manner similar to recall (Equation 5). The transition from
one to the other is not linear, and as ω increases further it
starts acting as coverage. An ω value of 0.43 was found to be
optimum by Janssen and Fürnkranz in [22] and is used in our
experiments.

Klosgen =

(
TP + FP

SM

)ω

.

(
TP

TP + FP
− TP + FN

SM

)
(10)

It is crucial to emphasize that there are two different quality
evaluation operations. The first is the one used on the testing
phase to evaluate the classification quality of the final output
classifier on a test set unseen during training, which is fixed

to evaluate several algorithms or several variations of an
algorithm. The second is the one used during the training phase
for evaluating each candidate classifier constructed by an ant
on a validation set (which is basically the training set).

Candidate solutions are evaluated during the training phase
to perform pheromone update for guiding the search to build
a high quality classifier as a final output. In the experiments,
the former is fixed to accuracy (Equation 4) in the testing
phase, while the latter used the various aforementioned mea-
sures in the training phase to examine their effectiveness with
respect to maximizing the accuracy test measure. The next
section describes the experimental methodology in detail.

VI. EXPERIMENTAL SETUP

In our experiments, we modified ABC-Miner in two ways.
First, we remove the heuristic component from the prob-
abilistic state transition formula (Equation 3). The reason
behind this is to isolate the effect of the quality measure
and to make sure that only the evaluation function will affect
the ants’ decisions and guide the search through pheromone
amounts deposited. Second, we only perform the local search
on the final converged-on solution BNC(gbest) (i.e. BAN
classifier structure) rather than performing local search on each
iteration’s best solution BNC(tbest), in order to reduce the
algorithm’s computational time.

The performance of classification quality measures was
evaluated using 25 public-domain datasets from the well-
known UCI (University of California at Irvine) dataset repos-
itory [6]. Datasets containing continuous attributes were dis-
cretized in a pre-possessing step, using C4.5-Disc [1]. The
main characteristics of the datasets are shown in Table III,
and the parameter settings are shown in Table II, which are
the same default values used in [4].

TABLE II
PARAMETER SETTINGS USED IN EXPERIMENTS

Parameter Value

max_iterations 100

colony_size 10

conv_ iterations 10

max_parents 3

The experiments were carried out using a well-known
stratified 10-fold cross-validation procedure, which works as
follows. First, the target dataset is divided into 10 mutually
exclusive partitions (or folds), with approximately the same
number of cases in each partition. Then, for each of the 6 dif-
ferent quality measures used for candidate-solution evaluation
and pheromone updating in this work, a version of ABC-Miner
using that measure is run 10 times, where each time a different
partition is used as the test set and the other 9 partitions are
merged and used as the training set.

The predictive performance associated with each quality
measure is computed as the average value of the accuracy



TABLE III
DATASETS USED IN THE EXPERIMENTS

Dataset Cases Attributes Classes

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

chess (rook vs. pawn) 3,196 36 2

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

ecoli 336 8 8

glass 214 10 7

hayes-roth 160 4 3

heart (cleveland) 303 12 3

heart (statlog) 270 13 2

ionosphere 351 34 2

iris 150 4 3

monks 432 6 2

nursery 12,960 8 5

page Blocks 5,473 10 5

post-operative patient 90 8 3

soybean 307 35 19

spect heart 267 22 2

tic-tac-to 958 9 2

voting records 435 16 2

wine 178 13 3

yeast 1,484 8 10

on the test set across the 10 runs. In addition, we ran ABC-
Miner with each of the 6 quality measures 10 times – using a
different random seed to initialize the search each time – for
each cross-validation fold. So, the accuracy associated with
each quality measure is actually averaged over 100 values (10
cross-validation folds times 10 runs per fold).

VII. COMPUTATIONAL RESULTS

Table IV reports the mean and the standard error (mean±
standard error) of predictive accuracy values obtained by
10-fold cross validation for the 25 datasets, where the highest
accuracy for each dataset is underlined and shown in bold face.
The last row shows the average rank of each quality measure
in terms of predictive accuracy. The average rank for a given
quality measure m is obtained by first computing the rank of
m on each dataset individually. The individual ranks are then
averaged across all datasets to obtain the overall average rank.
Note that the lower the value of the rank, the better the quality
measure.

As shown, Klösgen achieved the highest predictive ac-
curacy amongst all quality measures in 13 datasets, while
M-estimate achieved the highest accuracy in 5 datasets,
Jaccard and Sensitivity × Specificity each achieved the

highest accuracy in 3 datasets, accuracy in 2 datasets and
F-measure in none.

According to the overall rankings of the quality mea-
sures used in our experiments, 4 of them outperformed the
accuracy baseline quality measure that has been originally
used in the ABC-Miner algorithm [4]. Klösgen obtained the
best overall averaging raking with a value of 1.82, followed
by Sensitivity × Specificity that obtained an overall averaging
ranking with a value of 3.54. M-estimate and Jaccard
came in the third and the fourth places respectively, with
overall average ranking values 3.62 and 3.68 respectively.
accuracy, the baseline measure, obtained the fifth place with
overall average ranking with a value of 3.96. F-measure
obtained the worst rank with a value of 4.38.

The non-parametric Friedman statistical test [23] with the
Holm’s post-hoc test was applied to the average rankings (last
row in Table IV). The test showed that Klösgen, the best
performing measure, is statistically better than all of the other
5 measures used in our experiments with a significance level
of 5%.



TABLE IV
PREDICTIVE ACCURACY % (mean± standard error) RESULTS.

Dataset accuracy F-measure Sens×Spec Jaccard M-estimate Klösgen

bal 77.48 ± 0.9 77.35 ± 0.9 77.32 ± 0.8 77.32 ± 0.9 77.32 ± 0.8 77.32 ± 0.9

bcw 95.45 ± 0.9 95.46 ± 0.9 95.46 ± 0.9 95.13 ± 1.2 95.54 ± 0.9 95.76 ± 0.8
car 98.15 ± 0.3 97.42 ± 0.5 98.90 ± 0.3 98.58 ± 0.3 97.64 ± 0.5 99.48 ± 0.5
chess 93.65 ± 0.9 93.48 ± 0.9 94.62 ± 0.9 93.09 ± 1.2 93.08 ± 0.5 95.21 ± 0.5
cmc 61.86 ± 0.6 59.95 ± 0.5 61.76 ± 0.5 62.13 ± 0.6 62.20 ± 0.5 64.48 ± 0.6
crd-a 87.42 ± 0.9 87.75 ± 0.6 87.90 ± 0.6 87.21 ± 0.9 87.45 ± 0.9 88.08 ± 0.9
crd-g 80.57 ± 0.9 79.90 ± 1.2 79.11 ± 0.9 82.97 ± 1.2 79.13 ± 0.9 81.51 ± 0.9

drm 98.95 ± 0.9 98.96 ± 0.9 99.02 ± 0.6 98.82 ± 0.9 99.02 ± 0.5 99.22 ± 0.6
ecoli 88.40 ± 0.8 88.34 ± 0.8 87.64 ± 0.8 88.28 ± 0.6 88.47 ± 0.6 87.89 ± 0.5

glass 82.65 ± 1.2 82.65 ± 1.2 82.55 ± 1.2 82.94 ± 1.4 82.55 ± 1.2 82.65 ± 0.9

hay 87.62 ± 3.1 87.41 ± 2.8 88.51 ± 2.4 87.41 ± 2.8 88.62 ± 2.8 88.60 ± 3.1

hrt-c 82.07 ± 2.8 79.96 ± 3.1 80.31 ± 2.8 82.96 ± 2.4 81.33 ± 2.8 84.12 ± 2.4
hrt-s 91.22 ± 1.8 91.88 ± 1.4 92.27 ± 1.2 92.01 ± 2.2 91.35 ± 1.8 92.14 ± 1.8

iono 95.32 ± 0.3 95.18 ± 0.5 95.32 ± 0.3 95.40 ± 0.3 95.25 ± 0.5 95.61 ± 0.3
iris 96.11 ± 0.6 95.89 ± 0.6 95.89 ± 0.6 95.89 ± 0.5 95.64 ± 0.8 95.89 ± 0.6

mnk 61.90 ± 0.9 61.46 ± 0.9 62.34 ± 1.2 62.52 ± 1.2 62.27 ± 0.9 63.65 ± 0.9
nurs 97.13 ± 0.9 96.88 ± 0.9 98.22 ± 0.9 97.53 ± 0.8 96.81 ± 0.8 98.77 ± 0.8
pb 98.58 ± 0.9 98.63 ± 0.8 98.00 ± 0.9 98.30 ± 0.8 98.74 ± 0.8 98.63 ± 0.8

pop 75.79 ± 0.9 78.20 ± 0.9 77.96 ± 0.9 77.24 ± 0.9 77.96 ± 0.9 78.93 ± 0.8

soy 58.02 ± 1.2 57.89 ± 1.2 59.66 ± 1.4 58.94 ± 0.8 58.80 ± 1.2 60.64 ± 1.2
spect 89.51 ± 1.2 89.50 ± 1.8 88.58 ± 1.4 89.50 ± 1.4 89.97 ± 1.2 90.90 ± 1.2
ttt 79.82 ± 0.3 71.29 ± 0.3 83.19 ± 0.6 84.58 ± 0.5 84.72 ± 0.3 86.10 ± 0.5
vot 96.67 ± 1.2 96.38 ± 0.8 96.47 ± 0.8 96.87 ± 0.8 97.38 ± 1.2 97.17 ± 0.8

wine 97.22 ± 1.6 97.51 ± 1.6 98.42 ± 1.2 97.50 ± 1.2 98.21 ± 0.9 98.15 ± 1.2

yst 62.69 ± 1.2 62.71 ± 1.2 63.59 ± 1.4 63.16 ± 1.2 63.62 ± 0.8 63.54 ± 1.2

Average Rank 3.96 4.38 3.54 3.68 3.62 1.82

VIII. CONCLUSION

ABC-Miner is a recently introduced algorithm that employs
the ACO meta-heuristics to construct Bayesian network clas-
sifiers with the structure of a BAN. This paper has explored
the effect of using 6 different classification quality measures
for evaluating the candidate BN classifiers constructed by the
ants and updating pheromone during the training phase of
ABC-Miner. The effect of using these quality measures in the
training phase was assessed according to their effectiveness
in producing classifiers with a high predictive performance
in the testing phase, using accuracy as a fixed predictive
performance evaluator.

Empirical evaluation on 25 UCI datasets has shown that the
performance of different quality measures varies substantially
across different datasets. However, the Klösgen measure
has obtained the best overall average predictive performance,
outperforming the other measures at a statistical significance
level of 5%. One possible research direction is to try to
combine the use of several quality measures in the same
learning procedure, which is left to future work.
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