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The object of study of this dissertation is Memetic Differential Evolution Algorithms
(MDEs) for constrained numerical optimization problems (CNOPs). MDEs are one
of the most used approaches to improve the performance of the standard differ-
ential evolution (DE) for the solution of numerical optimization problems, which
are present in real-world applications, often in engineering problems. As it is well
known, memetic approaches are characterized by the inclusion of search operators
within the cycle of an evolutionary algorithm, improving the search process on a
broader range of problems, due to the synergy between the global and local search
operator. However, the coordination among the algorithmic components is an issue
in the design part of a memetic algorithm, since the excessive use of the local search
operator could affect the efficiency of the algorithm. Therefore, three main studies
of the effects of local search operators in MDE schemes are carried out. The first
study analyzes the relationship between the performance of the local search opera-
tor within an MDE and its final results in CNOPs by adopting an improvement index
measure, which indicates the rate of fitness improvement made by the local search
operator. The second study analyzes the influence of the depth of direct local search
methods within MDE when solving CNOPs. Finally, the third study analyzes the
Baldwin effect and Lamarckian learning on an MDE that solves CNOPs. Derived
from the assessments mentioned above, we propose a coordination mechanism of
multiple local search operators for a multimeme scheme based on Differential Evo-
lution (MmDE) that solves CNOPs. The proposed approach associates a pool of
direct local search operators within the standard Differential Evolution. The coordi-
nation mechanism consists of a probabilistic method based on a cost-benefit scheme,
and it is aimed to regulate the activation probability of every local search operator
during the evolutionary cycle of the global search. For all implementations, the ε-
constrained method is used as constraint-handling technique. All experiments are
tested on thirty-six well-known benchmark problems.
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Chapter 1

Introduction

This chapter presents the aim and motivation of this dissertation, which consists of
the study of memetic algorithms based on Differential Evolution for solving con-
strained numerical optimization problems. Likewise, the contributions of this re-
search, the publications generated and the document structure are described.

1.1 Motivation

Constrained numerical optimization problems (CNOPs), also known as the nonlin-
ear general problem [1], consists of finding a solution, among a set of solutions, that
optimizes an objective function and satisfies a series of constraint functions [2].

FIGURE 1.1: Classification of optimization problems and methods to
tackle them. Gray boxes highlight the problem and methods treated
in this work. The abbreviations, EAs, SIAs, EP, GA, ES, and DE, mean
evolutionary algorithms, swarm intelligence algorithms, evolution-
ary programming, genetic algorithm, evolution strategy and, differ-

ential evolution, respectively.
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CNOPs are frequently present in different disciplines such as engineering, mecha-
tronic, bio-informatics, management, etc. [3, 4].

There are several methods that solve CNOPs, and can be divided as traditional and
nontraditional methods [5]. Whereas, the traditional methods allow to solve CNOPs
under particular conditions of the functions and constraints, nontraditional methods
can be adapted to solve a wider range of CNOPs. Although both classes of meth-
ods are capable of solving CNOPs, nontraditional methods are usually occupied in
problems with a greater number of constraints and functions with a high dimension-
ality. Therefore, this thesis is focused on the study of a type of algorithm belonging
to nontraditional methods, see Figure 1.1.

Differential Evolution (DE), introduced by Storn and Price in [6], is one of the most
popular and efficient evolutionary algorithms (EAs). DE has been applied to solve
different optimization problems in diverse fields [7] including CNOPs. However,
coupled with No Free Lunch Theorems (NFLT) [8], the complexity and diversity
of problems have allowed the emergence of more sophisticated approaches within
the DE variants including memetic approaches. A memetic approach consists in
the interaction of two main techniques, global and local search [9] to improve the
efficiency and reduce the limitations in the search logic, such as the lack of search
movements [10, 11] by obtaining the advantage of both procedures. Despite the fact
that there are studies that prove the benefits of local search operators (LSO) within
evolutionary algorithms [12], finding a suitable global-local search interaction is an
inherent challenge in the design phase of memetic algorithms (MAs), and it depends
mainly on both, the problem to solve and the global and local search features [13].

(A) Generic MDE (B) Generic MmDE

FIGURE 1.2: Generics Memetic and Multimeme Differential Evolu-
tion (a) and (b), respectively. LSO means local search operator. Dotted

box indicates an optional process.

Different approaches of Memetic Differential Evolution (MDE) for CNOPs can be
found in the literature, see Fig. 1.2(a), which includes those schemes where the LSO
is based on gradient methods [14, 15] based on direct methods [16, 17, 18, 19] and
special operators [20, 21, 22]. Likewise, in [23] a MDE approach is based on a Covari-
ance Matrix Adaptation Evolution Strategy to coordinate the global and local search
methods. The approaches above present different types of coordination between
the LSO and different Differential Evolution variants, and also report competitive
results. Nevertheless, for Multimeme Differential Evolution (MmDE), term adopted
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by Krasnogor and Smith in [24] referring memetic algorithms with multiple LSOs,
the coordination among the components becomes more complex (see Fig. 1.2(b)),
since a trade-off among LSOs must be considered in order to avoid negative effects
of LSOs during the global search process [25]. There are different works which have
studied the coordination of multiple LSOs within Multimeme Differential Evolution
(MmDE), such as in [10, 26, 27, 28, 29]. In [30] the authors proposed a MmDE algo-
rithm which, in addition to coordinating multiple LSOs, it is also capable of coordi-
nating different crossover and mutation operators with a pool of parameter values.
However, all works above were designed for unconstrained optimization problems.

On the other hand, there are just a few studies in the coordination of local search
methods for CNOPs, such as in, [31, 32], which a pool of LSOs is coordinated based
on their performance over an agent-based memetic approach. However, to the best
of the author’s knowledge coordination methods to handle multiple LSOs within a
multimeme scheme based on DE has not been considered for CNOPs. One of the
possible reasons for the lack of DE-based multimeme approaches for CNOPs is the
complexity of handling constraints, and the DE versatility, such as in [33] where an
ensemble of constraint handling techniques was proposed to maximize the efficiency
of the search process. Therefore, finding a suitable balance among the algorithm
components (DE, constraint handler and LSOs) implies a challenge.

Therefore, this dissertation is aimed to design a Multimeme Differential Evolution
scheme derived from an empirical study, which exposes the local search operators
benefits within Differential Evolution for CNOPs.

1.2 Problem Statement

A constrained numerical optimization problem (CNOP), also called constrained non-
linear optimization problem [34], can be found in real-world problems and is de-
fined, without loss of generality, as follows:

Minimize
f(X), X = [x1, x2, . . . , xn] ∈ Rn (1.1)

Subject to

gi(X) ≤ 0, i = 1, . . . ,m

hj(X) = 0, j = 1, . . . , p

Lk ≤ xk ≤ Uk xk ∈ R

where X is the vector of solutions, m is the number of inequality constraints, and p
is the number of equality constraints. Lk and Uk define the lower and upper limits
on dimension k, respectively, of the search space S.

In CNOPs, the feasible region F is the set of all solutions which satisfy the constraint
functions (gi(X) and hi(X)). Usually, equality constraints are transformed into in-
equality constraints as follows [35]: |hj(X)|−δ ≤ 0, where δ is the tolerance allowed.
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1.3 Hypothesis

Based on an empirical study about the benefits of differents LSOs, we can design
a MmDE to solve CNOPs, which will have a highly competitive performance with
respect to state-of-the-art algorithms.

1.4 Goal

Significantly advance the knowledge of Memetic Algorithms in constrained numeri-
cal optimization problems and operations-research area, by designing a Multimeme
Differential Evolution scheme derived from an empirical study, which exposes the
local search operators benefits within Differential Evolution.

1.5 Contributions

1. A detailed empirical study of the benefits of different types of local search op-
erators within Differential Evolution for CNOPs.

2. An efficient local search coordination mechanism for a multimeme Differential
Evolution scheme for CNOPs.

Derived from this research four publications were obtained, one of which was pub-
lished in a specialized journal in the area of evolutionary computation, and three
were published in the proceedings of international conferences.

• S. Domínguez-Isidro, E. Mezura-Montes, A cost-benefit local search coordi-
nation in multimeme differential evolution for constrained numerical op-
timization problems. Swarm and Evolutionary Computation, October 2017,
ISSN 2210-6502, https://doi.org/10.1016/j.swevo.2017.10.006. IF:3.893

• S. Dominguez-Isidro and E. Mezura-Montes. The baldwin effect on a memetic
differential evolution for constrained numerical optimization problems. In
Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’17). ACM, New York, NY, USA, 203-204.
DOI: https://doi.org/10.1145/3067695.3076096

• S. Domínguez-Isidro, E. Mezura-Montes, Study of Direct Local Search Oper-
ators Impact in Memetic Differential Evolution for Constrained Numerical
Optimization Problems. In the 27th International Conference on Electronics,
Communications, and Computers, CONIELECOMP 2017.

• S. Dominguez-Isidro, E. Mezura-Montes, and G. Leguizamon, Performance
Comparison of Local Search Operators in Differential Evolution for Con-
strained Numerical Optimization Problems. 2014 IEEE Symposium on Dif-
ferential Evolution (SDE), Orlando, FL, USA, pp. 1–8.

1.6 Document Structure

This dissertation has been divided in eigth Chapters, which are described bellow:
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• Chapter 1. Introduction. Describes the motivation, scope and goals of this
dissertation.

• Chapter 2. Fundamentals of Mathematical Programming. The theoretical
foundations of optimization problems are described in this chapter. As well
as the main traditional and non-traditional methods to address this type of
problems.

• Chapter 3. Bio-inspired Algorithms. This chapter describes the most impor-
tant paradigms of search algorithms inspired by nature. Also, the methods for
handling constraints are described.

• Chapter 4. Memetic Differential Evolution for Constrained Problems: Syn-
tactic Model and Taxonomy. This chapter describes the fundamentals of memetic
algorithms as well as state-of-the-art memetic algorithms, which are based on
DE for solving constrained numerical optimization problems.

• Chapter 5. Local Search Operators Influence in Memetic DE Approach for
CNOPs. Three empirical studies measuring relevant aspects of local search op-
erators within memetic algorithms based on DE to solve CNOPs are presented
in this chapter.

• Chapter 6. A Multimeme Differential Evolution Framework. In this chap-
ter, we describe our proposal, which consists of a mechanism of memes co-
ordination based on the cost-benefit of local search operator, for multimeme
algorithms based on DE.

• Chapter 7. Conclusions and Future Work. Finally, this chapter presents the
conclusions of the thesis and defines the final remarks of this research.
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Chapter 2

Fundamentals of Mathematical
Programming

This chapter presents the main aspects of addressing a nonlinear optimization prob-
lem. Also, some direct methods (traditional and non-traditional) to solve this type
of problems are described.

2.1 Optimal Problem Formulation

The optimal problem formulation is the procedure where a real-world problem is
modeled as a set of mathematical functions to be optimized. The assumed real-world
is abstracted from the real case, concentrating it on the main variables that control
the behavior of the real system. The model, as it is an abstraction of the supposed
real-world, expresses in an adequate form the mathematical functions that represent
the behavior of the supposed system [36], see Figure 2.1.

FIGURE 2.1: Levels of abstraction in the model development

Once the mathematical model of the problem to be optimized has been formulated, it
must be solved using an optimization algorithm. However, there are four important
aspects to consider in formulating the optimization problem:

1. Decision variables. Also known as design variables, they are a set of values
that define the mathematical model of the problem. They are also used to
determine the objective function and constraints of the model.

2. Constraints. Represent some functional relationships among the decision vari-
ables and other design variables satisfying certain physical phenomenom and
certain resource limitations. Constraints can be divided in two groups: In-
equality and Equality constraints. Whereas the first ones state that the func-
tional relationships among decision variables are either greater than, smaller
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than, or equal to, a resource value, the Equality constraints state that the func-
tional relationships should exactly match a resource value.

3. Objective function. It is a mathematical relationship between decision vari-
ables, parameters and a magnitude that represents the objective or product of
the system. The objective function can be maximized or minimized.

4. Variable bounds. They define the search space of the problem since they set
the upper and lower frontiers for each decision variable.

Having considered the four aspects above, the optimization problem can be math-
ematically defined in a specific format, known as nonlinear programming, which is
defined in Section 1.2 of this work.

2.2 Optimality Criteria

In an optimization problem, three different types of optimal points can be defined.
We consider as a point a set of decision variables for a given objective function.

Local optimal point: A solution X∗ is said to be a local optimal point, if there exists no
point in the neighborhood of X∗ which is better than X∗. For minimization prob-
lems, a point X∗ is a locally minimal point if no point in the neighborhood has a
function value smaller than f(X∗) [5].

Global optimal point: A solution X∗∗ is said to be a global optimal point, if there exists
no point in the entire search space which is better than de point X∗∗. Similarly,
a point X∗∗ is a global minimal point if no point in the entire search space has a
function value smaller than f(X∗∗) [5].

Inflexion point: A solution X∗ is said to be an inflection point if the function value
increases locally as X∗ increases and decreases locally as X∗ decreases, or if its func-
tion value decreases locally as X∗ increases and increases locally as X∗ decreases
[5].

Once the different types of optimal points have been defined, the optimality crite-
ria differ, depending on the number of decision variables of the objective function
(single-variable and multivariable optimization problems).

2.2.1 Single-Variable Optimization Problems

As its name indicates, the optimization problem only works with a single decision
variable, so that particular characteristics of the objective function can be exploited
to verify if a point is a local minimum or a global maximum or a point of inflection.

Assuming that the first and the second-order derivatives of the objective function
f(x) exist in the chosen search space, the function can be expanded in Taylor’s series
at any point x̄ and satisfy the condition that any other point in the vecinity has a
larger function value. It can then be shown that conditions for a point x̄ to be a
minimum point is that f ′(x̄) = 0 and f ′′(x̄) > 0, where f ′ and f ′′ represent the first
and second derivatives of the function [5].
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The first condition alone suggests that the point is either a minimum, a maximum
or an inflection point, and both conditions together indicate that the point is a mini-
mum. In general, the sufficient conditions of optimality are given as follows:

Suppose at point x∗, the first derivative is zero and the first nonzero higher order
derivative is denoted by n; then

• If n is odd, x∗ is an inflection point.

• If n is even, x∗ is a local optimum.

1. If the derivative is positive, x∗ is a local minimum.

2. If the derivative is negative, x∗ is a local maximum.

2.2.2 Multivariable Optimization Problems

As in single-variable functions, the definitions of local, global and an inflection point
are the same for multivariate functions. However, the criterion of optimality sub-
stantially changes. In a multivariable function, the gradient of a function is not a
scalar quantity; instead it is a vector [5].

Considering that the objective function is a function of N variables represented by
X = [x1, x2, . . . , xN ]. The gradient vector at any point X(t) is represented by Equa-
tion 2.1:

∇f(X(t)) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xN

)T
(2.1)

On the other hand, the second-order derivatives in multivariable functions form a
matrix, better known as the Hessian matrix, given as follows:

∇2f(X(t)) =



∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xN

∂2f
∂x1∂x2

∂2f
∂x22

. . . ∂2f
∂x2∂xN

...
...

. . .
...

∂2f
∂xN∂x1

∂2f
∂xN∂x2

. . . ∂2f
∂x2N


(2.2)

Then, the optimality criteria are described bellow:

A point X̄ is a stationary point if∇f(X̄) = Ø. Furthermore, the point is a minimum,
a maximum, or an inflexion point if ∇2f(X̄) is positive-definite, negative-definite,
or otherwise [5].

A matrix ∇2f(X(t)) is defined to be positive-definite if for any point y in the search
space the quantity yT∇2f(X(t))y ≥ 0. The matrix is called a negative definite matrix
if at any point the quantity yT∇2f(X(t))y ≤ 0. if at some point y+ in the search space
the quantity y+T∇2f(X(t))y+ is positive and at some other point y− the quantity
y−T∇2f(X(t))y− is negative, then the matrix ∇2f(X(t)) is neither positive-definite
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nor negative-definite. Other way to test the positive-definiteness of a matrix is to cal-
culate the principal determinants of the matrix. If all principal determinants are pos-
itive, the matrix is positive-definite. It is worth mentioning here that the negative-
definiteness of a matrix A can be verified by testing the positive-definiteness of the
matrix −A [5].

2.3 Kuhn-Tucker Conditions

The Kuhn-Tucker (K-T) conditions determine whether a point (solution) is a candi-
date to be the optimun of a constrained problem, see Section 1.2. Considering the
Nonlinear Programming Problem (NLP) defined in Equation 1.1, the inequality and
equality constraints can be added to the objective function to form an unconstrained
problem by using Lagrange multiplier technique. In this way, K-T conditions can
be obtained by satisfying the first-order optimality conditions of that unconstrained
problem [5]:

∇f(X)−
J∑
j=1

uj∇gj(X)−
K∑
k=1

vk∇hk(X) = 0, (2.3)

gj(X) ≥ 0, j = 1, 2, . . . , J ; (2.4)

hk(X) = 0, k = 1, 2, . . . ,K; (2.5)

ujgj(X) = 0, j = 1, 2, . . . , J ; (2.6)

uj(X) ≥ 0, j = 1, 2, . . . , J ; (2.7)

Because the multiplier uj corresponds to the j-th inequality constraint and the mul-
tiplier vk corresponds to the k-th equality constraint, there are a total number of J
entries in the u-vector and K entries in the v-vector. Equation 2.3 arises from the
optimality condition of the unconstrained Lagrangian function. Equations 2.4 and
2.5 are required for satisfying the constraints. Equation 2.6 arises only for inequality
constraints. If the j-th inequality constrait is active at a point X (that is, gj = 0),
the product ujgj(X) = 0. On the other hand, if an inequality constraint is inactive
at a point X (that is, gj > 0), the Lagrange multiplier uj is equal to zero, meaning
that in the neighborhood of the point X the constraint has no effect on the optimal
point. The final inequality condition suggests that in the case of active constraints
the corresponding Lagrange multiplier must be positive.

Because K-T conditions are applied just for inequality constraints, the variable bounds
x
(L)
i ≤ xi ≤ x(U)

i should be considered as inequality constraints, an can be written in
two inequality constraints as follows:

xi − x(L)i ≥ 0, (2.8)

x
(U)
i − xi ≥ 0. (2.9)
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To verify whether a point is a K-T point, all the aforementioned conditions are ex-
pressed in terms of u and v vectors. If there exists at least one set of u and v vectors,
which satisfy all K-T conditions the point is said to be a K-T point.

Kuhn-Tucker necessity theorem[5]

Consider the NLP problem in Equation 1.1. Let f , gj and hk be differentiable func-
tions and X∗ be a feasible solution to the NLP. Let I = j|gj(X∗) = 0 denote the set
of active inequality constraints. Furthermore, ∇gj(X∗) for j ∈ I and ∇hk(X∗) for
k = 1, 2, . . . ,K are linearly independent (known as constraint qualification). If X∗ is
an optimal solution to the NLP problem, there exists a (u∗, v∗), such that (X∗, u∗, v∗)
satisfies the K-T conditions.

If a feasible point satisfies the constraint qualification condition, the K-T necessity
theorem can be used to prove that the point is not optimal. However, if the constraint
qualification is not satisfied at any point, the point can or can not be an optimal point.
Thus, this theorem can only be used to conclude whether a point is not an optimal
point.

One of the main drawbacks to verify the constraint qualification is the fact that the
global optimum must be known apriori. Likewise, for some NLP problems, the con-
straint qualification is satisfied when a set of properties in the constraint functions
are fulfilled: (1) all the inequality and equality constraints are linear, (2) when all the
inequality constraints are concave functions, and the equality constraints are linear
and there exists at least one feasible point X that is rigorously inside the feasible
region of the inequality constraints.

Kuhn-Tucker sufficiency theorem[5]

Let the objective function be convex, the inequality constraints gj(X) be all concave
functions for j = 1, 2, . . . , J and equality constraints hk(X) for k = 1, 2, . . . ,K be
linear. If there exists a solution (X∗u∗v∗) that satisfies the K-T conditions, then X∗ is
an optimal solution to the NLP problem.

The sufficiency conditions require the Hessian matrix of each function to verify if
they are positive or negative defined, and often practical problems may not possess
these properties, making it difficult to verify.

It is important to note that optimality conditions for constrained problems are valid
only when the problem to solve has some very stringent features. Consequently,
constrained optimization is an open problem. Therefore, different mathematical
programming techniques and also heuristic-based methods have been proposed to
solve this type of problems.

2.4 Direct Methods

In this section direct methods to solve multivariable optimization problems are pre-
sented. Indirect methods are omitted because this dissertation focuses only on direct
methods. Direct methods are also known as order-zero methods since they do not
require gradient information of the function to be optimized during the optimization
process.
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2.4.1 Hooke-Jeeves Method (HJ)

HJ works by creating a set of search directions iteratively. HJ [37] needs three user-
defined parameters: (1) the variable increments ∆, (2) a step reduction factor α > 1
and (3) the termination criterion maxFES. HJ has two types of moves in the search
space: the exploratory move and the pattern move. In the exploratory move, the
current vector is perturbed in positive and negative directions along each variable
one at a time and the best vector is recorded, see Algorithm 1, where X(k) is the
vector at iteration k and D is the vector dimension.

Algorithm 1 Exploratory Move
1: X ← X(k)

2: for i← 1, D do
3: Calculate X ← (Xi), U ← (Xi + ∆), V ← (Xi −∆)
4: Set Xi ← getBest(X ,U ,V )
5: end for
6: if The new vector is different than the initial vector then
7: return success
8: else
9: return failure

10: end if

Pattern move is applied to the best vector X(k) at iteration k to find a new vector Xp,
see Equation 2.10.

Xp = X(k) + (X(k) −X(k−1)) (2.10)

The complete local search operator is described in Algorithm 2.

Algorithm 2 Hooke-Jeeves Method
1: Set Xk by exploratory move with Xs using Algorithm 1
2: repeat
3: if Success then
4: repeat
5: Perform a pattern move using Equation 2.10
6: Perform an exploratory move with Xp using Algorithm 1.

Let the result be the new vector.
7: until New vector is worse than the previous vector
8: end if
9: Set ∆← ∆/α

10: Set X(k+1) by exploratory move with X(k) using Algorithm 1
11: until Stop condition
12: return X(k)

2.4.2 Nelder-Mead Method (NM)

NM [38] works through expansions and contractions during the main loop (see
Equation 2.11), and needs three user-defined parameters: (1) the expansion factor
γ, (2) the contraction factor β and (3) the termination criterion maxFES.
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Xnew =


(1 + γ)Xc − γXh if f(Xr) < f(Xl) (expansion)
(1− β)Xc + βXh if f(Xr) ≥ f(Xh) (contraction)
(1 + β)Xc − βXh if f(Xg) < f(Xr) < f(Xh)(contraction)

Xr , otherwise

(2.11)

where Xh, Xl and Xg are the worst, the best and the next to the worst vector of
the simplex population respectively. Xr is the reflected point which is calculated by
Xr = 2Xc −Xh. Finally Xc is the centroid vector, Equation 2.12.

Xc =
1

D

D+1∑
i=1,i 6=h

Xi (2.12)

where D+ 1 corresponds to the number of vectors in the simplex array and D is the
number of decision variables of each vector, i.e, D = N . The whole process is shown
in Algorithm 3

Algorithm 3 Nelder-Mead Method
1: Create an initial simplex applying Equation 2.13
2: repeat
3: Find Xh, Xl and Xg

4: Calculate Xc using Equation 2.12
5: Calculate the reflected vector Xr = 2Xc −Xh

6: Set Xnew using Equation 2.11
7: Set Xh ← Xnew

8: until Stop condition
9: return Xl

The initial simplex, in this work, is an array of vectors S = X0, X1, . . . XN generated
from a initial vector Xs, see Equation 2.13:

Xi,j =

{
Xsj + rand[0, 1] if rand(0, 1) ≤ 0.5

Xsj − rand[0, 1] , otherwise
(2.13)

2.4.3 Random-Walk Method (RW)

RW [5] works by creating a set of P vectors randomly within a range Z0, if the new
vector outperforms the original vector then the new vector is stored in a list; finally
the best of the list is selected and the original vector is replaced. The process is
repeated until a maximum number of fitness evaluation maxFES is reached. The
range Z0 is reduced every iteration by a reduction factor ε. RW needs four user-
defined parameters: (1) the number of vectors P , (2) an initial range Z0, (3) a step
reduction factor ε and (4) the termination criterion maxFES. The complete process
is shown in Algorithm 4.
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Algorithm 4 Random Walk Method
1: Set X(k) ← Xs
2: repeat
3: for i← 1 to P do
4: Set Xi ← X(k) + random(-0.5, 0.5) Z0

5: if Xi is better than X(k) then
6: Listi ← Xi

7: end if
8: end for
9: Set X(k+1) ← getBest(List)

10: Set Z0 ← (1− ε)Z0

11: until Stop condition

2.4.4 Simulated-Annealing Algorithm (SA)

SA [39] works by generating random vectors iteratively, if a new generated vector
is better than the previous vector or by means of a probability then previous vector
is replaced. The process is repeated until a maximum number of fitness evaluation
maxFES is reached, see Algorithm 5.

∆ =

{
f(X(k+1))− f(X(k)) if φ(X(k+1)) and φ(X(k)) > 0

φ(X(k+1))− φ(X(k)) , otherwise
(2.14)

Algorithm 5 Simulated Annealing Algorithm
1: Set X(k) ← Xs
2: repeat
3: Select p← random(1, D)
4: Set ∆← 0
5: Set X(k−1) ← X(k)

6: for i← p to D do
7: Set X(k),i ← random(Li, Ui)
8: end for
9: Calculate ∆ using Equation 2.14

10: if X(k) is better than X(k−1) or random(0, 1)< exp(∆/T ) then
11: X(k+1) ← X(k)

12: end if
13: T ← (1− ε)T
14: k ← k + 1
15: until Stop condition

2.4.5 Hill-Climbing Algorithm (HC)

HC [40] consists of random perturbations of the variables in a vector, if a new vector
generated is better than the original vector, it is replaced. The process is repeated
until a maximum number of fitness evaluations maxFES (user-defined parameter)
is reached. The complete process is shown in Algorithm 6, where Xs is the initial
vector, k is the number of iteration, D is the vector dimension, i.e., the number of
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decision variables in the vector. Finally p is the vector position (selected randomly)
to be modified by a random value σ ∈ [0, 1].

Algorithm 6 Hill Climbing Algorithm
1: Set X(k) ← Xs
2: repeat
3: Select σ ← random(0, 1)
4: Select p← random(1, D)
5: Set U ← X(k) and V ← X(k)

6: Calculate U ← X(k),p + σ and V ← X(k),p − σ
7: Set X(k+1) ← getBest(X(k),U ,V )
8: until Stop condition
9: return X(k)
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Chapter 3

Nature-inspired Algorithms for
Optimization

Nature has been a source of inspiration for solving problems in various areas of
study, such as industrial design, architecture, engineering, robotics, either by the in-
teraction of multiple organisms, biological structures or physiological characteristics
of numerous species.

In the domain of Artificial Intelligence, Evolutionary Computation (EC) emulates
natural processes based on Neo-Darwinism principles [41] to find solutions to com-
plex optimization problems. Within the optimization scope, there is a branch based
on mechanisms of cooperation in organisms to obtain a mutual benefit, called Swarm
Intelligence (SI) [42] which is also implemented to solve optimization problems.

This chapter presents the main EC and SI paradigms, which are frequently used to
solve optimization problems, including constrained numerical optimization prob-
lems. Likewise, Differential Evolution is described in more detail than the other
meta-heuristics, because it is a fundamental part of this research. Finally, the constraint-
handling techniques used in this work are described.

3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [43] are a set of metaheuristics used to solve a vast
range of problems, from the optimization of combinatorial and numerical problems,
the conception of artifacts, information search, device control, and automatic learn-
ing, among others [44]. EAs are based on phenomena related to the evolution of
species and the survival of the fittest.

According to the general model of an EA, a population of possible solutions to the
problem to be solved evolves according to Darwinian principles of reproduction and
selection of the fittest. That is, the individuals (solutions) that are better positioned
in the search space according to the problem, maximization or minimization, have a
high probability of surviving and reproducing in future generations. The reproduc-
tion is performed by variation operators (crossover and mutation mainly).

Since EAs are an emulation of the natural selection process, the following compo-
nents are abstracted:
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1. Representation of solutions. It links the real world with the EA. It can be at
the phenotype (real solutions) or genotype level (bits or solutions represented
by a code).

2. Fitness quality function. It represents the problem to be solved. Therefore, it
defines the quality of the solutions, that is to say, it is the representation of the
natural environment in which the individuals live and try to survive.

3. Population of solutions. It is a set of potential solutions to the problem.

4. Parent selection mechanisms. The role of this mechanism is to distinguish
among individuals considering their quality, preferring, in principle, the best.
Usually, it has probabilistic elements.

5. Variation operators. Their function is to create new individuals from existing
ones.

6. Replacement mechanism. It aims to distinguish among individuals based on
their quality to maintain a fixed population size; this mechanism is usually
deterministic.

The main paradigms of the evolutionary algorithms are:

• Genetic Algorithms

• Genetic Programming

• Evolution Strategies

• Evolutionary Programming

• Differential Evolution

3.1.1 Genetic Algorithms

Genetic algorithms (GA) [45] are based on the mechanisms of natural selection and
genetics. GAs combine the survival of the fittest among strand structures, with a
structured but random information change, to form a search algorithm with some of
the innovative talents of human search [45].

Algorithm 7 Simple Genetic Algorithm
1: Population start
2: while The stop criterion is not reached do
3: Evaluate population
4: Select Parents
5: Apply recombination of parents
6: Apply mutation of children
7: Replace
8: end while

A GA may represent its solutions at a genotype or phenotype level, depending on
the type of problem being addressed. The GAs contain the elements of the EAs: par-
ent selection, probabilistic techniques (roulette, surplus and universal stochastic, de-
terministic sampling and tournaments), sexual recombination or crossing (uniform,
complete and simple arithmetic), mutation (simple, uniform or rearrangement) and
replacement. The general GA process is shown in Algorithm 7.
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3.1.2 Genetic Programming

Genetic programming (GP) [46] operates similarly to genetic algorithms; the main
difference is the representation of solutions. Whereas GAs individuals can be repre-
sented by means of vectors or bit strings, individuals in GP are represented by tree
structures, which make GPs representation seen as non-linear structures.

The goal of GP is to let computers learning a problem-solver without being explicitly
programmed, generating solutions to problems that come out of program induction.
The programmer does not specify the size, shape, and structural complexity of the
solution programs, but the programs evolve to generate satisfactory solutions [47].

Algorithm 8 General Genetic Programming
1: Randomly create an initial population of programs from the available primitives

2: while The stop criterion is not reached do
3: Evaluate population by executing each program
4: Select Parents
5: Apply recombination of parents
6: Apply mutation of children
7: Replace
8: end while

Algorithm 8 shows the GP process to evolve programs. In GP the variables and
constants of the representation are called terminals (that is, the leaves of the tree) and
the arithmetic operators of the representation are called functions (that is, the nodes
of the tree). The set of terminals and functions together form the primitive set of a
GP system.

3.1.3 Evolution Strategies

Evolution Strategies (ESs) [48] emulate evolution at individual level, then there is a
crossover-operator, either sexual or panmictic (more than two parents); this operator
is secondary in ESs [49]. The main operator for this type of algorithm is the muta-
tion that uses random numbers generated by a Gaussian distribution. This strategy
has the particularity that mutation values vary over time and are self-adaptive. The
representation in ESs is at the phenotypic level, and the process of selection of sur-
vivors is deterministic and extintive, i.e., the worst individuals have zero probability
of surviving.

Algorithm 9 Evolution Strategies
1: Generate randomly an initial population of solutions.
2: Calculate the fitness of the initial population.
3: while The stop condition is not reached do
4: Select two or more parents randomly.
5: Apply (optionally) crossover to generate offspring.
6: Apply the mutation operator to the offspring.
7: Evaluate offspring.
8: Select the best individuals for the next generation based on their aptitude.
9: end while
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The selection of parents is not biased by the fitness values, i.e., they are randomly se-
lected from the population with a uniform distribution. Each parent can be selected
more than once or cannot be selected [49]. ES process is shown in Algorithm 9.

3.1.4 Evolutionary Programming

Evolutionary Programming (EP) [50] emulates evolution at the species level. There-
fore, there is no cross-breeding operation, since in nature it is not possible to cross
different species. The survivor selection technique is based on stochastic tourna-
ments where parents and offspring compete and those who get higher wins in the
tournament survive. The wins are determined by comparing the fitness of each in-
dividual with the fitness of other individuals of the population chosen at random.

Algorithm 10 Evolutionary Programming
1: Generate randomly an initial population of solutions.
2: Calculate the fitness of the initial population.
3: while The stop condition is not reached do
4: Apply the mutation to the entire population to obtain offspring.
5: Evaluate offspring.
6: Select (By Stochastic tournaments) individuals for the next generation.
7: end while

The mutation operator is the only variation operator. In EP there is no parent selec-
tion because each parent generates an offspring through the mutation operator (see
Algorithm 10). For the stochastic tournament, it is essential to define the number
of encounters for each individual in the population. After having performed all the
matches, the whole population (offspring and parents) are ordered by the number
of wins and not by the fitness value, to assure diversity in the evolutionary process.
Finally, the first half of the entire population remains for the next generation.

3.1.5 Differential Evolution

Differential Evolution (DE), introduced by Storn and Price in [6], is based on the
evolutionary principle. Differences between vectors (individuals of the population)
are performed during the variation operator mechanism. The evolutionary process
of the standard DE, also known as DE/rand/1/bin, consists of four main steps: (1)
initialization, (2) mutation, (3) recombination, and (4) selection. While the first step
is called once at the beginning of the process, the last three steps are repeated during
the DE generations G until a termination criterion is reached.

In DE an optimization problem solution is known as a vector

XG,i = (xG,i,j , . . . , xG,i,D)

where XG,i represents a vector i at generation G, and D is the number of decision
variables (i.e. the search space dimensionality, D = n). In the same way, a popula-
tion is represented as PG = (XG,i, . . . , XG,Pmax) where Pmax is the fixed population
size at each generation G. MaxFEs is the maximum number of fitness evaluations al-
lowed for the algorithm, i.e., the termination criterion.
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Step 1. Initialization. A set of user-defined number of Pmax vectors XG,i are gen-
erated randomly. In this step, the dimension D and the upper (xup) and lower (xlo)
boundaries are considered, as follows:

XG,i = xlo + rand× (xup − xlo) (3.1)

Step 2. Mutation. During this process, every vector XG,i within the population PG
is mutated by computing Equation (3.2):

vG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j) (3.2)

where vG,i,j is an element of the mutant vector, {r0 6= r1 6= r2} 6= i are random se-
lected vectors between 0 and Pmax−1 within the population. F is the scaling factor,
an user-defined parameter.

Step 3. Recombination. The mutant vector VG,i mixes its elements with the target
vector XG,i using Equation 3.3 to generate a trial vector UG,i.

uG,i,j =

{
vG,i,j if randi,j [0, 1] ≤ Cr or j = Jrand

xG,i,j , otherwise
(3.3)

where randi,j [0, 1] is a real random number, Cr is a user-defined parameter and
Jrand ∈ rand[1, D] is a random selected position of the vector.

Step 4. Selection. It determines whether the target XG,i or the trial vector UG,i
survives to the next iteration G+ 1

XG+1,i =

{
UG,i if UG,i is better or equal than XG,i

XG,i , otherwise
(3.4)

The complete process is described in Algorithm 11.

In the specialized literature, different DE variants have emerged to improve the mu-
tation and crossover operators. The general convention used for naming the DE
variants is DE/a/b/c, where a represents a string denoting the base vector, and b is
the number of difference vectors considered for the perturbation of a. Finally, c de-
picts the type of crossover being used (exp and bin for exponential and binomial,
respectively).

Four most frequently referred mutation strategies, in addition to DE/rand/1 pre-
sented in Equation 3.2, are listed below:

DE/best/1:
vG,i,j = xG,best,j + F (xG,r0,j − xG,r1,j) (3.5)

DE/current-to-best/1:

vG,i,j = xG,i,j + F (xG,best,j − xG,i,j) + F (xG,r0,j − xG,r1,j) (3.6)
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Algorithm 11 DE/rand/1/bin
1: Randomly generate an initial population of vectors P0 = (X0,i, . . . , X0,Pmax)
2: Calculate the fitness of each vector in the initial population.
3: repeat
4: for i← 1, Pmax do
5: Randomly select r0,r1,r2 ∈ [1, Pmax] and r0 6= r1 6= r2 6= i
6: Randomly select Jrand ∈ [1, D]
7: for j ← 1, D do
8: if randj ≤ Cr Or j = Jrand then
9: uG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j)

10: else
11: uG,i,j = xG,i,j
12: end if
13: end for
14: if UG,i is better or equal than XG,i then
15: XG+1,i = UG,i
16: else
17: XG+1,i = XG,i

18: end if
19: end for
20: G = G+ 1
21: until Stop condition is reached

DE/best/2:

vG,i,j = xG,best,j + F (xG,r0,j − xG,r1,j) + F (xG,r2,j − xG,r3,j) (3.7)

DE/rand/2:

vG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j) + F (xG,r3,j − xG,r4,j) (3.8)

The indices r0, r1, r2, r3 and r4 are mutually exclusive integers randomly chosen
from the range [0, Pmax − 1], and all are different from the base index i. Whereas,
xG,best,j is the best individual vector with the best fitness value in the population at
generation G.

Regarding the recombination operator. In addition to the binomial crossover de-
scribed in Equation 3.3 which is performed on each one of the D variables from
the mutant vector vG,i,j having a (nearly) binomial distribution [7], there exists an-
other crossover alternative for DE, named exponential crossover (see Algorithm 12).
However, this operator is effective only when linkages exist between the neighbor-
ing decision variables [51].

Algorithm 12 Exponential crossover
1: uG,i = xG,i, j is randomly selected from [1, D], L = 1;
2: repeat
3: uG,i,j = vG,i,j , j = (j + 1) modulo D
4: L = L+ 1
5: until rand[0, 1] < Cr and L < D
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3.2 Swarm Intelligence Algorithms

Unlike EAs, Swarm Intelligence Algorithms (SIAs) [52] are based on the behavior
of animals working in groups, either to acquire food, to defend themselves against
predators or to group for obtaining a benefit-common ground. SIAs differ from EAs
in the way they search for the optimal solution in the search space.

The population in SIAs is characterized by collaboration and not by competition,
as it is the case with EAs. In addition, there is usually no replacement, and the
population remains constant during all iterations.

The main paradigms of Swarm Intelligence are:

• Particle Swarm Optimization.

• Ant Colony Optimization.

• Artificial Bee Colony.

• Bacterial Foraging Optimization

3.2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is based on the simulation of the social behavior
of birds within a flock [42]. Individuals are called particles in PSO and fly through
the multidimensional search space. Particles movements are based on the socio-
psychological tendency of individuals to emulate the success of other individuals.

Algorithm 13 Generic Particle Swarm Optimization
1: Randomly generate an initial set of particles.
2: Calculate the fitness of the initial swarm.
3: while The stop condition is not reached do
4: Select the leader(s) of the swarm
5: Update the update position (flight)
6: Evaluate fitness function for each particle
7: Update the particle memory
8: end while

Each particle represents a potential solution to the problem; its position changes
according to its own experience and that of its neighbors, a set of such particles
constitutes a swarm. Algorithm 13 shows the generic PSO process.

3.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) [53] is a meta-heuristic that includes a set of opti-
mization techniques inspired by the collective behavior of foraging ants, which are
able to find a short path between the nest and the food source by means of commu-
nication through traces of artificial pheromones.

Each agent (ant) in ACO leaves a pheromone trace in every movement within the
search space (directed graph). The pheromone trace is more intense in areas of
the search space where more ants have passed than other zones. To handle the
pheromone trace in ACO a matrix of real numbers is used.
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The success of ACO to find the shortest paths is because it will, over time, be more
loaded with pheromones, while the longer path will not contain high concentrations
of pheromones, due to the evaporation that occurs over time.

Algorithm 14 Ant Colony Optimization
1: while Stop condition is not reached do
2: Construction of solutions for ants
3: Update pheromone matrix
4: Control of actions
5: end while

In ACO there are three fundamental procedures [53], see Algorithm 14:

• Construction of solutions by ants. It manages the ant colony which run through
the search space (a directed graph) randomly. Each ant can be moved by apply-
ing stochastic decision making using information from pheromone traces and
heuristic information. In this way, the ants construct a suboptimal solution to
the problem.

• Update pheromone. Pheromone trace values can be increased because the ants
deposit pheromone in each component or connections they use to move from
one point to another in the search space (a graph in this case).

• Control of actions. A procedure used to carry out central actions that ants can
not develop individually.

3.2.3 Artificial Bee Colony

Artificial Bee Colony Optimization (ABC) [54] is based on the foraging behavior of
honey bees.

Algorithm 15 General Artificial Bee Colony Optimization
1: Initialize swarm of bees with food sources
2: Evaluate swarm of bees
3: while Stop condition is not reached do
4: Apply phase of employed bees
5: Apply phase of onlooker bees
6: Apply phase of scout bees
7: end while

The main ABC feature (Algorithm 15) is based on the communication among bees
by means of dances. Bees are operators and solutions are the food sources (flowers).
Employed bees perform exploration, onlooker bees carry out exploitation and scout
bees introduce diversity by adding random solutions [54].

3.2.4 Bacterial Foraging Optimization

Bacterial foraging optimization algorithm (BFOA) [55] is inspired by the social for-
aging behavior of Escherichia coli. BFOA considers the form of displacement, repro-
duction, and elimination-dispersion of bacteria.
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On the other hand, a modified BFOA (MBFOA) [56] reduces the number of con-
ditions required to execute the original BFOA (see Algorithm 16). In MBFOA the
communication among bacteria is simplified, which produces a collaborative envi-
ronment among them allowing to find areas with high contents of nutrients, that is
to say, the best solutions of the problem.

Algorithm 16 Modified Bacterial foraging optimization algorithm
1: Generate randomly a initial swarm of bacteria
2: Evaluate swarm
3: while Stop condition is not reached do
4: repeat
5: Perform chemotactic process for each bacteria
6: until Stop condition
7: Perform reproduction process
8: Eliminate the worst bacterias within the swarm
9: Generate new bacteria randomly.

10: end while

3.3 Artificial Immune System

The human immune system inspires the artificial immune system (AIS) that uses
associative learning, memory, and retrieval. AIS can be applied to solve optimization
problems, pattern recognition, and task classification codes [57].

AIS emerged in the 1990s as a new branch in Computational Intelligence (CI) [58]
and it is based on four theories of immunity: the classical theory, clonal selection,
network-based and danger-based.

The classical theory is that the recognition of antigens (foreign elements in the body)
motivates the generation of antibodies that destroy them. Epitopes (segments on the
surface of antigens) and paratopes (antibody surface segments) serve to measure the
affinity between them.

Algorithm 17 Artificial Immune System
1: Initialize a set of ALCs C
2: Determine set of antigens Dt

3: while Stop condition is not reached do
4: for each antigen zp in Dt do
5: Select a subset of ALCs S to expose them to zp
6: for Each ALC xi in S do
7: Calculate the affinity with the antigen zp
8: Select a subset of S, called H with the ALCs with the highest affinities
9: Adapt ALCs of H with some selection method based on affinity with the

antigen and/or with affinity in the network among ALCs of H
10: Update the stimulation level of each ALC in H
11: end for
12: end for
13: end while
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The clonal selection mechanism establishes the idea that only those immune cells (B
lymphocytes) that best react to the stimulation of an antigen will be cloned. Antigens
are molecules that are expressed on the surface of pathogens that can be recognized
by the immune system and that are also capable of initiating the immune response
to remove them [59].

AIS, following network-based theory, is characterized by B-cells interconnecting to
form networks. i.e. lymphocyte can be stimulated by another neighboring lympho-
cyte as well as by an antigen [57].

Finally, AISs that follow the theory based on danger are distinguished by the fact
that immune cells, in addition to responding to antigens, are also able to react to
cells that represent danger, including other agents of the same body.

Algorithm 17 shows the general process of an AIS.

3.4 Constraint-Handling for Evolutionary Algorithms

Because EAs, SIAs, and AISs were designed for unconstrained problems, it is neces-
sary to incorporate particular mechanisms that allow them to deal with feasibility in-
formation in a constrained numerical optimization problems (CNOPs). Constraint-
handling techniques include information either in the selection processes or the vari-
ation operators to guide the search [60]. In [34] several techniques can be found for
constraint-handling. They are classified according to the type of integration with the
objective function, see [34]. However, in this section, only two mechanisms used in
the implementations of this research are described.

3.4.1 Feasibility Rules

It is one of the most popular techniques for handling constraints [61]. In this ap-
proach, a set of three feasibility criteria are used to compare a pair of solutions:

• When comparing two feasible solutions, the one with the best objective func-
tion is chosen.

• When comparing a feasible and an infeasible solution, the feasible one is cho-
sen.

• When comparing two infeasible solutions, the one with the lowest constraint
violation sum is chosen.

The constraint violation sum can be calculated as follows:

φ(X) =

m∑
i=1

max(0, gi(X))2 +

p∑
j=1

|hj(X)| (3.9)

where the values of all inequality constraints gi(X), i = 1, 2, . . . ,m and all equality
constraints hi(X), j = 1, 2, . . . , p are normalized.
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3.4.2 The ε-Constrained Method

The ε-constrained [62] method transforms any constrained numerical optimization
problem into an unconstrained optimization problem, by using a tolerance (ε) which
is descreased during the generations of the algorithm. The constraint violation φ of a
given vector XG,k is computed as the sum of the amounts of all violated constraints,
see Equation (3.10).

φ(XG,k) =
m∑
i=1

max(0, gi(XG,k)) +

p∑
j=1

max(0, |hj(XG,k)| − δ) (3.10)

The ε tolerance allows the so-called ≤ε comparison between two vectors by using
only their fitness function values, see Equation 3.11.

XG,k ≤ε XG,l ⇔


f(XG,k) ≤ f(XG,l) if φ(XG,k), φ(XG,l) ≤ ε
f(XG,k) ≤ f(XG,l) if φ(XG,k) = φ(XG,l)

φ(XG,k) ≤ φ(XG,l) , otherwise

(3.11)

The ε level is dynamically decreased at each generation as indicated in Equation
3.12:

ε(G) =

{
ε(0)(1− G

Gc)
cp , 0 < G < Gc

0 , G ≥ Gc
(3.12)

where cp is a user-defined parameter to control the reduction speed of the ε toler-
ance, G is the current generation number and Gc is the generation number when the
ε value is set to zero. The initial ε value (i.e., ε(0)) is the constraint violation of the
θth solution in the initial population, see Equation 3.13.

ε(0) = φ(Xθ) (3.13)
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Chapter 4

Memetic Differential Evolution for
Constrained Problems: Syntactic
Model and Taxonomy

Memetic computing (MC) is a topic that considers complex structures such as the
combination of simple agents and memes, whose evolutionary synergies allow to
solve complex problems. Hybridizations of two or more metaheuristics are part of
MC subject. However, a particular class of optimization algorithms named memetic
algorithms (MAs), whose structure is distinguished by an evolutionary framework
and a set of local search components have been the base of MC.

In this chapter, the origins and the main MAs design principles are briefly described.
Finally, an analysis of those memetic algorithms based on differential evolution for
CNOPs is presented.

4.1 Baldwinian and Lamarckian Learning

There are two basic models of evolution that can be used to incorporate learning into
a MA, the Baldwinian and Lamarckian Learning.

The Baldwinian learning allows an objective function value of a solution to be de-
termined based on learning, i.e., the application of LSO. The result of the LSO does
not change the genetic structure (genotype) of the solution, see Figure 4.1. On the
other hand, the Lamarckian evolution, in addition to using learning to determine the
objective function value of a solution, changes the genotype of a solution reflecting
the result of the LSO.

Traditional schema theory does not support Lamarckian learning, i.e., making the
genetic representation to match the solution found by the improvement procedure
(local search operator). However, Lamarckian learning does alleviate the problem
of multiple genotypes mapping to the same phenotype. While Baldwinian learning
uses improvement procedures to change the fitness landscape, but the solution that
is found is not encoded back into the genetic string [63].
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FIGURE 4.1: The Baldwinian learning implies that the movements of
the phenotypes by learning entail, due to the cost, a movement and

assimilation in the genotypes.

4.2 The Memetic Metaphor

Memetic algorithms (MAs) have been used over the years to improve the perfor-
mance of several metaheuristics, either in convergence rate or accuracy in finding
solutions to complex problems [64]. This term was introduced by Moscato in [9] to
denote the interaction between a GA and a local search operator (LSO) to deal with
the Traveling Salesman Problem (TSP).

The main idea of MAs is based on the the philosophical theory of Richard Dawkins
(introduced in [65]). According to Dawkins human culture is composed by simple
units named “memes”. In this sense, a meme is the minimum unit of knowledge
generated in human brains, and can be duplicated, modified, and combined with
other memes to obtain a new meme. Memes are in cultural diffusion what genes
are in the evolutionary process. However, they differ in that memes can be propa-
gated vertically (in generations) and horizontal (during life-time learning), whereas
the genes only propagate in vertical mode (inheritance). Likewise, the memetic ap-
proach coincides at a certain point with the Lamarckian model of evolution, which
states that the environment gives rise to changes in animals and these changes are
inherited to their descendants.

According to Neri and Cotta in [64] MAs can be defined as:

Memetic algorithms are population-based metaheuristics composed of an evolutionary frame-
work and a set of local search algorithms which are activated within the generation cycle of
the external framework.

On the other hand, Ong and Keane in [66] conceived the term “meta-Lamarckian
learning” to introduce the idea of adaptively choosing multiple memes during a
MA search in the spirit of Lamarckian learning.

Krasnogor et. al in [67] coined the term “multimeme algorithms” to refer to MAs
that couple more than one meme.

Therefore, in this work, the term memetic algorithm is used for those that use a
local search operator and multimeme algorithm for those that include multiple local
search operators, to differentiate both schemes.
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4.3 Syntactic Model of Memetic Algorithms

MAs were not proposed as specific optimization algorithms, but as a broad type of
algorithms inspired by the diffusion of the ideas and composed of multiple existing
operators. They allow the adaptation of particular operators in any bio-inspired
algorithm that contribute to enhancing the performance and accuracy of the final
results obtained. However, the broad scope of MAs could raise difficulties during
their design process. In this way, Krasnogor and Smith [13] suggested to define a
syntactic model in order to help the MA design.

The first issue to obtain a syntactic model refers to answering the question “What is
the best tradeoff between local search and the global search provided by evolution?”
[13], from which the following aspects are derived:

• The sequence of the local search procedure within the global search evolution-
ary cycle. In which part of the global search process the local search will be
applied, i.e., before, during or after the variation operators.

• The frequency of local search activation. It refers to the number of times the
local search operator will be activated. It can be determined in a probabilistic
or deterministic way.

• The exploitation area of the local search. It refers to which individual(s) of the
population will be the initial point of search for the improvement process.

• The computational effort allowed for the local search procedure. How much
the local search operator will be permitted to exploit its neighborhood.

• The type of learning model (Lamarckian or Baldwinian)

These issues will be dictated by the type of problem to be solved, the features of the
global search algorithm and the selected local search operator pivot rules (the way
to generate neighbors during the exploitation process).

It is important to highlight that, as the number of local search operators to be used
increases, the complexity of the syntactic model will increase. Therefore, the MA
would require an extra mechanism to either, help coordinating the local search oper-
ators, or if applicable, have an accurate knowledge of the performance of each local
search operator in the domain to which they will apply.

4.4 Memetic Differential Evolution for CNOPs

The integration of local search operators in evolutionary algorithms is a good al-
ternative to improve results in different types of optimization problems including
CNOPs. Therefore, in this section a set of DE-based MAs (MDE for short) for CNOPs
are described.

According to the type of local search operator, the related approaches can be grouped
into three sets: (1) direct-based operators, (2) gradient-based operators and (3) spe-
cial operators.
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4.4.1 MDEs with Direct-Based Operator

Muelas et al. in [68]. proposed a MA based on DE to solve continuous optimization
problems. The authors used the multiple trajectory search algorithm as local search
operator which was activated after a certain number of generations and was applied
to the best solution of the population. Mandal et al. in [69] used an hybrid-mutation
strategy to solve real-world optimization problems. The authors combined two tech-
niques in the mutation process (DE/current-to-best/2 and DE/rand/1/bin). More-
over, the authors used the Solis and Wet’s algorithm [70] as local search operator,
which was applied for the best solution of the population, by using an activation
frequency criterion. Hernández et al. in [71] proposed a MA based on DE as global
search and a hill climbing method as local search operator to solve CNOPs. After
the selection process in DE, the local search was activated for the best solution of the
population. In a recent proposal [72] the authors improved the algorithm by com-
bining two mutation operators. Domínguez et al. in [73] proposed a MA to solve
CNOPs, the algorithm combined DE as global search and Powell’s conjugate direc-
tion method as local search operator. The local search was activated during the main
cycle of DE and was applied to the best, the worst and a random selected solution.
Zhang et al. in [74] proposed a MA that used DE and Hooke-Jeeves as local search
operator to solve continuous optimization problems. The local search was activated
by means of a probability for each solutions of the population during the DE process.
Piotrowski in [75] combined DE and a local search operator inspired by the Nelder-
Mead method to solve continuous optimization problems. The local search operator
was activated by a probability and was applied to the best solution of the popula-
tion during the DE generations. Vakil et al. in [76] proposed a memetic DE with a
differential-bidirectional-random-search method as local search operator which was
applied to all solutions during a user-defined number of generations of the global
search process. The algorithm was tested in continuous optimization problems.

4.4.2 MDEs with Gradient-Based Operator

Takahama and Sakai in [15] used DE with exponential crossover (DE/rand/1/exp)
and the ε-constrained method to solve CNOPs. They also adapted a gradient-based
mutation as local search mechanism, which was activated for the solutions after ap-
plying the crossover operator. The authors presented an improved version based on
a new control for the ε-tolerance. In a recent work [14], they proposed two novel
mechanisms to control boundary constraints to further improve their approach.

4.4.3 MDEs with Special Operator

Liu et al. in [77] proposed a co-evolution-memetic-based algorithm to solve CNOPs.
They used two different populations within DE. One population aimed to minimize
the objective function regardless of constraints, and the other one ensured to mini-
mize the constraints violation regardless of the objective function. The authors used
a Gaussian mutation originally adopted in real coded genetic algorithms (GAs) as
local-search-like operator, which was applied to the population when the best solu-
tion kept unchanged for several generations. Menchaca and Coello in [78] proposed
a MDE algorithm to solve CNOPs which combined DE with a Nelder-Mead based
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operator (called simplex operator). Using a frequency, the simplex operator was ac-
tivated to generate new solutions of the population. Zhao et al. in [79] proposed
a MA based on DE as global search and Cauchy distribution used as local search
operator which was applied to the best solution at each generation. The algorithm
was designed to solve continuous optimization problems. Pescador and Coello in
[80] implemented a crossover-memetic-based algorithm to solve CNOPs. They pro-
posed a DE with simplex crossover as local search mechanism. The authors applied
the local search on the neighborhood of the best and the worst solutions of the pop-
ulation and was activated at each generation of the DE algorithm. Pan et al. in [81]
proposed a DE algorithm with a local search operator based on Cauchy mutation
to solve large-scale optimization problems. The local search operator was activated
inside the DE generations when the global best solution did not improve on a certain
number of generations.

From the works previously discussed, stand out the main aspects of algorithmic
coordination, that are part of the syntactic model of MDE, such as the exploitation
zone and activation frequency. However, there is no a specific design pattern, i.e., in
some works a deterministic activation frequency was used, and the neighborhoods
of all the individuals of the population were exploited [15, 14, 75], while in other
approaches the neighborhood of the best individual of the population was exploited
[68, 71, 72]. On the other hand, some probabilistic schemes used a user-defined
parameter to modulate the frequency of local search application [74], and others
used information from the population to apply or not the local search operator [81,
77].

The Lamarckian learning model is present in all the MDE mentioned above. More-
over, in most approaches, the exploitation procedure occurs after applying the DE
variation operators, except in [78] where the local search was implemented as a vari-
ation operator.

4.5 Multimeme Differential Evolution

Although there are multimeme syntactic models based on DE (MmDE), there is not
one that addresses constrained optimization problems. However, in this section
MmDE designed for unconstrained problems are described, which can be classified,
according to the local search coordination mechanism, into three groups: (1) MmDE
based on fitness diversity, (2) MmDE based on random selection, and (3) MmDE
based on meta-Lamarckian learning.

4.5.1 Multimeme DE Based on Fitness Diversity

Neri et al. in [82] proposed an adaptive multimeme approach named AMmA, which
works with three LSOs: localized random search (LRS), steepest descent explorer
(SDE) and simulated annealing (SA). The local search coordination was based in a
population diversity index designed for flat fitness landscapes, see Equation 5.1:

ψ = 1−
∣∣∣∣ favg − fbestfworst − fbest

∣∣∣∣ (4.1)
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where fworst , fbest, and favg are the worst, best, and average fitness function values
in the population, respectively. Depending on the population diversity index value
ψ, the LSOs were systematically applied as follows: LRS exploited the search space
area of a randomly selected solution, SDE applied to the best solution and finally,
SA applied on the second best solution. In some cases, SDE was used to exploit the
solutions obtained by LRS and SA.

In other work, an adaptive evolutionary algorithm with intelligent mutation (IMLS)
was introduced by Neri et al. [83], which coordinated three local search operators:
increasing diversity (ID), greedy descent (GD) and steepest descent (SD). A diversity
coeficient was used to activate the IMLS, see Equation 4.2:

ξ = min

{∣∣∣∣fbest − favgfbest

∣∣∣∣ , 1} (4.2)

where fbest, and favg are the best, and average fitness function values in the popu-
lation, respectively. In addition, ID and GD were applied on a randomly selected
solution, while SD was used to exploit the neighborhood of the best solution.

Tirronen et al. in [84] proposed a MmDE to design a Finite Impulse Response filter
for detecting weak defects in paper production. The Stochastic Local Searcher (SLS)
and Hooke-Jeeves algorithm (HJ) were coordinated by a measurement of the fitness
diversity and distribution of the fitness values within the population, see Equation
4.3:

ν = min

{
1,

σf

|favg|

}
(4.3)

where |favg| and σf are, respectively, the average value and standard deviation over
the fitness values of solutions in the population. ν was updated every 1000 fitness
evaluations. For ν values smaller than 0.5, SLS and HJ were activated systemati-
cally. Subsequently, in [26] a multimeme approach was proposed, namely Enhanced
Memetic Differential Evolution (EMDE), where three local searchers were coordi-
nated: simulated annealing (SA), stochastic local search (SLS) and the Hooke-Jeeves
algorithm (HJ). A scheme for the local search coordination based on exponential
probability distribution was implemented. A fitness diversity measurement (see,
Equation 4.3) and distribution of the fitness values within the population were used
to activate the local searchers. SA was used to exploit the neighborhood of a ran-
domly selected solution, and HJ was applied to the best solution. On the other hand,
SLS was used in both cases: the best and a randomly selected solution.

Caponio et al. in [28] proposed a MmDE named super-fit memetic differential evolu-
tion (SFMDE), where a Particle Swarm Optimization (PSO) algorithm was applied in
the beginning of the optimization process by helping to generate a super-fit solution.
The Nelder-Mead method (NM) and the Rosenbrock algorithm (RA) were coordi-
nated by using a probabilistic scheme. The activation mechanism was in function of
a quality index of the super-fit solution, which was measured by Equation 4.4:

χ =
|fbest − favg|

max|fbest − favg|k
(4.4)

where fbest and favg are the fitness values of the best and average solutions of the
population, respectively;max|fbest−favg|k is the maximum difference observed (e.g.,
at generation k), beginning from the start of the optimization process. NM was
applied to a randomly-selected solution, while (RA) was applied to the best solution.



4.5. Multimeme Differential Evolution 35

The probability of local search activation is handled by Equation 4.5 which is based
on the Beta distribution B(α, β)

P =
1

B(α, β)
· (χ− a)(α−1)(b− χ)(β−1)

(b− a)(α+β−1)
(4.5)

where a and b are, respectively, the inferior and superior limits of the distribution,
and χ is calculated by Equation 4.4.

4.5.2 Multimeme DE Based on Random Selection

Iacca et al. in [29] presented a MmDE that consisted on an ensemble of parameters
and strategies of DE empowered by a pool of local search operators (EPSDE-LS) for
unconstrained optimization problems. EPSDE-LS coordinated three LSOs: Nelder-
Mead, Powell conjugate direction method, and Rosenbrock algorithm. LSOs were
controlled by means of an user-defined parameter, named local search activation fre-
quency. On the other hand, EPSDE-LS applied a random-based selection mechanism
to activate one of the three LSO. The LSO selected exploited the best solution of the
population.

4.5.3 Multimeme DE Based on Meta-Lamarckian Learning

Sabar et al. in [30], introduced a heterogeneous cooperative co-evolution MmDE
(CC-HDE) to solve big data optimization problems. The algorithm coordinated
two LSOs: the Rosenbrock algorithm (RA) and the Powell’s conjugate direction
method (PCD). LSOs were controlled by a selection mechanism based on a reward-
punishment scheme to evaluate the effectiveness of the applied LSO. The selection
method was assisted by the Page–Hinkley (PH) statistical test to decide if the cur-
rent LSO is not performing well anymore and a new one should be selected. The
selection mechanism is also used to control other elements in the algorithm, such
as operators and parameter values. The reward-punishment scheme measured the
LSO performance as follows:

ri(G) = ri(G) + ∆ (4.6)

and
rj(G) = rj(G) −

∆

NLSO − 1
, ∀j ∈ {1, 2, . . . , NLSO} and i 6= j (4.7)

∆ =
fbefore − fafter
fbefore + fafter

(4.8)

where fbefore and fafter are the fitness value of the solution before and after the
application of the local search operator, respectively.

If ith LSO cannot improve the solution:

ri(G) = ri(G) − |∆ ∗ IG| (4.9)

and
rj(G) = rj(G) −

|∆| ∗ IG
NLSO − 1

, ∀j ∈ {1, 2, . . . , NLSO} and i 6= j (4.10)
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where r(G) is the impact of ith LSO at generation G, IG is the current generation
divided by the total number of generations, and NLSO is the number of LSOs.

4.6 Multimeme Evolutionary Approach for CNOPs

This section describes a multimeme model based on agents designed to solve CNOPs.
Although it is not a MmDE, it is important to note that the coordination of local
search operators in CNOPs is based on Lamarckian learning. While constraints are
handled with the feasibility rules, see Section 3.4.1.

4.6.1 Agent-based Memetic Approach

Ullah et al. [31, 32] proposed an agent-based memetic algorithm (AMA) to solve
CNOPs, which coordinated four LSOs adaptively by means the local search perfor-
mance during an evolutionary approach. The first and second local searchers were
random-based implementations, while the third operator was a gradient-based al-
gorithm. Finally, the fourth LSO was a simplified direct method. Each LSO was
randomly applied on a solution, but with the passing of generations, the LSOs with
better improvement index were selected in order to improve the exploitation of the
search space. The local search performance measure proposed is shown in Equations
4.11 and 4.12, and is described as follows: When the LSO starts with an infeasible
solution and becomes feasible after the application, I.I. gets the value 1. If the situ-
ation is the opposite then I.I. is assigned -1. However, if the vector remains feasible
before and after the local search operator, I.I. is calculated by Equation 4.11:

I.I. =
fbefore − fafter

fbefore
(4.11)

where fbefore and fafter are the fitness value of the solution before and after the
application of the local search operator, respectively. In the same way, if the local
search operator starts with an infeasible vector and still results an infeasible, I.I. is
obtained by Equation 4.12:

I.I. =
φbefore − φafter

φbefore
(4.12)

where φbefore and φafter are the constraint violation sum of the solution before and
after the application of the local search operator, respectively. An I.I. value is re-
stricted between -1 and 1. The values outside these ranges are bounded to the per-
mitted limits.

4.7 Memetic Differential Evolution for Real World Applica-
tions

This section describes memetic approaches based on DE that address real-world
problems. This revision includes some hybrid algorithms based on DE (HDE for
short) which, although they are not as such, memetic algorithms, are part of the
memetic computation.
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Fan and Lampinen in [85] proposed a Trigonometric Mutation Operation to DE
(TDE) for continuous optimization problems. The algorithm alternates, by a proba-
bilistic mechanism, the mutation operator of rand/1/bin and the proposed trigono-
metric mutation method, which works as a local search operator. The probability
value used to perform the local search was rather low (0.05). The algorithm was
tested in an aerodynamic five-hole probe calibration problem that consists of train-
ing an artificial neural network. Despite the TDE higher convergence velocity re-
garding the standard DE and the Back-Propagation algorithms, the addition of an
user-defined parameter, to control the probability of the trigonometric mutation ac-
tivation, increases the parameter tuning process.

On the other hand, Hu et al. in [86] applied TDE to reduce the impact of surplus har-
monics in programmed pulse-width modulation (PWM) by pushing the first crest of
the surplus harmonics backwards, ameliorating the amplitude frequency spectrum
distribution of the output waveform. In this work, the probability to perform the
local search was reduced to 0.02 to avoid premature convergence and to guarantee
low extra computational cost.

Santamaría et al. in [87], proposed three MDEs approaches for 3D reconstruction
of forensic objects through range image registration. Every MDE were based on
DE/rand/1/bin, and coordinates one local search method (Powell’s conjugate di-
rection method [88], Solis & Wets’ method [89], and Crossover-based Local Search
method [49], respectively). The global-local search coordination was performed on
a probabilistic approach, i.e., it was based on a random application with uniform
distribution considering a probability value of 0.0625. Every MDE applied the local
search method on the best individual of the population.

Leskinen et al. in [90] studied the performance of two MDE approaches on the
Electrical Impedance Tomography (EIT) problem. Both MDEs were based on a self-
adaptive DE scheme. The first MDE named Variation Operator Local Search Differ-
ential Evolution (VOLSDE) used the Sequential Quadratic Programming (SQP) on
the scale factor during the generation of the offspring. The second MDE, named Life-
time Learning Local Search Differential Evolution (LLLSDE) performs the Nelder-
Mead method (NM) on a pseudo-randomly selected individual of the population.
A probabilistic mechanism was used to activate local searchers. VOLSDE activates
the SQP for 20 fitness evaluations of the global search and uses 0.1 as a probability
value. LLLSDE applied the NM for 50 fitness evaluations using 0.2 as a probability
value.

Fu and Yu in [91] developed a MDE and applied it to train an artificial neural net-
work to construct a practical soft-sensor of jet fuel endpoint of the main fraction-
ator of hydrocracking unit. The memetic approach, called HEODE, combined the
DE/rand/1/bin and the Extremal Optimization (EO) with Adaptive levy mutation
as a local search operator. HEODE implemented a probabilistic mechanism to acti-
vate the local search operator during the selection process. Authors defined a low
probability (0.1) to enable the EO.

Cruz-Ramírez et al. in [92], implemented a Memetic Pareto DE multiobjective evo-
lutionary algorithm, to learn the structure and weights of the Neural Networks for
designing optimal artificial neural network models with sigmoid basis units for mul-
ticlassification tasks in predictive microbiology. The proposed approach used as lo-
cal search the improved Resilient Backpropagation with backtracking-iRprop+. The
local search activation was configured in a deterministic form since it was applied
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in three generations during the DE evolutionary cycle. The algorithm considered
conditions in the first Pareto front to select the individuals to use the local search.

Neri and Mininno in [93] designed a Memetic compact DE. The optimization prob-
lem tackled was the training of a Recurrent Neural Network, which is used to con-
trol a Cartesian robot control system. A Stochastic Local Search was implemented
in a probabilistic way, since a probability value was considered to activate the local
search on the best individual in the population. For the experiments reported, the
probability value to activate the local searcher was configured with a small value
(0.005) in order to reduce the activation possibility

Li and Yin in [94] optimized the design of a reconfigurable antenna array with dis-
crete phase shifters by means of a memetic approach based on DE/rand/1/bin and
the Artificial Bee Colony (ABC) [95]. The ABC was adapted as a local search opera-
tor, which is activated during the DE mutation process by a probabilistic mechanism.
The probability value performed by the algorithm was 0.2, to take advantage of the
exploration capability of DE and the stochastic exploitation of the ABC. Therefore,
DE/ABC can overcome the lack of the exploitation of the DE algorithm. In other
work [11], the authors implemented a DE/ABC variant to optimize the parameter
estimation for chaotic systems. Unlike the DE/ABC version, the DE/rand/2/bin
mechanism was adapted in the approach.

Basetti and Chandel in [96] developed a MDE by combining the DE/rand/1/bin and
the Taguchi method [97] to optimize a hybrid power system state estimation. The
algorithm proposed used the DE/rand/1/bin coupled with the Taguchi method as
local search operator in a deterministic way, between DE’s crossover and selection
operator. The Taguchi method exploited the search space of the entire trial popula-
tion.

Elsayed and Sarker in [98] proposed a MDE based on a multi-operator scheme to
solve a big data optimization problem. The algorithm combines three mutation
operators with the binomial crossover. Besides, the interior point method, which
uses Newton’s method to handle the equality constraints, was implemented as lo-
cal search within the MDE, The coordination between global and local search was
defined in a deterministic way since it is activated every generation on the best indi-
vidual of the population during the global evolution process.

Yi et al. in [22] devolped a εDE with a local search based on a mutation operator
(εDE-LS) to solve constrained numerical optimization problems. εDE-LS integrated
a special local search movements by deterministic rule, that considers the number
of feasible solutions. The local search is based on DE/current-to-rand/2 mutation,
but instead of select vectors randomly, the authors consider feasible solutions. The
approach was tested in well-known benchmark problems, and a engineering design
problem (car side impact design) which consists on minimizing the total weigh of
the side-impact element of a car.

Surender Reddy et al. in [99] solved the generation scheduling approach for a mi-
crogrid comprised of conventional generators, wind energy generators, solar photo-
voltaic (PV) systems, battery storage, and electric vehicles. The proposed approach
combines the standard DE and the Harmony Search algorithm (DE-HS). DE-HS ap-
plies the HS as local search mechanism just after DE selection process in a deter-
ministic way. Due to HS is a multi-population metaheuristic, the whole population
of DE is used by HS as initial population. After the local HS procedure, the worst
individual in the DE population is replaced by the best individual obtained by HS.
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Ali et al. in [100] proposed a MDE with the Simulated Annealing (SA) as local search
operator for minimizing the molecular potential energy function. The proposed ap-
proach includes the SA after the DE/rand/1/bin evolutionary cycle in a determinis-
tic way. SA exploit the best individual of the population. According to the authors,
SA can help the proposed algorithm to escape from trapping in local minima and
increases the diversity of the search.

Khan et al. in [101] performed a MDE to align map images to 2D GIS models. The
memetic approach combines an adaptive version of differential evolution called jDE
[102] (DE/rand/1/exp), and the S3 algorithm proposed in [103], which is a steepest
descent local search operator. The memetic jDE exploited each trial solution of the
population in a deterministic way by performing the S3 algorithm.

Ma et al. in [104] solved a dynamic scheduling problem in robotic cells by means
of a memetic approach based on a discrete differential evolution (DDE) [105] and
forward-backward earliest starting time algorithm (FBEST) [106]. The authors mod-
ified the standard FBEST to generate local optimal solutions. DDE implements the
standard mutation and crossover operators of DE, i.e., DE/rand/1/bin. The ex-
tended FBEST was coupled in a deterministic way, and it was applied before the
selection operator over the entire trial population.

Rakshit et al. in [107] implemented an adaptive MDE using Q-learning to solve
a real-time multirobot path-planning problem. The proposed algorithm used the
DE/current-to-best/1 variant and has two parameters called scaling factors, which
are adaptively selected from a meme pool. According to the authors, an individ-
ual with a good fitness should search in the local neighborhood, whereas a poor
performing individual should participate in the global search. The algorithm coor-
dinates the meme pool by using the temporal difference Q-learning (TDQL), which
works on the principle of reward and penalty and employs a Q-table to store the re-
ward/penalty given to an individual of the population. The coordination of memes
was performed by the Roulette choice function based hyper-heuristic scheme to
adaptively select memes (scaling factors) for the individuals before participation in
the DE.

Zhong et al. in [108] optimized a circuit tolerance design problem by means DE/-
rand/1/bin and a hybrid analysis method. The memetic approach implemented
two approximation analysis methods of a circuit, the Vertex, and the Monte Carlo
analysis. Whereas the first one has the advantage of low computational cost but can
not ensure the accuracy of the solutions, the second method can obtain high accuracy
solutions at the cost of expensive computation. Both methods were coordinated
iteratively by an adjusting approximating rate which provides a flexible control on
accuracy and time efficiency. When the measure gets the zero value, the Monte
Carlo method was activated. On the other hand, the Vertex method was used in
the evolutionary cycle. This mechanism was activated during the fitness evaluation
process.

Tirronen et al. in [84] proposed a MmDE for designing digital filters which aim
at detecting defects of the paper produced during an industrial process. The ap-
proach coordinates two local search algorithms: Hooke-Jeeves (HJ) and Stochastic
Local Search (SLS). These local searchers are coordinated by means of an adaptive
rule which estimates fitness diversity among individuals of the population. How-
ever, based on a prior study of the local search algorithms, different conditions were
proposed to activate each one, i.e., if the fitness diversity value is between (0.25 and
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0.4) SLS is applied to an individual pseudo-randomly chosen, while HJ is applied on
the best individual in the population if the diversity value is less than 0.25.

Likewise, Tirronen et. al in [26] tackled the same problem of filter design for defect
detection in paper production, but a different local search coordination mechanism
was proposed. For this approach, Hooke-Jeeves (HJ), a Stochastic Local Search (SLS)
and Simmulated Annealing (SA) algorithms were used as local search operators
(LSO). The coordination mechanism was based on a probabilistic rule, which de-
pends of fitness diversity estimation. Unlike [84], the conditions for each LSO were
performed considering an exponential function, in order to increase or decrease the
probabilities of using each LSO.

In [109] Caponio et al., optimized the design of a permanent magnet synchronous
motor problem by means of a Multimeme Differential Evolution approach, which
coordinates two LSOs, Nelder Mead (NM) and Rosenbrock algorithm (RA). The co-
ordination mechanism considers the fitness value of the best individual of the pop-
ulation, called super-fit, to estimate how much the super-fit individual outperforms
the remaining part of the population. The super-fit individual is generated by us-
ing a Particle Swarm Optimization (PSO) before starting the DE search process. In
order to distribute the LSOs activation, a probabilistic mechanism based on a beta
distribution was proposed. The parameters of the beta function were configured by
means of a prior study of LSOs. NM is applied on eleven pseudo-randomly selected
individuals, while RA is applied on the best individual in the population.

Chen and Wang in [110] tackled the crisp and fuzzy optimization problem for de-
signing an optimal temperature control policy for a batch process of simultaneous
saccharification and co-fermentation (SSCF) to produce ethanol from lignocellulose
using the enzymes and the recombinant strain Saccharomyces yeast 1400 (pLNH33).
The authors proposed a MmDE based on DE/rand/1/bin, which includes two op-
erators (Acceleration and Migration) after the DE selection process. Whereas the
acceleration operator was applied to speed up the convergent rate of the algorithm,
the migration operator was activated to escape of local optimal solutions. Both op-
erators were coordinated by a conditional status based on the population diversity.
The synergy between both operators allowed the algorithm to use a small popula-
tion size to achieve a global optimal solution.

Das et al. in [111] solved the spread spectrum radar poly-phase code design problem
by a HDE and Simmulated Annealing method (AnDE). AnDE performs a variant of
the DE/best/1/bin, which replaces the mutation operator with a center-mass-based
mutation scheme. On the other hand, AnDE modifies the selection process by using
a decreasing probability rule inspired by the Simmulated Annealing method.

Chung et al. in [112] proposed a HDE that combines the standard DE with Evo-
lutionary Programming (EP) [113] to optimize a reactive power flow for economic
and secure operation of power systems. The proposed approach, named DEEP, re-
places the original mutation and crossover operators of DE by the EP mutation op-
erator. According to the authors, this hybridization is effective in overcoming the
disadvantage of DE that requires relatively large populations to avoid premature
convergence.

Semnani et al. in [114] developed a HDE for solving two-dimensional inverse scat-
tering problems. The hybrid method included the DE/rand/1/bin process and the
truncated cosine Fourier expansion (TCFE) which is a classical method to tackle this
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type of problems. The hybrid method considered two steps to integrate both algo-
rithms. In the first step, a coarse scattered profile is obtained by using the TCFE to
describe the scattered properties. The coefficients of the TCFE are iteratively esti-
mated by means of DE. During the second step, the pulse function expansion (PFE)
is adopted to improve the resolution of the profile. Subsequently, DE is applied to
estimate the coefficients of the PFE. The hybrid method benefits from the advantages
of both, TCFE and PFE representations of the scatterer properties.

Duvvuru and Swarup in [115] solved three cases of study of the economic load dis-
patch problem with valve point effect by a HDE approach. The proposed hybrid
algorithm merges the interior point method (IPM) and DE/rand/1/bin. The HDE
involved two steps. The first step uses IPM to minimize the cost function with-
out considering the valve point effect. The second step considers value point effect
and minimized the cost function using DE. On the other hand, Parassuram et al. in
[116] tackled the same problem by means of a hybrid algorithm based on Particle
Swarm Optimization (PSO) and DE/rand/1/bin. In this approach, during the evo-
lutionary cycle, the population was divided in two sub-populations and each one
was computed by DE operators and PSO operators, respectively. Subsequently, both
sub-populations were merged and considered for next generations until the stop
criterion was reached.

Fu et al. in [117] optimized a route planning for Unmanned Aerial Vehicle (UAV)
on the sea by a hybrid approach composed by DE and a variant of Particle Swam
Optimization (PSO) [118]. The hybrid approach is composed of two phases. The
first phase implemented the quantum-behaved particle swarm optimization (QPSO)
[119], while the second phase adapted the DE operators within the QPSO scheme.
For this approach, the authors implemented a particular mutation operation that
considers the best positions rather than the individuals of the population.

Jena et al. in [120] proposed a Differential Evolution which performs a hybridiza-
tion of the mutation operator by means of a Gaussian Mutation (originally used in
genetic algorithms) to optimize the combined heat and power economic dispatch
problem. The proposed hybrid DE (HDE) were tested in three systems in order
to measure the algorithm performance. The Gaussian Mutation is used during the
complete search process, since it replaces the original DE mutation operator.

Zaman et al. in [121] developed a hybrid approach based on DE/rand/1/bin and
the Interior Point Algorithm (IPA) [122] to 3-D Near Field Source localization, which
is applied in Radar, Sonar, and digital communication. The proposed approach,
called DE-IPA, implemented IPA following the finalization of the DE evolutionary
cycle, in order to refine the best solution found.

Ganesan et al. in [123] solved the industrial green sand mould development prob-
lem, which is a multi-objective problem, by means a Game-theoretic DE (GTDE).
The algorithm incorporates two deterministic strategies, based on the game theory,
within the evolutionary cycle of DE. The first strategy modifies the influence of the
trial vector on the principal parent at each generation, while the second strategy in-
creases or reduces the mutation factor of the trial vector. Both strategies, namely
defective and cooperative, respectively, are applied before executing the mutation
operator and also are based on a decision rule.

Wang et al. in [124] tackled a nonlinear constrained multi-objective optimization
problem of a Parallel Ankle Rehabilitation Robot by using a DE with an elitist-(µ+λ)-
selection process and a tournament selection mechanism. The main feature of the
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selection process is the establishment of the new population which contains dom-
inated and incomparable solutions after the one-to-one survivor selection. On the
other hand, the authors modified the DE/best/1/bin mutation operator in order to
consider some of the unfeasible solutions as the base vectors at the early genera-
tions and promote diversity. In addition, a second mutation strategy is considered
to enhance the possibility of finding the global optimum.

Ma et al. in [125] designed a hybrid particle swarm optimization and DE (HHP-
SODE) and applied to pricing and lot-sizing decisions, which is a bi-level program-
ming problem. HHPSODE restricted the particle’s movement to the feasible region
of the problem by modifying the velocity and position modulation. On the other
hand, HHPSODE implemented a DE/rand-to-best/2/bin as sub-program to solve a
lower-level problem. Finally, the PSO is used to solve the upper-level problem.

Dhaliwal and Dhillon in [126] integrated a Cat Swarm Optimization (CSO) [127]
and DE for optimal infinite impulse response (IIR) filter design. The approach uses
DE/rand/1/bin after the CSO evolutionary process to refine the search; the best
individual obtained by DE is taken to replace the best individual of the CSO popu-
lation.

Guo et al. in [128] proposed an enhanced self-adaptive Differential Evolution (ESADE)
based on simulated annealing (SA) for rule extraction for recognizing oil reservoir.
ESADE adapts the SA into the selection operator, and the control parameters with
better performance were used in the next generation as initial control parameters.
During the evolutionary cycle, control parameters of each target individual can be
gradually self-adapted from their previous experience in getting promising solu-
tions.

4.8 Final Remarks

Derived from the previous revision of the different memetic approaches based on
DE, it can be highlighted that:

• No single recurring syntactic MDE model tackled CNOPs, i.e., different ways
to global-local search coordination have proven to be efficient for MDEs in
constrained search spaces.

• Regarding MDE and MmDE for real-world problems, there is a trend in the
use of improved meme schemes with parameter adaptation mechanisms and
the use of multiple mutation operators.

• The probabilistic approaches for the algorithmic coordination are a constant in
the multimeme schemes.

• The Lamarckian learning model is present in all the memetic approaches de-
scribed above.

• Most of the MDE and MmDE approaches implement zero-order local search
operators, i.e., methods that do not require gradient function information.

• Multimeme schemes based on DE have not been studied for CNOPs.

The facts mentioned above are the motivation for this work since the implementa-
tion of multimeme approaches based on DE has not been addressed for constrained
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optimization problems. Likewise, the complexity in the implementation of exist-
ing memetic approaches limits their usage to solve real-world problems. Therefore,
that motivates us to carry out to design a simple multimeme coordination approach,
which is introduced in this research.

It is important to mention that the most of the existing MmDE, which are based on
the diversity of the population, require an a-priori study of local search operators to
define the activation thresholds for local search operators during the DE evolution-
ary cycle.

On the other hand, most of the memetic approaches for solving CNOPs, described
in this section, do not mention the influence that local search operators have on the
final results. This might be because, in addition to local search, some approaches
combine mechanism of parameter adaptation or combination of multiple operators.
Therefore, the real benefit of using local search operators during the DE optimization
process may not be discussed when solving CNOPs. These issues are addressed in
the next chapter.
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Chapter 5

Local Search Operators Influence in
Memetic DE Approach for CNOPs

In this chapter, three studies on the influence of zero-order local search operators on
memetic approaches are presented. Although for each of the studies, three different
MDEs are used, all of them work under the same syntactic model, which consists of
activating the local search operator using a probabilistic model.

5.1 Study 1: Local Search Performance Influence

This study is focused on measuring the performance of three direct local search op-
erators (Nelder-Mead, Hooke-Jeeves and Hill Climbing, presented in Section 2.4)
added separately into Differential Evolution, with the aim to relate it to the final re-
sults obtained by each MA variant in a constrained search space. The goal is to get a
better understanding of the type of performance required by a local search operator
in presence of constraints.

5.1.1 Performance Measure

The improvement Index (I.I.) proposed by Barkat et al. in [129] is adapted for con-
strained search spaces in this work to measure the local search performance. I.I.
indicates the rate of fitness improvement made by a particular local search operator,
and is calculated by Equations 4.11 and 4.12, presented in Section 4.6.1.

5.1.2 Algorithmic Coordination

The interaction between global and local search in this research work is the same for
each approach compared. Three issues were considered in the global-local search
coordination: (1) exploitation area, (2) application frequency and (3) type of replace-
ment.

Exploitation Area According to Mezura-Montes et al. in [130] the DE variant used
in this work (DE/rand/1/bin) has a good performance regarding exploration capa-
bilities in constrained spaces. Due to that, in this proposal the best solution in the
population was used to exploit promising areas in the search space by applying it
the local search operator while using DE/rand/1/bin as the global search algorithm.
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Application Frequency Inspired in [81, 77], the local search operator is activated if
the best solution in the population does not improve after T generations. Besides,
the algorithm considers a probability ψ given by Equation 5.1 to activate the local
search operator. Although ψ was designed for a particular combinatorial optimiza-
tion problem [82], in previous experiments it worked well in CNOPs.

ψ = 1−
∣∣∣∣ Javg − JbestJworst − Jbest

∣∣∣∣ (5.1)

where Jbest, Jworst and Javg are the best, worst and average of the fitness function
values in the population, respectively. According to Neri et al. in [131] ψ is a popu-
lation diversity index which measures it in terms of fitness. The population has high
diversity when ψ ≈ 1 and low diversity when ψ ≈ 0. In this work, a higher diversity
index value means a higher probability to apply local search.

Type of Replacement In this work, Lamarckian learning is used, i.e., the solution
generated by the local search operator (Xnew) is always kept for the next generation.
The algorithm randomly selects a solution of the population (except the solution
with the best fitness value) to be replaced by Xnew. This is because it could be the
case that Xnew is worse than the best solution in the current population.

5.1.3 Memetic DE Approach

The MDE used in this study is shown in Algorithm 18, where the gray lines mark
the elements to integrate the local search operator within DE/rand/1/bin.

5.1.4 Tolerance Value for Equality Constraints

For this study, the equality constraints are transformed into inequality constraints
using a δ tolerance which decreases at each iteration as indicated in Equation 5.2
until a suitable value is reached.

δ(G+ 1) =
δ(G)

dec
(5.2)

where dec is a user-defined parameter which determines how fast the δ value de-
creases over time and δ(0) is also a user-defined parameter.

5.1.5 Experiments and Results

The experiments are divided in two phases: (1) The proposed MDE+NM, MDE+HJ,
and MDE+HC are tested on 18 benchmark problems, with different search space
dimensionality (10 and 30 dimensions), used in the special session on “Single Ob-
jective Constrained Real-Parameter Optimization” in CEC’2010 [132], to analyze the
performance of each local search using the Improvement Index (I.I) measure, and (2)
the final results obtained by each MA are analyzed and are also compared against
those obtained by the εDEga [14], the most competitive approach in the aforemen-
tioned special session. The parameter values used for each algorithm are described
in Table 5.1. The dimensionalities used in the test problems wereD = 10 andD = 30,
as defined in the special session. Likewise, the maximum number of fitness evalu-
ations maxFEs (200,000 and 600,000 respectively). The parameters marked with (*)
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Algorithm 18 Memetic DE
1: Randomly generate an initial population of vectors P0 = (X0,i, . . . , X0,Pmax)
2: Calculate the fitness of each vector in the initial population.
3: Set the ε value using Equation 3.13
4: repeat
5: for i← 1, Pmax do
6: Randomly select r0,r1,r2 ∈ [1, Pmax] and r0 6= r1 6= r2 6= i
7: Randomly select Jrand ∈ [1, D]
8: for j ← 1, D do
9: if randj ≤ Cr Or j = Jrand then

10: uG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j)
11: else
12: uG,i,j = xG,i,j
13: end if
14: end for
15: if UG,i ≤ε XG,i using Equation 3.11 then
16: XG+1,i = UG,i
17: else
18: XG+1,i = XG,i

19: end if
20: end for
21: if No improvement counter ≥ T then
22: Reset the no improvement counter

23: Calculate ψ value using Equation 5.1

24: if rand(0,1) ≤ ψ then
25: Set Xnew ← Local_Search_Operator(XG,best)

26: Set XG,rand ← Xnew where XG,rand 6= XG,best

27: end if
28: end if
29: if There are equality constraints then
30: Modify δ using Equation 5.2
31: end if
32: Update ε value using Equation 3.12
33: G = G+ 1
34: until MaxFEs is reached
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TABLE 5.1: Parameters values. (*) Indicates the values obtained using
IRACE.

Algorithm Parameter Value
10 D 30 D

maxFEs 2.0E + 05 6.0E + 05
Pmax 20 50

DE *Cr 0.7890 0.8830
*F 0.8587 0.9989
T D
*β 0.7683

Nelder-Mead *γ 1.2030
maxIter D×20
*∆ 0.6986

Hooke-Jeeves *α 1.0001
maxIter D×2

Hill Climbing maxIter D×50
θ 0.2

Epsilon-Constraint cp 46
Gc 1600
δ 1.8E+100

Equality Constraint Tolerance dec 1.1002

in Table 5.1 were fine-tuned by using the IRACE tool [133] with four representative
test problems as a training set for the parameter tuning processes. The parameters
suggested in [14] and [5] were used as the starting point for such process.

The results of the first experiment (analyzing the performance of local search using
the Improvement Index (I.I) measure) are presented in Figures 5.1 and 5.2. In all
cases the 95%-confidence Wilcoxon test showed significant differences with the ex-
ception of MDE-HJ and MDE-HC in 10D problems. The results suggest that MDE+HC
has a better overall average performance in most problems with respect to MDE+NM
(10D and 30D) and MDE+HJ (only in 30D). Only in test problem C13 for 10D, MDE+HC
had a negative I.I. average performance. On the other hand, MDE+NM obtained
positive I.I. values for 10D in only four test problems (C04, C05, C06 and C12) and
was clearly outperformed by MDE+HC. It is important to remark MDE+NM’s clear
improvement from 10D to 30D (most negative I.I. values in 10D and most positive
I.I.values in 30D). In contrast, MDE+HJ shows an opposite behavior, i.e. most posi-
tive I.I. values in 10D but most negative I.I. values in 30D.

The results of the second experiment are summarized in Table 5.2, where the best
and average function values for each MA, besides the standard deviation values,
are shown for 10D and 30D. The aforementioned results suggest that MDE+NM,
MDE+HJ and MDE+HC are able to find feasible solutions for all test problems in
10D and 30D.

The results of the Wilcoxon test applied to the best and average overall results be-
tween εDEga vs MDE+NM, εDEga vs MDE+HJ and εDEga vs MDE+HC are pre-
sented in Table 5.3. It can be noted that no significant differences were obtained, i.e.
the performance of the three MAs with local search operators based on direct search
methods is similar to that observed by a MA with gradient based local search.
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TABLE 5.2: Function values achieved by MDE+NM, MDE+HJ and
MDE+HC for 10D-30D and comparison against εDEga. Boldface re-
marks those better results and Italic text remarks those similar results.

Function MA 10D 30D
Best Avg Std Best Avg Std

εDEga -7.473104E-01 -7.470402E-01 1.323339E-03 -8.218255E-01 -8.208687E-01 7.103893E-04
C01 MDE+NM -7.473104E-01 -7.376742E-01 1.749557E-02 -8.218000E-01 -8.054422E-01 1.333897E-02

MDE+HJ -7.473103E-01 -7.421135E-01 6.315751E-03 -8.217591E-01 -7.998397E-01 2.413851E-02
MDE+HC -7.473102E-01 -7.340776E-01 1.360141E-02 -8.178500E-01 -7.815536E-01 2.848675E-02
εDEga -2.277702E+00 -2.258870E+00 2.389779E-02 -2.169248E+00 -2.151424E+00 1.197582E-02

C02 MDE+NM -3.166209E+00 -7.253218E-01 2.475302E+00 -3.001695E+00 1.490355E-01 2.901242E+00
MDE+HJ -3.166209E+00 -3.140613E+00 6.333234E-02 -2.178478E+00 -2.071487E+00 8.594076E-02
MDE+HC -3.166209E+00 -3.165129E+00 1.947029E-03 -3.157959E+00 -3.155341E+00 1.843985E-03
εDEga 0.000000E+00 0.000000E+00 0.000000E+00 2.867347E+01 2.883785E+01 8.047159E-01

C03 MDE+NM 0.000000E+00 4.783895E-01 1.295485E+00 4.018871E+01 1.055579E+03 1.219142E+03
MDE+HJ 0.000000E+00 1.265642E+00 3.983805E+00 2.338906E+01 8.851698E+02 1.734344E+03
MDE+HC 0.000000E+00 5.545954E+01 1.862923E+02 2.867076E-02 7.440057E+01 1.639822E+02
εDEga -9.992345E-06 -9.918452E-06 1.546730E-07 4.698111E-03 8.162973E-03 3.067785E-03

C04 MDE+NM -4.441070E+01 -4.441070E+01 7.105427E-15 -4.086475E+01 -4.086475E+01 2.842171E-14
MDE+HJ -5.162324E+01 -4.501714E+01 1.574523E+00 -4.086475E+01 -4.086475E+01 1.852869E-14
MDE+HC -4.441070E+01 -4.441070E+01 7.519677E-15 -4.086475E+01 -4.086475E+01 2.842171E-14
εDEga -4.836106E+02 -4.836106E+02 3.890350E-13 -4.531307E+02 -4.495460E+02 2.899105E+00

C05 MDE+NM -6.074970E+02 -6.074970E+02 2.273737E-13 -6.038261E+02 -6.038261E+02 3.410605E-13
MDE+HJ -6.187782E+02 -6.087846E+02 3.260816E+00 -6.046462E+02 -6.038602E+02 1.638842E-01
MDE+HC -6.074970E+02 -6.074970E+02 2.273737E-13 -6.038261E+02 -6.038261E+02 3.410605E-13
εDEga -5.786581E+02 -5.786528E+02 3.627169E-03 -5.285750E+02 -5.279068E+02 4.748378E-01

C06 MDE+NM -5.908091E+02 -5.908091E+02 2.273737E-13 -5.908091E+02 -5.908091E+02 2.501110E-13
MDE+HJ -5.965922E+02 -5.914438E+02 1.404629E+00 -5.908091E+02 -5.908091E+02 2.273737E-13
MDE+HC -5.908091E+02 -5.908091E+02 2.273737E-13 -5.908091E+02 -5.908091E+02 2.273737E-13
εDEga 0.000000E+00 0.000000E+00 0.000000E+00 1.147112E-15 2.603632E-15 1.233430E-15

C07 MDE+NM 0.000000E+00 6.378527E-01 1.461504E+00 1.104374E+01 7.450512E+01 4.632270E+01
MDE+HJ 0.000000E+00 3.543983E+01 1.153287E+02 1.958496E+01 1.319716E+02 2.140775E+02
MDE+HC 2.335028E-27 1.140278E+01 3.160441E+01 5.484654E-04 3.613771E+01 6.136745E+01
εDEga 0.000000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14

C08 MDE+NM 0.000000E+00 9.743229E+01 2.368199E+02 2.054448E+01 3.295516E+02 4.599177E+02
MDE+HJ 0.000000E+00 1.872247E+02 4.925612E+02 2.580141E+01 2.406614E+03 3.473454E+03
MDE+HC 2.886723E-26 2.083554E+02 4.002769E+02 1.031884E-03 7.015442E+02 2.623504E+03
εDEga 0.000000E+00 0.000000E+00 0.000000E+00 2.770665E-16 1.072140E+01 2.821923E+01

C09 MDE+NM 0.000000E+00 3.189263E-01 1.081532E+00 3.076869E+01 1.300074E+05 5.463461E+05
MDE+HJ 0.000000E+00 5.538516E+03 2.675761E+04 2.645223E+01 7.286739E+02 9.047144E+02
MDE+HC 0.000000E+00 2.894271E+01 8.247018E+01 2.391410E-02 2.178574E+02 3.038142E+02
εDEga 0.000000E+00 0.000000E+00 0.000000E+00 3.252002E+01 3.326175E+01 4.545577E-01

C10 MDE+NM 0.000000E+00 7.973158E-01 1.594632E+00 3.297857E+01 1.319775E+04 4.578728E+04
MDE+HJ 0.000000E+00 5.444295E+02 2.593653E+03 2.352233E+01 1.151545E+03 3.730467E+03
MDE+HC 1.910937E-26 3.539641E+01 1.016156E+02 1.229880E-02 1.024342E+02 1.922225E+02
εDEga -1.522713E-03 -1.522713E-03 6.341035E-11 -3.268462E-04 -2.863882E-04 2.707605E-05

C11 MDE+NM -7.164915E+01 -5.657112E+01 1.730193E+01 -6.043522E+01 -5.458203E+01 3.540663E+00
MDE+HJ -6.579135E+01 -5.585565E+01 5.458492E+00 -6.044491E+01 -5.048541E+01 4.155694E+00
MDE+HC -7.205104E+01 -6.013852E+01 5.316331E+00 -5.535454E+01 -5.016513E+01 3.314065E+00
εDEga -5.700899E+02 -3.367349E+02 1.782166E+02 -1.991453E-01 3.562330E+02 2.889253E+02

C12 MDE+NM -8.108057E+03 -7.932093E+03 2.062272E+02 -2.680487E+04 -2.575254E+04 4.882107E+02
MDE+HJ -8.158429E+03 -7.781861E+03 3.168890E+02 -2.595765E+04 -2.423713E+04 8.386515E+02
MDE+HC -8.108057E+03 -7.683042E+03 3.521029E+02 -2.620216E+04 -2.425797E+04 1.106711E+03
εDEga -6.842937E+01 -6.842936E+01 1.025960E-06 -6.642473E+01 -6.535310E+01 5.733005E-01

C13 MDE+NM -6.842937E+01 -6.365608E+01 2.530104E+00 -6.582004E+01 -6.406239E+01 1.114729E+00
MDE+HJ -6.842937E+01 -6.222556E+01 3.593505E+00 -6.431489E+01 -5.933518E+01 2.580831E+00
MDE+HC -6.842936E+01 -6.391025E+01 3.071028E+00 -6.432779E+01 -6.059491E+01 2.539741E+00
εDEga 0.000000E+00 0.000000E+00 0.000000E+00 5.015863E-14 3.089407E-13 5.608409E-13

C14 MDE+NM 0.000000E+00 4.411768E+06 1.092644E+07 4.444056E+04 1.661360E+09 4.741723E+09
MDE+HJ 0.000000E+00 6.598579E+06 1.407676E+07 2.305974E+01 1.018126E+04 2.453777E+04
MDE+HC 7.187323E-11 1.375070E+11 5.419730E+11 2.797877E-03 5.547401E+07 2.677654E+08
εDEga 0.000000E+00 1.798978E-01 8.813156E-01 2.160345E+01 2.160376E+01 1.104834E-04

C15 MDE+NM 1.922937E+12 8.456202E+13 7.011401E+13 5.919372E+13 1.932704E+14 6.761978E+13
MDE+HJ 8.967169E+12 8.884936E+13 7.827173E+13 1.200730E+14 2.396448E+14 6.652184E+13
MDE+HC 4.017477E+12 8.161327E+13 5.158264E+13 1.269401E+14 1.989160E+14 4.724277E+13
εDEga 0.000000E+00 3.702054E-01 3.710479E-01 0.000000E+00 2.168404E-21 1.062297E-20

C16 MDE+NM 0.000000E+00 1.808242E-01 3.367572E-01 1.549673E-05 5.951875E-02 2.012325E-01
MDE+HJ 0.000000E+00 8.004045E-02 1.695592E-01 1.461790E-06 1.351913E-02 5.601275E-02
MDE+HC 9.864672E-03 4.208551E-02 2.854565E-02 1.687228E-11 3.036562E-02 4.586211E-02
εDEga 1.463180E-17 1.249561E-01 1.937197E-01 2.165719E-01 6.326487E+00 4.986691E+00

C17 MDE+NM 0.000000E+00 4.719779E-29 1.640253E-28 8.102202E-02 1.881183E+01 2.806569E+01
MDE+HJ 0.000000E+00 9.972161E-02 3.219155E-01 2.330202E-02 3.317397E-01 3.520637E-01
MDE+HC 1.669513E-27 1.847996E-08 6.937622E-08 1.132108E-06 4.067197E-03 8.070527E-03
εDEga 3.731439E-20 9.678765E-19 1.811234E-18 1.226054E+00 8.754569E+01 1.664753E+02

C18 MDE+NM 1.104539E+02 4.661089E+03 5.214531E+03 1.047617E-02 3.358028E+02 6.557928E+02
MDE+HJ 2.088774E-07 1.083765E+02 1.802146E+02 1.769504E-02 6.777942E-01 1.014288E+00
MDE+HC 8.293069E-22 9.905441E-01 4.852655E+00 7.578104E-04 1.083834E+00 2.901766E+00
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Test functions

FIGURE 5.1: Average of improvement index (I.I) measure for 10D
problems

 

Test functions

FIGURE 5.2: Average of improvement index (I.I) measure for 30D
problems

Regarding comparisons in particular test problems, MDE+NM reaches the optimal
function values obtained by εDEga for 10D in nine test problems (C01, C03, C07,
C08, C09, C10, C13, C14 and C16). Furthermore, in functions C02, C04, C05, C06,
C11, and C17, MDE+NM outperforms εDEga. For 30D, in seven test problems (C02,
C04, C05, C11, C12, C17 and C18) MDE+NM gets better solutions than εDEga. Re-
garding MDE+HJ, it was able to outperform εDEga for 10D in seven test problems
(C02, C04, C05, C06, C11, C12 and C17), and in C03, C07, C08, C09 C10, C13, C14
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TABLE 5.3: 95%-confidence Wilcoxon rank-sum statistical test results
between εDEga and each MA compared for 10D and 30D test prob-
lems. (y) means significant difference and (n) means no significant

difference.

Comparison Wilcoxon Test Results
p ≤ 0.05. 10 D 30 D

Best N N
εDEga vs MDE+NM Average N N

Best N N
εDEga vs MDE+HJ Average N N

Best N N
εDEga vs MDE+HC Average N N

and C16 the optimal functions values are reached. For 30D, MDE+HJ outperform
εDEga in ten test problems (C02, C03, C04, C05, C06, C10, C11, C12, C17 and C18).
On the other hand, MDE+HC was able to outperform εDEga in eight test problems
(C02, C04, C05, C06, C11, C12, C17 and C18) for 10D and 30D, adding C03 and C10
to the latter. However, unlike MDE+NM and MDE+HJ, MDE+HC reaches only two
optimal function values for 10D (C03 and C09).

Finally, based on the 95%-confidence Wilcoxon test, no significant differences among
the three MAs studied in this paper were obained.

Comparing the results of experiments 1 and 2, it can be noted that MDE+HC had
the best performance based on I.I. for 10D and 30D test problems (Figures 5.1 and
5.2). However, the final results in Table 5.2 show that MDE+HC provided a similar
performance with respect to MDE+NM and MDE+HJ.

On the other hand, MDE+NM had the worst performance in 10D problems based
on the I.I. measure (see Figure 5.1), but obtained very competitive final results in the
same 10D test problems (Table 5.2). MDE+NM improved its performance for 30D
based on the I.I. measure values (see Figure 5.2), but such values were not better than
those presented by MDE+HC. Nevertheless, the final results obtained by MDE+NM
in 30D (Table 5.2) were similar than those obtained by MDE+HC.

Finally, MDE+HJ, which obtained similar results (based on the Wilcoxon test) with
respect to MDE+HC based in the I.I. values for 10D in Figure 5.1, obtained similar
final results in such dimension in Table 5.2. A different behavior was observed in
30D (Figure 5.2 and Table 5.2), where most negative I.I. values were obtained by
MDE+HJ compared with the most positive I.I. values by MDE+HC, but similar final
results were obtained by MDE+HJ and MDE+HC.

The results of both experiments imply that the positive effect of a local search opera-
tor in a constrained search space can not be only measured by the isolated improve-
ment of a single solution. A possible way to deal with this issue is considering such
improvement but with respect to the improvement of the whole population.

5.1.6 Conclusions of Study 1

The results obtained confirmed that the algorithm coordination proposed in this
work is suitable to get competitive MAs to solve CNOPs with local search opera-
tors based on direct methods. The results also suggested that a poor value of the
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improvement index measure does not necessarily reflect on also poor final results
obtained by the MA in a constrained search space. Therefore, considering only the
local search performance as a criterion for the coordination mechanism would not be
the most convenient decision in memetic approaches based on DE to solve CNOPs.

5.2 Study 2: Local Search Depth Influence

Usually, the LSO’s depth is defined by the number of iterations or using another ter-
mination criterion. Nevertheless, as it was pointed in the previous chapter, the def-
inition of the LSO’s depth is not usually analyzed, and motivates this study which
is aimed to analize five direct search methods (Random Walk, Simulated Annealing,
Nelder-Mead, Hooke-Jeeves and Hill Climbing) in order to measure its exploitation
capabilities considering different search depths and different initial solution. Be-
sides, the five LSOs are added separately, to a Memetic Differential Evolution (MDE)
approach inspired in the previous study (Section 5.1), with the aim to measure the
influence of the LSO search depth in the final results obtained by each MA variant.

5.2.1 Performance Measure

In order to measure the local search methods exploitation capabilities, the proximity
rate measure is proposed, which is calculated by the Euclidean distances from the
initial solution vector and the solution vector obtained by the LSO regarding the
best-known solution vector, see Equation 5.3.

κ = 1−

∣∣∣∣∣dX∗,X̂dX∗,X

∣∣∣∣∣ (5.3)

where X∗ is the best-known solution vector, while X̂ and X are the new vector ob-
tained by the LSO and the initial vector, respectively. dX,Y is the Euclidean distance
between two vectors, and is calculated by Equation 5.4.

dX,Y =

√√√√ D∑
i=1

(Xi − Yi)2 (5.4)

where D is the number of decision variables, i.e., the vector dimension.

The Proximity Rate value κ could lie between 0 and 1. When κ ≈ 1 indicates a high
LSO exploitation capability. However, cases where dX∗,X′ > dX∗,X induce negative
κ values, indicating a distancing from optimal vector and poor LSO exploitation
capability.

5.2.2 Memetic DE Approach

The Memetic Differential Evolution approach (MDE) implemented in this work con-
sists of three main issues. (1) Exploitation area: The best solution in the population
was used to exploit promising areas in the search space. (2) Application frequency:
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inspired in [87] the LSO is activated by using a probability Φ (user-defined parame-
ter) during the DE generations after the selection process. (3) Type of replacement:
according to [134] Lamarckian learning is used, i.e., the solution generated by the
LSO (Xnew) is always kept for the next generation.

5.2.3 Experiments and Results

The experiments are divided in three phases:

1. The local search methods described in Section 2.4 (HJ, HC, NM, RW and SA)
are tested on twenty four benchmark problems, described in Table A.1, used
in the special session on “Single Objective Constrained Real-Parameter Opti-
mization” in CEC’2006 [135], to analize the local search exploitation capabili-
ties, i.e., the “proximity rate” introduced in Section 5.2.1). The aforementioned
benchmark was selected, because the optimal solution vectors are reported in
[135] and they are required to compute the “proximity rate” measure.

2. The final results by each LSO are analyzed by computing the 95% confidence
Kruskal-Wallis test [135].

3. The final results of every MDE instance (MDE+HJ,MDE+HC, MDE+NM, MDE+RW
and MDE+SA) are compared to asses the impact of the LSO exploitation capa-
bilities.

In order to analyze the exploitation capabilities of direct local search methods in
CNOPs, a set of initial vectors were randomly generated and divided in two groups:
(1) feasibles and (2) infeasibles, each subset containing 50 vectors. Due to the fact
that some LSO perform stochastic processes; 30 independent runs were computed
per each initial vector in the twenty four test problems. The parameter values used
for each algorithm are described in Table 5.4. Furthermore, four maximum number
of fitness evaluations maxFEs were allowed, in order to analyze each LSO varying
the depth (200, 500, 900, 1500 and 2000). The parameters in Table 5.4 were fine-tuned
by using the IRACE tool [136] with six representative test problems as a training set
for the parameter tuning processes, the parameters suggested in [5] and maxFEs =
1000 for each LSO were used as the starting point for such process. Hill Climbing
(HC) implemented in this work does not require user-defined parameters, therefore
such LSO was not considered for parameter tuning.

The results of the first experiment are depicted in Figure 5.3 where the number of
fitness evaluations allowed for each LSO are presented for the subset of infeasible
and feasible initial solutions. Despite increasing the maximum number of fitness
evaluations for HC and HJ, they do not improve the proximity rate on feasible and
infeasible initial solutions. On the other hand, HC has better exploitation capabilities
in both subsets. The statistics values of the first experiment depicted in Figure 5.4
show greater consistency in results of HJ and SA than the other LSOs

The results of the second experiment are depicted in Figures 5.5 and 5.6, where the
Kruskal-Wallis test suggests a significant difference between HJ and SA for infeasi-
ble initial solutions and between HC and SA for feasible initial solutions. The lines to
the right hand-side mean a better exploitative capacity of the local search operator.
Therefore, according to this analysis, HC and HJ are LSOs that have better exploita-
tion capability of the search space, regardless of whether the initial search point is in
a feasible region or not.
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FIGURE 5.3: Proximity rate average for the 24 problems starting with
50 infeasible and 50 feasible solution vectors using different maxi-
mum number of fitness evaluations values (200, 500, 900, 1200, 1500
and 2000) as stop criterion for each local search (RW, SA, NM, HJ,

HC).
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FIGURE 5.4: Box plot of proximity rate average for the 24 problems
starting with 50 infeasible and 50 feasible solution vectors using dif-
ferent maximum number of fitness evaluations values (200, 500, 900,
1200, 1500 and 2000) as stop criterion for each local search (RW, SA,

NM, HJ, HC).
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TABLE 5.4: User-defined parameters values for Direct Local Search
Methods. Φ is the probability of local search activation

Local Search Parameter Value
Random Walk P 68

z0 5.96
ε 0.18

Simulated Annealing T 6603
ε 0.56

Nerder-Mead β 0.81
γ 3.95

Hooke-Jeeves ∆ 1.79
α 3.58
maxFEs 5.0E+5
Pmax 100

MDE Cr 1.0
F 0.55
Φ 1.618

FIGURE 5.5: Kruskal-Wallis test result. Y-axis shows the LSO for in-
feasible initial solutions. The blue line shows significant difference
against red line(s). Gray lines show no significant difference against

the blue line
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FIGURE 5.6: Kruskal-Wallis test result. Y-axis shows the LSO for
feasible initial solutions.The blue line shows significant difference
against red line(s). Gray lines show no significant difference against

the blue line

The results of the third experiment are depicted in Table 5.5 where the best, mean
and standard deviation function values achieved by each MDE (MDE+HJ, MDE+HC,
MDE+NM, MDE+RW, MDE+SA) are presented and compared against the best-known
fitness values reported in [135]. Despite the fact that the results presented in Table
5.5 were obtained using a low search depth by every LSO (500 maximum of fitness
evaluations), all MDE approaches were able to achieve optimum values in most test
problems, except in g13 test function.

5.2.4 Conclusions of Study 2

Numerical results showed that in spite of differences between the LSO behaviors in
the test groups by using different search depths, the MDE final results were not af-
fected by using shallow search depth; since in the most test problems, optimal values
were achived and competitve results were obtained. Therefore, spending too many
fitness evaluations during the search process of a direct LSO, is not required within
MDE approaches that use a probabilistic global-local search coordination scheme to
solve the CNOPs included in the benchmark adopted.

5.3 Study 3: Baldwing Effect vs Lamarckian Learning

In addition to exploitation area and the frequency of LSO activation, there are two
basic models of evolution that can be used to incorporate learning into a DE: the
Baldwin effect and Lamarckian learning, see Section 4.1. In the specialized literature,
most of MDEs to solve CNOPs implements the Lamarckian learning [14, 16, 17, 19,
20, 79, 81, 137, 138, 139]. Whereas a synergy between Lamarckian and Baldwinian



58 Chapter 5. LSOs Influence in Memetic DE Approach for CNOPs

TABLE 5.5: Function values achieved by MDE+HJ, MDE+HC,
MDE+NM, MDE+RW, MDE+SA. Boldface remarks those similar re-

sults.

Function Optimal Criteria MDE+HJ MDE+HC MDE+NM MDE+RW MDE+SA

g01 -15
Best -15 -15 -15 -15 -15
Mean -14.999999999 -14.9999999996 -14.9999999994 -14.9999999995 -14.9999999995
Std 2.73067054022752E-009 2.71496942377722E-010 8.14617567927385E-010 4.82788754785216E-010 5.45313835859241E-010

g02 -0.8036191042
Best -0.8036191042 -0.8036191042 -0.8036191042 -0.8036191042 -0.8036191042
Mean -0.8036191042 -0.8036191042 -0.8036191042 -0.8036191042 -0.8036191042
Std 0 0 0 0 0

g03 -1.0005001
Best -0.6074561635 -0.6783584009 -0.7470916691 -0.6597960377 -0.7041044302
Mean -0.3877588788 -0.3967701438 -0.4322221701 -0.3704372768 -0.3671288173
Std 0.0845512893 0.1017887439 0.1217925371 0.0752663858 0.1000313058

g04 -30665.5386717834
Best -30665.5386717833 -30665.5386717833 -30665.5386717833 -30665.5386717833 -30665.5386717833
Mean -30665.5386717833 -30665.5386717833 -30665.5386717833 -30665.5386717833 -30665.5386717833
Std 0 0 0 0 0

g05 5126.4967140071
Best 5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071
Mean 5129.5819507654 5128.7644425589 5132.9200114817 5134.5405511058 5135.5597284402
Std 6.9074646254 8.9375793271 15.7495576451 15.6995619604 22.0100714081

g06 -6961.8138755802
Best -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802
Mean -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802 -6961.8138755802
Std 0 0 0 0 0

g07 24.3062090681
Best 24.3062090682 24.3062090682 24.3062090682 24.3062090682 24.3062090682
Mean 24.3062090682 24.3062090682 24.3062090682 24.3062090682 24.3062090682
Std 0 0 0 0 0

g08 -0.0958250415
Best -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414
Mean -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414
Std 0 0 0 0 0

g09 680.6300573745
Best 680.6300573744 680.6300573744 680.6300573744 680.6300573744 680.6300573744
Mean 680.6300573744 680.6300573744 680.6300573744 680.6300573744 680.6300573744
Std 0 0 0 0 0

g10 7049.2480205286
Best 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287
Mean 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287
Std 0 0 0 0 0

g11 0.7499
Best 0.7499 0.7499 0.7499 0.7499 0.7499
Mean 0.7709333858 0.7653993034 0.763313252 0.7601100589 0.7658845001
Std 0.0309807057 0.0313538681 0.0233864928 0.022847417 0.0379289094

g12 -1
Best -1 -1 -1 -1 -1
Mean -1 -1 -1 -1 -1
Std 0 0 0 0 0

g13 0.053941514
Best 0.1174305777 0.1338389892 0.0803370537 0.062475734 0.0667524527
Mean 0.3759206198 0.4681336834 0.4008787459 0.4145928883 0.365800367
Std 0.1698799607 0.1262920802 0.1165370953 0.1955497953 0.1477637386

g14 -47.7648884595
Best -47.7648287542 -47.7648287542 -47.7648287542 -47.7648287542 -47.7648287542
Mean -47.7648287542 -47.7648287542 -47.7648287542 -47.7648287542 -47.7648287542
Std 0 0 0 0 0

g15 961.7150222899
Best 961.71502229 961.71502229 961.71502229 961.71502229 961.71502229
Mean 961.9639609687 961.8962403026 961.9081554909 961.8209591344 961.993228275
Std 0.6986238731 0.5010224502 0.8744877736 0.2415972792 0.6442962331

g16 -1.9051552586
Best -1.9051552585 -1.9051552585 -1.9051552585 -1.9051552585 -1.9051552585
Mean -1.9051552585 -1.9051552585 -1.9051552585 -1.9051552585 -1.9051552585
Std 0 0 0 0 0

g17 8853.5396748064
Best 8853.5396748065 8853.5396748065 8853.5396748065 8853.5396748065 8853.5396748065
Mean 8925.4961384738 8931.0117172956 8927.6478801476 8925.9449094633 8938.341490254
Std 20.7031235649 3.637864142 13.5926402527 19.7526905967 41.9359621537

g18 -0.8660254038
Best -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038
Mean -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038 -0.8660254038
Std 0 0 0 0 0

g19 32.6555929502
Best 32.6555929502 32.6555929502 32.6555929502 32.6555929502 32.6555929502
Mean 32.6555929502 32.6555929502 32.6555929502 32.6555929502 32.6555929502
Std 1.52554012876978E-012 1.73479076935423E-012 2.16221309422939E-012 2.90800979031505E-012 4.16578225753484E-012

g21 193.72451007
Best 193.7245100697 193.7245100697 193.7245100697 193.7245100697 193.7245100697
Mean 227.6818553498 266.4902499555 242.2350033269 242.2350033269 256.7881513041
Std 58.4917905939 66.3234564215 64.4548139823 64.4548139823 66.6909022052

g23 -400.0551
Best -400.0551 -400.0551 -400.0551 -400.0551 -400.0551
Mean -400.0551 -400.0551 -400.0551 -400.0551 -400.0551
Std 0 0 0 0 0

g24 -5.5080132716
Best -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716
Mean -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716 -5.5080132716
Std 0 0 0 0 0
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learning was proposed in [140] for a distributed MDE for unconstrained numerical
optimization problem.

The Baldwin effect in MDE for CNOPs is not usually analyzed. This is the main mo-
tivation for this study which is aimed to analyze the Baldwin effect into an MDE that
incorporates the Hooke-Jeeves method as local search operator (MDEHJ). MDEHJ
adopts the ε-constrained method [62] as constraint-handling mechanism.

5.3.1 Memetic DE Approach

The integration of HJ within the standard DE is based on the fact that DE/rand/1/bin
has a good performance regarding exploration capabilities in constrained spaces
[141], and considering that for some problems DE keeps trapped in local optima
[10]. In this study, HJ is performed after the selection operator of DE under a dy-
namic probabilistic scheme described in this section. Furthermore, three issues were
considered in the global-local search coordination: (1) exploitation area, (2) local
search activation mechanism and (3) type of learning. The complete memetic DE
namedMDEHJ is defined in Algorithm 19, where the gray lines mark the elements
to integrate HJ as local search operator.

Exploitation Area In order to analyze the Baldwin effect within the Memetic DE,
three different exploitation areas during the search process are considered in this
study, and implemented in three instances of MDEHJ, separately.

1. Best area MDEHJbest. HJ takes the best vector of the population as initial
search point.

2. Worst areaMDEHJworst. HJ takes the worst vector of the population as initial
search point.

3. Random area MDEHJrand. HJ takes a random vector of the population as
initial search point.

For this process, Line 24 in Algorithm 19 (Set j *) is replaced by: (a) Set j ← best, (b)
Set j ←worst, and (c) Set j ← rand forMDEHJbest,MDEHJworst, andMDEHJrand,
respectively.

Local Search Activation Mechanism Considering the fact that an excessive use of
the local search in a memetic algorithm is not beneficial for the search process [25];
in this proposal, the local search is handled by means of a probability of activation,
which includes the population diversity information in terms of the objective func-
tion values. Inspired in [142] a sinusoidal function is used to modulate the probabil-
ity of HJ activation. See Equation 5.5.

P = pmin ∗ (sin(2π ∗ freq ∗G) ∗ χ+ 1) (5.5)

where pmin is the minimum probability allowed to be applied the local search, freq
is the frequency of probability variation, while G is the current generation in the
global search cycle. Finally, χ (see Equation 5.6) is an estimation of the best vector
performance with respect to the other vectors [28].

χ =
|fbest − favg|

max|fbest − favg|G
(5.6)
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where fbest and favg are the objective function values of the best and average solu-
tions of the population, respectively. max|fbest − favg|G is the maximum difference
observed (e.g., at the Gth generation). The behavior expected by this mechanism is
if the population tends to resemble the best perfomance vector, the probability of
applying the local search P tends to pmin.

Type of Learning In this study, the Baldwinian Learning is considered, i.e., after lo-
cal search activation, the perfomance of the initial vector (constraint violation sum
φ(XG,j) and objective function value f(XG,j)) is replaced by the performance of the
new vector. In order to compare the Baldwin effect, the Lamarckian Learning is im-
plemented separately. For this process, Line 26 in Algorithm 19 (Apply Learning *) is
replaced by Equation 5.7 and Equation 5.8 for Baldwinian and Lamarckian learning,
respectively.

Set f(XG,j)← f(Xnew), φ(XG,j)← φ(Xnew) (5.7)

Set XG,j ← Xnew, f(XG,j)← f(Xnew), φ(XG,j)← φ(Xnew) (5.8)

5.3.2 Experiments and Results

The experiments are divided in two phases: (1) Three instances of MDEHJ men-
tioned in Section 5.3.1 were tested on eighteen well-known benchmark problems
[132], with different search space dimensionality, 10 and 30 dimensions, to analyze
the behavior of the algorithm using the Baldwin effect and the Lamarckian learn-
ing. Statistical values on 25 independent runs were computed for each test problem
(2) The final results obtained by each MDEHJ instance were compared against those
obtained by εDEga [14], which is a representative algorithm of the state-of-the-art
in the scope of Memetic DE for CNOPs. The parameter values used for each al-
gorithm are described in Table 5.6. The dimensionalities used in the test problems
were D = 10 and D = 30, as defined in [132]. Likewise, the maximum number of
fitness evaluations maxFEs (200,000 and 600,000 respectively). The parameters were
fine-tuned by using the IRACE tool [136] with nine representative test problems as
a training set for the parameter tuning processes, the parameters suggested in [14]
and [5] were used as the starting point for such process.

The results of the first phase of the experiment are summarized in Tables 5.8 and 5.9,
where the best, mean, and median function values for each MDEHJ instance, besides
the standard deviation values, are shown for 10D and 30D, respectively. In addition,
the feasibility rate (FR) of the 25 independent runs is presented, see Equation 5.9.

FR =
number of feasible runs

total runs
(5.9)

where a feasible run is a run during which at least one feasible solution is found.

The aforementioned results suggest thatMDEHJbest,MDEHJworst, andMDEHJrand
using the Baldwinian and Lamarckian learning are able to find feasible solutions for
all test problems in 10D. However, for the three MDEHJ instances with Baldwinian
learning, it was not able to converge to feasible solutions in the C11 problem in 30D,
which has a flat landscape function. Meanwhile, by using the Lamarckian learning
the three MDEHJ instances presented a suitable perfomance for all test problems in
30D.
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Algorithm 19 Memetic Differential Evolution MDEHJ
Randomly generate an initial population of vectors P0 = (X0,i, . . . , X0,Pmax)
Calculate the fitness of each vector in the initial population.
Set the ε value using Equation 3.13
repeat

for i← 1, Pmax do
Randomly select r0,r1,r2 ∈ [1, Pmax] and r0 6= r1 6= r2 6= i
Randomly select Jrand ∈ [1, D]
for j ← 1, D do

if randj ≤ Cr Or j = Jrand then
uG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j)

else
uG,i,j = xG,i,j

end if
end for
if UG,i ≤ε XG,i using Equation 3.11 then
XG+1,i = UG,i

else
XG+1,i = XG,i

end if
end for
Set the population diversity χ using Equation 5.6

Set the activation probability P Equation 5.5

if rand(0, 1) ≤ P
then

Set j *

Set Xnew ← Hooke-Jeeves(XG,j), using Algorithm 2

Apply Learning *
end if
Update ε value using Equation 3.12
G = G+ 1

until MaxFEs is reached
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TABLE 5.6: Parameters values for Differential Evolution (DE), Hooke-
Jeeves (HJ), constraint handler (ε-Constrained), and the local search

activation mechanism (P )

Algorithm Parameter Value
10 D 30 D

DE

maxFEs 2.0E + 05 6.0E + 05
Pmax 100 250
Cr 0.9
F 0.55

HJ
α 2.5
δ 0.8
maxFEs 900

ε-Constrained
θ 0.75
cp 4.5
Gc 1100

P
pmin 0.05
freq χ, see Equation 5.6

TABLE 5.7: 95%-confidence Wilcoxon rank sum test results for the
MDEHJ instances with Baldwinian learning (B −MDEHJbest, B −
MDEHJworst and B−MDEHJrand) against MDEHJ instances with
Lamarckian learning (L −MDEHJbest, L −MDEHJworst and L −
MDEHJrand). Dim means the dimension of results, while w+ and
w− mean the sum of positive and negative ranks, respectively. Fi-

nally, Diff denotes whether there is a significant difference.

Algorithms Dim Criteria w+ w− Diff

B −MDEHJbest to L−MDEHJbest

10
Best Fitness 11 17 ≈
Average Fitness 89 64 ≈

30
Best Fitness 103 68 ≈
Average Fitness 166 5 −

B −MDEHJworst to L−MDEHJworst

10
Best Fitness 18 18 ≈
Average Fitness 71 65 ≈

30
Best Fitness 137 34 −
Average Fitness 133 38 −

B −MDEHJrand to L−MDEHJrand

10
Best Fitness 16 5 ≈
Average Fitness 84 52 ≈

30
Best Fitness 116 55 ≈
Average Fitness 126 45 ≈



5.3. Study 3: Baldwing Effect vs Lamarckian Learning 63

Regarding the feasibility rate for test instances at 10D MDEHJbest, MDEHJworst,
and MDEHJrand using both learning methods, has similar perfomance. However,
increasing the dimensionality of the problems to 30D, MDEHJ instances with Lamar-
ckian learning outperforms the Baldwinian learning.

The convergence plots in Figure 5.7 for C11 and C17 test problems at 10D, show
a similar behavior of the MDEHJrand instances with Lamarckian learning (L −
MDEHJrand) and Baldwinian learning (B −MDEHJrand). On the other hand, the
convergence plots for the same test problems (C11 and C17) at 30D was presented
in Figure 5.8, show a relative difference between both learning methods, where the
performance of Lamarckian learning is better than the Baldwinian learning, consid-
ering that the plots show only feasible solutions of the median run out of the 25
independent runs.

Finally, in consideration of the similar final perfomance between the MDEHJ in-
stances with Baldwinian and Lamarckian learning, the 95%-confidence Wilcoxon
rank sum test was performed, in order to determine the statistical significant dif-
ference between approaches. The comparison is summarized in Table 5.7. One of
the three signs (+, −, ≈) was assigned for the comparison, where “+” sign means
the first algorithm is significantly better than the second, “−” sign means that the
first algorithm significantly worse, and “≈” sign means that there is no significant
difference between the two algorithms.

In the same way, the statistical comparison betweenB−MDEHJbest,B−MDEHJworst,
B−MDEHJrand, L−MDEHJbest, L−MDEHJworst, L−MDEHJrand and εDEga
by the 95%-confidence Kruskall-Wallis test is shown in Figure 5.9.

5.3.3 Conclusions of Study 3

The results suggested that the algorithm proposed was suitable to solve constrained
numerical problems and those results also showed that the use of Baldwinian Learn-
ing did not affect the final performance of the MDEHJ in constrained search spaces.
Although there were numerical differences in some test functions, the statistical tests
did not show significant differences with respect to the results reported by εDEga
[14]. However, the Baldwin effect caused a deterioration in the quality of final re-
sults in larger dimensions. Finally, the results showed that the Baldwinian learning
is not significantly affected by the area of exploitation of the local search operator.
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(A) C11

(B) C17

FIGURE 5.7: Convergence plot of the best run for C11 and C17 test
problems in 10D
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(A) C11

(B) C17

FIGURE 5.8: Convergence plot of the best run for C11 and C17 test
problems in 30D
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(B) Comparison of mean fitness value

FIGURE 5.9: 95%-confidence Kruskall-Wallis Test comparison of the
best and mean fitness values of 25 runs for 36 test problems obtained
by MDEHJ instances and values reported in the literature εDEag [14]
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TABLE 5.8: Function values achieved byMDEHJbest,MDEHJworst,
and MDEHJrand using the Baldwinian Learning (B-Learning) and
the Lamarckian Learning (L-Learning) for 10D. Boldface remarks
those better results and Italic text remarks those similar results. “Std”

is the standard deviation and “FR” is the feasibility ratio

Problem Criteria
B-Learning L-Learning

MDEHJbest MDEHJworst MDEHJrand MDEHJbest MDEHJworst MDEHJrand

C01

Best -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01
Mean -7.457762E-01 -7.415247E-01 -7.420458E-01 -7.431889E-01 -7.436112E-01 -7.419424E-01
Median -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01 -7.473104E-01
Std 0.0041098608 0.0109592183 0.0099075169 0.0107297238 0.0080123085 0.0103893801
FR 1 1 1 1 1 1

C02

Best -2.277711E+00 -2.258584E+00 -2.263124E+00 -2.277711E+00 -2.261749E+00 -2.277711E+00
Mean -1.842926E+00 -1.876020E+00 -1.947851E+00 -1.832271E+00 -2.090904E+00 -2.076175E+00
Median -1.917811E+00 -1.936744E+00 -1.947646E+00 -1.866249E+00 -2.085177E+00 -2.122172E+00
Std 0.4396571011 0.2311764074 0.2090517645 0.3114133079 0.0949487515 0.1599606583
FR 0.6 0.88 0.8 0.88 1 1

C03

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 8.646401E-21 1.633739E-15 6.808154E-08 8.296713E-27 0.000000E+00 6.105617E-11
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 4.14666837248954E-020 8.00365524192589E-015 3.40407692078578E-007 4.06454272443738E-026 0 2.11554194192275E-010
FR 0.92 0.96 1 0.96 1 1

C04

Best -9.907976E-06 -9.963639E-06 -9.964802E-06 -9.928846E-06 -9.846275E-06 -9.929543E-06
Mean -9.722134E-06 -9.187095E-06 -9.599487E-06 -9.737280E-06 -9.269496E-06 -9.478623E-06
Median -9.747407E-06 -9.655966E-06 -9.740492E-06 -9.816262E-06 -9.643077E-06 -9.550767E-06
Std 1.56304926258468E-007 1.04189991296742E-006 4.47320987089503E-007 2.62613707406536E-007 7.48449324669952E-007 3.98643999703046E-007
FR 1 1 1 1 1 1

C05

Best -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02
Mean -4.834632E+02 -4.834646E+02 -4.833612E+02 -4.836106E+02 -4.836046E+02 -4.835001E+02
Median -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02 -4.836106E+02
Std 0.6594188279 0.4375054037 1.0345232613 1.05666827861487E-006 0.0295881941 0.5414564094
FR 0.8 0.96 0.92 1 0.96 0.96

C06

Best -5.771759E+02 -5.771759E+02 -5.771759E+02 -5.786624E+02 -5.786624E+02 -5.786624E+02
Mean -5.771697E+02 -5.771757E+02 -5.771719E+02 -5.786111E+02 -5.786489E+02 -5.786253E+02
Median -5.771759E+02 -5.771759E+02 -5.771759E+02 -5.786618E+02 -5.786619E+02 -5.786622E+02
Std 0.0234111508 0.0004340124 0.0149101872 0.1622863409 0.0471323892 0.0960564387
FR 1 1 1 1 1 1

C07

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.189263E-01 0.000000E+00
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 0 0 0 0 1.1038337729 0
FR 1 1 1 1 1 1

C08

Best 0.000000E+00 3.622903E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 8.616990E+00 9.344484E+00 1.039322E+01 8.824209E+00 6.954828E+00 9.675175E+00
Median 1.057285E+01 1.057285E+01 1.057285E+01 1.094154E+01 1.057285E+01 1.057285E+01
Std 3.9306974057 2.8144402491 4.2434944831 4.1632269397 4.9438694851 3.5019303146
FR 1 1 1 1 1 1

C09

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 2.278692E+02 1.763261E-01 3.526522E-01 5.285192E+00 6.070858E-01 6.070858E-01
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 1137.7409432408 0.8816305482 1.2205622579 19.0355223519 2.2930071102 2.2930071102
FR 1 1 1 1 1 1

C10

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 1.746854E-28 8.984673E-01 3.274426E+02 1.924867E-01 2.064902E-01 6.979122E+00
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 8.73426794260704E-028 3.6032326316 1637.2130644936 0.9624336178 1.0324509443 34.8956083253
FR 1 1 1 1 1 1

C11

Best -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03
Mean -1.522713E-03 -1.519060E-03 -1.502779E-03 -1.522485E-03 -1.522641E-03 -1.522691E-03
Median -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03 -1.522713E-03
Std 7.31916988036191E-014 1.66394942968316E-005 8.04673592842089E-005 1.09533781681381E-006 2.41098308573264E-007 8.67186715407771E-008
FR 0.8 0.96 0.96 0.92 0.88 0.92

C12

Best -4.265165E+02 -5.683828E+02 -3.054888E+02 -4.231332E+02 -4.231332E+02 -3.054888E+02
Mean -2.704218E+02 -1.905477E+02 -1.639763E+02 -2.404028E+02 -1.202660E+02 -1.528440E+02
Median -2.704218E+02 -1.726183E+02 -1.751087E+02 -2.978758E+02 -1.992458E-01 -1.528440E+02
Std 220.7512439684 197.8587087849 125.3115670723 209.8387397247 185.9191539192 176.2589840633
FR 0.08 0.28 0.72 0.24 0.2 0.16

C13

Best -6.420751E+01 -6.842937E+01 -6.557847E+01 -6.557847E+01 -6.352529E+01 -6.557847E+01
Mean -6.183692E+01 -6.171669E+01 -6.239441E+01 -6.185219E+01 -6.233050E+01 -6.254727E+01
Median -6.227640E+01 -6.227640E+01 -6.227640E+01 -6.227640E+01 -6.227640E+01 -6.351694E+01
Std 1.8902186454 3.0568101145 1.8993318778 2.1272165214 1.6532330626 2.4280705325
FR 1 1 1 1 1 1

C14

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 4.605731E+00 7.682420E-01 1.594632E-01 3.189263E-01 5.635299E+00 5.201476E+00
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 13.3202584868 3.1142829337 0.7973158225 1.1038337729 21.4114747568 21.4113820039
FR 1 1 1 1 1 1

C15

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 3.687537E+01 1.798990E-01 1.235283E+01 1.472207E+00 1.087769E+00 6.041938E-01
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 131.0444618988 0.899495008 47.226500902 6.4866240569 3.6840524499 2.2695237415
FR 1 1 1 1 1 1

C16

Best 1.573042E-01 4.375902E-02 2.515554E-01 0.000000E+00 1.654749E-02 7.897881E-02
Mean 7.182761E-01 6.893921E-01 7.419267E-01 7.603009E-01 7.466949E-01 7.822406E-01
Median 7.012325E-01 7.025873E-01 8.104133E-01 1.006710E+00 9.558551E-01 9.592691E-01
Std 0.3922117635 0.3221681271 0.2879725906 0.417739106 0.3712710438 0.3244318414
FR 1 0.92 1 0.96 1 1

C17

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 4.930381E-34 2.465190E-34 2.465190E-34 4.930381E-34 2.465190E-34 4.930381E-34
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 1.70645073433125E-033 1.23259516440783E-033 1.23259516440783E-033 1.70645073433125E-033 1.23259516440783E-033 1.70645073433125E-033
FR 1 1 1 1 1 1

C18

Best 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Mean 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Median 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Std 0 0 0 0 0 0
FR 1 1 1 1 1 1
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TABLE 5.9: Function values achieved byMDEHJbest,MDEHJworst,
and MDEHJrand using the Baldwinian Learning (B-Learning) and
the Lamarckian Learning (L-Learning) for 30D. Boldface remarks
those better results and Italic text remarks those similar results. “Std”

is the standard deviation and “FR” is the feasibility ratio

Problem Criteria
B-Learning L-Learning

MDEHJbest MDEHJworst MDEHJrand MDEHJbest MDEHJworst MDEHJrand

C01

Best -8.212299E-01 -8.180021E-01 -8.189759E-01 -8.218336E-01 -8.209993E-01 -8.214553E-01
Mean -7.906871E-01 -7.955420E-01 -7.850579E-01 -8.128026E-01 -7.895534E-01 -8.024779E-01
Median -8.051968E-01 -8.035556E-01 -8.021446E-01 -8.167530E-01 -8.069657E-01 -8.109307E-01
Std 0.0394106478 0.0239844032 0.0359429019 0.010401451 0.036606682 0.0224466185
FR 1 1 1 1 1 1

C02

Best -2.028941E+00 -2.070596E+00 -1.937690E+00 -1.962567E+00 -2.104664E+00 -2.129791E+00
Mean -1.501616E+00 -1.316971E+00 -1.524262E+00 -1.612921E+00 -1.579260E+00 -1.658160E+00
Median -1.649695E+00 -1.344832E+00 -1.592617E+00 -1.679900E+00 -1.868809E+00 -1.889308E+00
Std 0.4598407083 0.5214896663 0.3730499485 0.3252846022 0.9712334592 0.9770352424
FR 0.92 0.92 0.96 1 1 1

C03

Best 1.798732E-04 2.147231E-04 4.299019E-04 1.945596E-04 2.293741E-04 1.213162E-04
Mean 1.606439E+01 1.835875E+01 6.718584E+01 6.695065E-03 5.232345E-03 9.963366E+08
Median 2.867647E+01 2.867633E+01 2.867651E+01 1.452650E-03 1.106168E-03 1.859524E-03
Std 14.5257983188 14.047622078 228.6963297386 0.0143275485 0.009571255 4881032690.67571
FR 1 1 1 0.96 1 0.96

C04

Best 2.630825E-03 1.627246E-03 2.834130E-03 2.221984E-03 2.635186E-03 2.809565E-03
Mean 4.292232E-03 6.940081E-02 5.389754E-03 8.507516E-03 8.755445E-03 4.158587E-03
Median 4.670455E-03 3.972638E-03 4.088333E-03 4.924997E-03 4.230594E-03 3.701366E-03
Std 0.0010013885 0.2050916414 0.0044313899 0.0137383827 0.0153783007 0.0015296364
FR 0.24 0.4 0.52 0.52 0.64 0.4

C05

Best -4.286187E+02 -4.445453E+02 -4.503970E+02 -4.683370E+02 -4.508990E+02 -4.614857E+02
Mean -2.831345E+02 -3.583624E+02 -3.170837E+02 -4.270805E+02 -4.065930E+02 -4.331868E+02
Median -2.406986E+02 -4.185614E+02 -3.254586E+02 -4.436825E+02 -4.257360E+02 -4.407806E+02
Std 119.9259529885 99.1809643142 105.1800897502 59.964435771 50.9423882535 24.8358735812
FR 0.4 0.52 0.4 0.96 0.96 1

C06

Best -5.074999E+02 -5.257675E+02 -5.216241E+02 -5.251707E+02 -5.252116E+02 -5.260180E+02
Mean -3.172666E+02 -3.690244E+02 -3.356645E+02 -5.190846E+02 -5.177702E+02 -5.210443E+02
Median -3.014466E+02 -3.576268E+02 -2.889154E+02 -5.201676E+02 -5.176497E+02 -5.208440E+02
Std 141.0614944537 120.9432610769 134.4011410656 3.6725279181 4.2636813877 2.5851008628
FR 0.6 0.52 0.56 0.96 0.96 1

C07

Best 2.452761E+06 1.880186E+06 8.581103E+05 3.470941E+05 6.998194E+05 3.077415E+05
Mean 2.121972E+07 1.649039E+07 2.825534E+07 1.539439E+07 1.177201E+07 2.092193E+07
Median 1.578305E+07 1.013803E+07 1.342904E+07 1.054680E+07 9.856244E+06 1.209597E+07
Std 20463490.6624698 14416514.8359341 34220955.4556132 22314350.035015 9327645.68603846 28078234.0290638
FR 1 1 1 1 1 1

C08

Best 1.297202E+06 1.599710E+06 9.695534E+05 4.263515E+06 1.056525E+06 2.083105E+06
Mean 2.424638E+07 2.361493E+07 3.534283E+07 2.123878E+07 1.865897E+07 1.919292E+07
Median 9.620651E+06 1.803990E+07 2.188032E+07 1.241214E+07 1.132263E+07 1.873023E+07
Std 28942746.0678157 21501185.3510753 43119161.1823233 29931033.7193782 32390226.9499147 13244617.0111663
FR 1 1 1 1 1 1

C09

Best 1.170386E+08 2.000426E+08 1.356771E+08 5.725403E+07 7.028435E+07 2.096152E+08
Mean 2.054205E+09 3.850938E+09 1.645751E+09 1.327185E+09 1.086642E+09 1.288078E+09
Median 1.493080E+09 1.985780E+09 1.324588E+09 9.389505E+08 8.719467E+08 1.032037E+09
Std 1928688451.25335 4048722194.13522 1410028055.98694 1267497608.02485 848643583.035502 974522816.02476
FR 1 1 1 1 1 1

C10

Best 1.132249E+08 1.634377E+08 5.290046E+07 2.218009E+08 2.565191E+08 8.880810E+07
Mean 2.232365E+09 2.671565E+09 2.377886E+09 1.496530E+09 1.810777E+09 1.664864E+09
Median 1.348975E+09 1.717629E+09 1.541441E+09 1.236857E+09 1.173705E+09 8.029145E+08
Std 2142461081.57498 2781160903.83436 2160440276.17879 1082746865.09996 1463606591.87325 1842986859.50566
FR 1 1 1 1 1 1

C11

Best - - - -3.387906E-04 -3.236919E-04 -3.321988E-04
Mean - - - -3.163634E-04 -2.722019E-04 -2.953903E-04
Median - - - -3.162091E-04 -3.112411E-04 -2.931030E-04
Std - - - 1.39122048953607E-005 8.20391357873681E-005 3.44237647535907E-005
FR 0 0 0 0.4 0.24 0.28

C12

Best -1.982239E-01 -1.979244E-01 -1.980289E-01 -1.985701E-01 -1.983240E-01 -1.983693E-01
Mean 6.489327E-02 -5.342994E-02 -7.774490E-02 -1.007977E-01 3.070812E-02 6.206711E-02
Median -1.141201E-01 -9.150999E-02 -1.798003E-01 -1.338328E-01 -6.292011E-02 -8.554155E-02
Std 0.4825476505 0.1498712645 0.2411392218 0.1095566738 0.4151098755 0.4111699527
FR 0.72 0.84 0.72 0.6 0.84 0.52

C13

Best -4.339204E+01 -4.387888E+01 -4.631067E+01 -4.073612E+01 -5.846836E+01 -4.115957E+01
Mean -3.614333E+01 -3.597381E+01 -3.623899E+01 -3.708869E+01 -3.663108E+01 -3.616252E+01
Median -3.576710E+01 -3.582029E+01 -3.567818E+01 -3.716624E+01 -3.542507E+01 -3.570400E+01
Std 2.9591297483 2.4989848671 3.4593544343 2.2505044482 5.2314679339 2.7788867376
FR 1 1 1 1 1 1

C14

Best 3.095757E+09 3.254461E+09 1.588369E+09 3.114444E+09 2.501509E+09 1.463029E+09
Mean 3.558607E+10 2.699306E+10 2.147086E+10 2.019372E+10 3.296048E+10 3.741909E+10
Median 2.073490E+10 2.095488E+10 1.255382E+10 1.675086E+10 2.076095E+10 2.808929E+10
Std 44049821653.3391 21147617118.3107 25235521446.6724 11972785993.6595 38515200922.5151 32332567429.2116
FR 1 1 1 1 1 1

C15

Best 2.160675E+01 2.160935E+01 2.160803E+01 4.780581E-04 1.398412E-03 1.428983E-03
Mean 2.296881E+01 2.376645E+01 2.344497E+01 2.019449E+01 1.573819E+06 1.845420E+01
Median 2.238216E+01 2.262685E+01 2.280737E+01 2.187170E+01 2.250617E+01 2.173677E+01
Std 1.8098464166 2.3593478916 1.8224038917 12.5665406753 7868988.16330518 9.2516359117
FR 1 1 1 1 1 1

C16

Best 1.086953E-10 2.547318E-10 1.465367E-10 1.298822E-10 1.341258E-10 5.059697E-11
Mean 7.671159E-10 9.239124E-07 4.129572E-09 9.750248E-09 2.614199E-08 6.452409E-10
Median 4.151449E-10 6.906006E-10 5.473482E-10 5.305633E-10 5.426494E-10 3.288210E-10
Std 1.13953724814516E-009 0.000004608 1.55011233825527E-008 4.14527039896093E-008 1.25597387814057E-007 6.90669799647074E-010
FR 1 1 1 1 1 1

C17

Best 1.127200E-04 5.289437E-05 8.640277E-05 2.992582E-05 4.223067E-05 1.261989E-05
Mean 3.918280E-03 3.319975E-03 3.489063E-01 7.862078E-04 2.711514E-04 2.283398E-04
Median 6.118177E-04 1.836753E-04 3.017479E-04 6.823881E-04 1.950510E-04 1.826438E-04
Std 0.0081271666 0.0128408545 1.4811419138 0.00052056 0.000295821 0.0002068771
FR 1 1 1 1 1 1

C18

Best 2.176073E-11 9.380175E-11 4.063920E-11 1.601786E-11 1.143439E-11 6.581079E-12
Mean 7.989147E-03 9.103697E-03 1.728619E-04 4.437594E-03 5.233829E-04 2.429586E-05
Median 8.576027E-10 2.669062E-09 7.960236E-10 9.299224E-10 2.927154E-10 2.260649E-10
Std 0.0268763837 0.0376588207 0.0008619611 0.0178380336 0.0026168765 0.0001105333
FR 1 1 1 1 1 1
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Chapter 6

A Multimeme Differential
Evolution Framework

This chapter presents a multimeme coordination scheme based on the cost-benefit
of local search operators, derived from the three studies presented in the previous
chapter.

6.1 Cost-Benefit Multimeme Differential Evolution

The proposed approach, named Cost-Benefit Multimeme Differential Evolution (CoBe-
MmDE), is aimed to coordinate a pool of local search operators (LSOs) within a Dif-
ferential Evolution (DE) algorithm under constrained search spaces. The proposed
method is based on a meta-Lamarckian logic [143] by using a cost-benefit scheme
to control the LSO selection. Unlike the cost-benefit framework introduced in [144],
the “benefit” (performance) of every LSO is computed by a different measure in this
work, which is based on the success rate accumulated during every LSO activation.
On the other hand, the adaptation in this proposal deals with a particular philoso-
phy, considering the type of problem being tackled and the global search algorithm
analyzed in this work.

6.1.1 Cost-Benefit Local Search Coordination

The LSO coordination mechanism, the main contribution of this study, works under
a probabilistic rule, which is calculated using Equation 6.1, and it is composed of two
main elements. The first element is the fitness evaluation rate. Such value is consid-
ered because, the complexity of the algorithms can be measured by the number of
fitness function evaluations, and there are LSOs which perform few iterations, but
the fitness function is computed several times. Therefore, the fitness function evalu-
ations (FEs) carried out by the LSOs can be seen as a cost of exploitation. The second
element is the LSO benefit. In this work, the success rate is considered to measure
this LSO property. The adaptive probability β is defined as follows:

β =

(
lsoFEt∑t
i=1 lsoFEi

)
×
(
lsoTS

t

)
(6.1)

where, lsoFEt is the current number of fitness function evaluations of a given LSO,
while

∑t
i=1 lsoFEi is the accumulated number of fitness evaluations during all LSO’s



70 Chapter 6. A Multimeme Differential Evolution Framework

FIGURE 6.1: Contour plot of proposed probability β. x-axis expresses
the values that can take the first element of the measure (fitness evalua-
tion rate). y-axis expresses the values that can take the second element

of the measure (success rate)

applications (t), and finally lsoTS is the sum of those times where the LSO obtained
a successful solution vector, i.e., when the new vector is better than the initial vector.

Every LSO has associated a β value, which varies between 0 and 1. The β value is
updated after each time the LSO is applied, in order to updated the LSO activation
probability for the next generation G as well. Therefore at the algorithm beginning,
it is necessary to prefix an initial value greater than zero for the corresponding β
associated to each LSO.

The expected behavior of β is to obtain values ≈ 1 in the first applications of the
LSO and decrease it with each LSO usage, until values ≈ 0 are reached. Figure 6.1
shows the possible values that the proposed measure β can take, depending on the
cost (fitness evaluation rate) and benefit (success rate). However, cases can occur in
which the first use of one of the LSOs does not obtain a successful solution, follow-
ing Equation 6.1, that LSO would have zero chance of being reused. This behavior
prevents the use of an inadequate LSO for the problem being solved. On the other
hand, the decrement speed of the the probability of use of each LSO decreases, is
based on the number of fitness evaluations spent by each one of them. That implies
that a proper configuration for the stop criterion within a given LSO could allow
maintaining a relatively high probability to be activated.

The exploitation area for each LSO is a random selection process, which consists of
two steps: (1) population sorting by using the ε comparison (see Equation 3.11), and
(2) randomly selecting a vector of the ordered population, considering the first ten
percent of the population, ensuring to exploit promising areas of the search space.

Finally, the Lamarckian learning [63] is considered as a replacement mechanism, i.e.,
the solution generated by each LSO is always kept for the next generation. The
algorithm selects the worst vector of the population to be replaced by new vector
generated by the LSO.

Although the proposed mechanism is capable of coordinating several LSOs, in this
study three well-known direct search methods are implemented, Hooke-Jeeves (HJ)
[37] , Nelder-Mead (NM) [38], and Hill Climbing (HC) [40]. Every LSO uses a
maximum allowable fitness evaluation budget for each application. All three meth-
ods have been shown to have a competitive performance in constrained problems
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[19, 145]. Whereas HJ, through its exploratory and pattern movements, obtains
search directions approaching the gradient subspace, HC provides randomness in
its exploration process, and NM can generate contraction and expansion movements
in the search space through the initial simplex.

The complete process of CoBe-MmDE is described in Algorithm 20. Highlighted
lines show the algorithmic coordination, which is applied after the DE replacement
procedure.

6.2 Experiments and Results

To validate the efficiency of the proposed CoBe-MmDE, a set of experiments has
been carried out on eighteen well-known benchmark problems [132] with different
search space dimensionality, 10 and 30 dimensions. The characteristics of the prob-
lems are summarized in Table B.1.

The experiments are divided into three stages as follows: The first experiment is
aimed to analyze the behavior of the local search coordination mechanism. For this
purpose, the rate of LSO usage, the percentage of LSO fitness evaluations and the
success ratio of LSO for each test problem are computed. Afterwards, the results
are compared against three MmDE versions, which implement Random, Frequency
(coordination proposed in [29]), and population Diversity-based local search coordi-
nation mechanism (proposed in [28]), respectively. The second experiment measures
the performance of CoBe-MmDE through the feasibility rate [132], the success rate,
and success performance [135]. Moreover, CoBe-MmDE is compared against four
competitive DE variants for numerical optimization: EPSDE-LS [29], FDSADE [146],
MADE [147], MS-CAP [148]. The ε-constrained method was implemented as con-
straint handler for each algorithm. Finally, the third expriment assesses the CoBe-
MmDE numerical results by comparing them against those of state-of-the-art algo-
rithms experiment for nature inspired constrained optimization, such as E-MODE
[98], SAMO-DE [149], ε-DEag [14], DE-DPS [150] and, ECHT-ARMOR-DE [151].

For each experiment, twenty-five independent runs are computed. The parameter
values used in the experiments are described in Section 6.2.1.

6.2.1 Parameter Setting

The parameter setting was conducted in two phases: In the first phase global and
local search parameters were fine-tuned separately by using the IRACE tool [136]
with a set of representative test problems as a training set for the tuning process.
The parameters suggested in [14] and [5] were used as the starting point for such
process. The second phase adjusted the parameters obtained from the first phase
within the complete multimeme differential evolution proposed (CoBe-MmDE), by
using a random selected set of test functions. This last phase was inspired by the
method proposed in [152]. The obtained parameter values and adopted in the ex-
periments are shown in Table 6.1.

Regarding the MmDE versions with different local search coordination mechanism
(Rand-MmDE, Freq-MmDE, SF-MmDE), they used the same parameters that CoBe-
MmDE for DE and LSOs. However, Freq-MmDE and SF-MmDE require some extra
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Algorithm 20 CoBe-MmDE
1: Randomly generate an initial population of vectors P0 = (X0,i, . . . , X0,Pmax)
2: Calculate the fitness of each vector in the initial population.
3: Set the ε value using Equation 3.13
4: Set βhc ← 0.1, βhj ← 0.1, and βnm ← 0.1 {initial values of the LSO activation probabilities}
5: repeat
6: for i← 1, Pmax do
7: Randomly select r0,r1,r2 ∈ [1, Pmax] and r0 6= r1 6= r2 6= i
8: Randomly select Jrand ∈ [1, D]
9: for j ← 1, D do

10: if randj ≤ Cr Or j = Jrand then
11: uG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j)
12: else
13: uG,i,j = xG,i,j

14: end if
15: end for
16: if UG,i ≤ε XG,i using Equation 3.11 then
17: XG+1,i = UG,i

18: else
19: XG+1,i = XG,i

20: end if
21: end for
22: Sort Population PG+1 using Equation 3.11
23: if βhc < rand(0, 1) then
24: Randomly select r ∈ [1, (Pmax ∗ 0.1)]

25: Set Xnew ← Hill Climbing(XG,r)

26: Set XG,worst ← Xnew

27: Update βhc using Equation 6.1
28: end if
29: if βhj < rand(0, 1) then
30: Randomly select r ∈ [1, (Pmax ∗ 0.1)]

31: Set Xnew ← Hooke-Jeeves(XG,r)

32: Set XG,worst ← Xnew

33: Update βhj using Equation 6.1
34: end if
35: if βnm < rand(0, 1) then
36: Randomly select r ∈ [1, (Pmax ∗ 0.1)]

37: Set Xnew ← Nelder-Mead(XG,r)

38: Set XG,worst ← Xnew

39: Update βnm using Equation 6.1
40: end if
41: Update ε value using Equation 3.12
42: G = G+ 1
43: until MaxFEs is reached
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TABLE 6.1: Parameters values for Differential Evolution (DE), local
search operators (Hooke-Jeeves (HJ), Hill Climbing (HC) and Nelder-

Mead (NM)) and the constraint handler (ε-Constrained)

Algorithm Parameter Value
10 D 30 D

DE

MaxFEs 2.0E + 05 6.0E + 05
Pmax 80
Cr 0.9
F 0.55

HJ
α rand(2, 3)
δ rand(0.75, 0.9)
MaxFEs rand(500,900)

HC σ rand(0,1)
MaxFEs rand(500,900)

NM
β rand(0.7, 0.9)
γ rand(3, 4)
MaxFEs rand(500,900)

ε-Constrained
θ 0.75
cp 9.5
Gc 1100

parameter for LSO coordinations which were obtained by analyzing each LSO per-
formance for a set of test functions inspired in [145]:

• Freq-MmDE uses the frequency of LSO activation FLS = 30, that means if (t
mod FLS ) = 0 a LSO is randomly selected from the pool [29].

• SF-MmDE requires four parameter (α, β, a, b) for each LSO in the pool, since
the Beta distribution is applied to perform the probability 4.5 of LSO activation
[28]: for HJ = (2, 5, 0, 0.2), regarding HC = (2, 2, 0.1, 0.3) and NM = (2, 2, 0.2,
0.6).

On the other hand, since the implemented algorithms (EPSDE-LS [29], FDSADE
[146], MADE [147], and MS-CAP [148]) were adapted for CNOPs, using the epsilon-
constrained method, the parameter values required for each approach were adapted
similarly as previously described, based on the parameters suggested by the authors.
Those are outlined below:

• Ensemble of Parameters and Strategies Differential Evolution empowered by
Local Search (EPSDE-LS): Pmax = 50, frequency of LSO activation FLS = 100,
budget conditionBLS = rand(500,900). Parameter pools were chosen asPCR = {
1.0, 0.9, 0.8 }, PF = { 0.55, 0.65, 0.75 }. Pools of strategies, Pcross = {bin, exp} and
Pmut = {cur-to-pbest/1, cur-to-rand/1}. LSOs parameters values used where
those reported in [29].

• Fitness Diversity Self-adaptive Differential Evolution (FDSADE): Regarding
population size, Sfpop = 10, Svpop = 40. Fl = 0.1, Fu = 0.9 and K = 0.3 as sug-
gested in [146].

• Multicriteria Adaptive Differential Evolution (MADE): Pmax = 50, β = 0.7,
pmin = 0.02, LP = 50 according to [147].

• Multi-Strategy Coevolving Aging Particles (MS-CAP): Pmax = 20, L = 3, ε =
10−6 as reported in [148].
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6.2.2 Results of the coordination mechanism behavior

The rate of LSO usage was computed by means of the average of local search acti-
vations of twenty-five runs for the eighteen test problems in 10D and 30D. Table 6.2
shows significant differences among the number of LSOs’ activations by using dif-
ferent local search coordination mechanisms: Cost-Benefit (CoBe), Random (Rand),
Frequency (Freq) [29], and based on the fitness diversity (SF) [28]. Those results also
reveal that CoBe activates HJ, NM, and HC moderately in all test functions at 10D
and 30D. On the other hand, Rand and Freq show a uniform distribution in the num-
ber of applications of the three LSOs. However, the Freq application rate parameter
helps the algorithm not to make as much use of the LSO pool. Finally, the SF coordi-
nation mechanism, adapts the LSO use according to the fitness diversity, so that the
average of the LSOs activations contrasts significantly in most problems. Therefore,
the coordination mechanism based on diversity (SF) is susceptible to a prior analy-
sis of each LSO to adopt the required parameters that modulate the probability of
activating them during the MmDE evolutionary process.

On the other hand, the average percentage of fitness evaluations shown in Figures
6.2 and 6.3, suggests that the greatest computational effort yields on DE using CoBe.
Because of the probability β proposed in this work (see Equation 6.1), which mod-
ulates the number of LSO activations, considers the number of evaluations spent
by each LSO. Thus, the probability β decreases in LSOs with high success rate but
a significant percentage of evaluations, leaving the global searcher the most of the
computational effort. Regarding Freq, the user-defined parameter to control de LSO
activations, allows moderating the excessive use of them. On the other hand, SF
depends on the population diversity and leading to the fact that in some functions
(C02, C05, C06, C12, and C13), SF executes much of the computational effort on the
part of the LSOs. Finally, Rand performs significant fitness evaluations by the LSOs,
of the estimated budget for the search process in all test problems.

Finally for this first experiment, Figures 6.4 and 6.5 show the average of success ra-
tio (SR) values for each test problem at 10D and 30D. SR is performed by dividing
the number of LSO success activation by the total of local search activation and de-
termines the performance of a particular LSO. A successful activation is when the
solution generated by the LSO improves its initial solution. While SR values close to
one indicate a high LSO performance, those SR values close to zero show a low LSO
performance. Results denote a higher perfomance by using SF in most test prob-
lems. However, CoBe shows a competitive performance in the LSO coordination.
While mechanisms based on random coordination (Rand and Freq), show a lower
perfomance of LSOs usage. Considering the fitness evaluations average consumed
by each coordination mechanism and the local search activations, CoBe presents a
balanced and competitive behavior in the coordination of LSOs within the evolu-
tionary cycle of a MDE for CNOPs.

Regarding the previous results, CoBe is able to modulate the use of HC, HJ, and
NM considering the computational effort and the success rate of every local search
method. Also, it can be noticed that a particular LSO is not suitable for the exploita-
tion in all test problems. For that reason, the importance of considering others LSOs
that can compensate the capacity to exploit complex search spaces is remarked.



6.2. Experiments and Results 75

TABLE 6.2: Average of LSO activation during the MmDE evolution
using different local search coordinators per test functions.

Problem Algorithm 10D 30D
HJ HC NM Total HJ HC NM Total

C01

CoBe 22.0 28.5 37.1 87.6 25.0 40.3 57.3 122.6
Rand 159.5 159.9 160.1 479.4 193.3 195.2 198.9 587.5
Freq 17.3 21.1 18.5 57.0 20.4 24.3 23.7 68.4
SF 60.6 28.1 61.9 150.5 91.0 134.1 233.8 458.9

C02

CoBe 47.4 21.5 34.5 103.4 78.7 37.6 64.8 181.1
Rand 140.6 143.9 142.3 426.7 319.2 315.5 313.9 948.5
Freq 18.7 19.8 18.1 56.6 53.7 52.7 54.9 161.3
SF 283.9 44.2 15.5 343.5 221.2 384.6 764.4 1,370.2

C03

CoBe 43.2 18.6 28.9 90.7 57.1 40.5 42.1 139.7
Rand 141.3 139.1 143.0 423.5 179.8 173.3 177.1 530.2
Freq 20.1 18.3 17.5 55.9 23.4 21.4 22.9 67.7
SF 16.2 3.3 2.6 22.1 84.8 16.6 11.4 112.8

C04

CoBe 48.1 24.9 38.9 111.9 60.0 36.6 56.1 152.7
Rand 124.0 126.3 127.7 378.0 177.7 186.5 180.1 544.3
Freq 18.9 19.6 17.5 55.9 22.9 23.0 21.9 67.9
SF 236.1 64.3 43.8 344.2 68.8 608.0 171.0 847.8

C05

CoBe 44.3 32.3 40.0 116.6 84.2 52.7 81.2 218.1
Rand 125.7 131.1 122.6 379.4 312.9 303.8 305.3 921.9
Freq 17.0 20.2 19.1 56.3 55.2 51.5 54.1 160.9
SF 240.5 16.4 14.3 271.1 465.6 83.3 146.6 695.5

C06

CoBe 39.4 26.3 30.0 95.7 84.6 49.2 78.5 212.3
Rand 149.5 149.5 146.2 445.2 310.2 304.7 298.0 912.9
Freq 18.9 20.0 17.7 56.5 53.8 53.3 53.7 160.7
SF 118.1 9.9 14.3 142.3 521.1 65.3 78.7 665.1

C07

CoBe 42.6 17.9 30.3 90.8 75.3 42.6 64.7 182.7
Rand 146.7 148.3 153.7 448.7 308.9 308.3 309.2 926.4
Freq 18.7 19.3 18.2 56.3 52.6 53.8 53.9 160.3
SF 12.1 5.0 4.9 22.1 27.1 13.1 19.0 59.2

C08

CoBe 41.6 20.3 34.1 96.1 76.5 44.1 70.7 191.4
Rand 140.3 144.6 146.9 431.9 305.7 307.5 312.0 925.1
Freq 19.5 18.6 18.3 56.4 52.6 54.8 53.5 160.9
SF 13.8 5.1 3.9 22.8 38.3 12.1 18.5 68.9

C09

CoBe 43.0 19.7 29.4 92.1 76.6 46.9 57.7 181.1
Rand 140.1 140.9 138.9 419.8 301.7 301.5 296.6 899.7
Freq 19.2 18.1 18.8 56.1 54.4 51.3 54.4 160.1
SF 14.9 4.4 4.8 24.1 41.4 14.0 16.3 71.7

C10

CoBe 40.3 19.3 29.3 88.9 78.0 46.1 58.7 182.7
Rand 139.5 136.1 138.7 414.4 297.9 297.4 305.9 901.2
Freq 19.8 20.0 16.5 56.3 51.9 55.1 53.3 160.3
SF 13.9 4.7 4.6 23.3 36.8 13.5 16.2 66.5

C11

CoBe 41.7 20.6 27.8 90.1 69.4 42.3 65.6 177.3
Rand 150.4 148.6 146.8 445.8 307.2 319.3 313.7 940.2
Freq 17.9 20.1 18.5 56.5 52.9 53.0 54.8 160.7
SF 85.5 9.3 6.3 101.0 178.1 15.2 20.4 213.7

C12

CoBe 41.6 18.8 28.0 88.4 58.5 40.4 41.9 140.8
Rand 136.5 138.1 138.3 412.9 175.5 180.1 176.2 531.9
Freq 17.3 19.9 19.1 56.3 24.1 20.5 23.1 67.7
SF 141.7 31.7 21.0 194.5 308.0 78.3 62.8 449.1

C13

CoBe 41.9 34.9 38.8 115.5 57.5 53.5 54.2 165.1
Rand 93.8 95.7 92.3 281.9 150.5 149.8 148.8 449.1
Freq 16.5 19.1 18.5 54.2 22.0 20.1 25.0 67.1
SF 16.7 21.7 346.0 384.3 11.9 7.3 531.6 550.8

C14

CoBe 43.3 19.9 28.4 91.6 80.5 43.9 64.1 188.5
Rand 138.6 134.8 141.1 414.5 292.7 297.4 300.2 890.3
Freq 18.2 18.5 19.5 56.2 54.8 54.3 50.6 159.7
SF 15.3 4.4 5.5 25.2 37.3 12.8 17.3 67.5

C15

CoBe 41.1 19.9 29.4 90.4 57.7 41.2 41.1 139.9
Rand 137.9 137.9 138.6 414.3 171.1 178.3 169.6 519.0
Freq 18.5 18.7 19.0 56.2 22.5 22.0 23.2 67.7
SF 14.2 4.3 4.8 23.3 84.4 26.9 33.9 145.2

C16

CoBe 43.1 32.1 29.7 104.9 55.5 36.3 46.1 137.9
Rand 133.8 133.9 138.1 405.8 189.7 199.7 197.5 587.0
Freq 17.4 18.5 19.9 55.8 21.6 25.0 21.9 68.5
SF 76.0 39.9 39.2 155.1 141.9 25.7 64.5 232.1

C17

CoBe 45.5 24.8 25.6 95.9 58.3 31.5 41.7 131.5
Rand 121.4 128.0 124.3 373.7 196.9 195.3 194.2 586.5
Freq 18.0 18.8 19.1 55.9 22.5 22.3 23.4 68.2
SF 26.5 5.5 6.0 37.9 115.5 15.3 19.4 150.1

C18

CoBe 33.4 23.1 28.7 85.2 42.9 33.9 42.5 119.3
Rand 113.9 114.6 115.0 343.5 190.7 193.3 196.3 580.3
Freq 18.3 18.6 18.9 55.7 23.1 22.8 22.2 68.1
SF 29.9 5.5 5.1 40.5 112.1 16.7 22.9 151.7
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FIGURE 6.2: Average of fitness evaluations for global and local search
operators for test problems at 10D, using different local search coor-

dinators.
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FIGURE 6.3: Average of fitness evaluations for global and local search
operators for test problems at 30D, using different local search coor-

dinators.
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FIGURE 6.4: Success ratio for each LSO by using different local search
coordinatiors for test problems at 10D.
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FIGURE 6.5: Success ratio for each LSO by using different local search
coordinatiors for test problems at 30D.
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6.2.3 Results of CoBe-MmDE performance

A feasible run is an execution of the algorithm where at least one feasible solution is
found in MaxFES. A successful run is where the algorithm finds a feasible solution
X satisfying f(X) − f(X∗) ≤ 0.0001. f(X∗) values, have been taken from the su-
plementary material reported in [98]. The performance measures considered for this
analysis, feasibility rate (FR), and success performance (SP) are defined by Equations
6.2 and 6.3, respectively.

FR =
# of feasible runs

total runs
(6.2)

SP =
Mean(FES for successful runs)× (# of total runs)

# of successful runs
(6.3)

where Mean(FES for successful runs), is the mean of fitness evaluations that the algo-
rithm requires to achieve a success run. Therefore, for this experiment the algorithm
stops when the error value (f(X) − f(X∗)) ≤ 0.0001 or the MaxFES allowed are
reached.

CoBe-MmDE performance results were compared against four competitive DE vari-
ants for numerical optimization: EPSDE-LS [29], FDSADE [146], MADE [147], MS-
CAP [148]. The ε-constrained method was adopted as constraint handler for all
implementations.

The results described in Tables 6.3 and 6.4 show a high feasibility rate (FR) of CoBe-
MmDE. Considering 90% of the test problems (including 10D and 30D) CoBe-MmDE
can find feasible solutions in all runs, except for C05, C06, C11, C12, and C17 test
problems in 30D. In functions like C03 and C04 in 30D, the performance of CoBe-
MmDE is higher to those of the other algorithms. Regarding the success perfor-
mance (SP), that measures the average of fitness evaluations (FES) needed to achieve
the best know fitness value f(X∗) for a test problem, CoBe-MmDE can obtain feasi-
ble solutions near or equal to the optimal in 100% test instances. Although EPSDE-
LS, FDSADE, MADE and MS-CAP can find competitive SP values, CoBe-MmDE
does not exceed the FES budget allowed in all test problems. Likewise, CoBe-MmDE
shows a constant performance without being sensitive to the dimension of the test
problems.

The error values per test problem are shown in Figures 6.6 and 6.7. Boxplots sug-
gest robustness in most test problems. The results also show that CoBe-MmDE can
generate successful runs in all instances.

The performance results suggest that the CoBe-MmDE can obtain feasible and com-
petitive solutions for CNOPs. Although CoBe-MmDE uses a simple implementation
coordination mechanism, it is able to achieve performance that competes with more
sophisticated DE variants concerning the number of components required for its op-
eration, such as EPSDE-LS, FDSADE, MADE and MS-CAP, which adopt mutation
operator coordination mechanisms and also parameter adaptation.

6.2.4 Results of numerical comparison

Numerical results for 10D test problems are presented in Tables 6.5 and 6.6, whereas
Tables 6.7 and 6.8 show results for 30D test problems. The results are also compared
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TABLE 6.3: Fesibility Rate (FR) and Success Performance (SP) for C01
to C09 test problems at 10D and 30D. Boldface remarks those best

values.

Problem Algorithm
10D 30D

FR SP FR SP
CoBe-MmDE 1.00 200,000.00 1.00 600,000.00
EPSDE-LS 1.00 200,033.88 1.00 600,024.00

C01 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,036.00 1.00 600,040.00
CoBe-MmDE 1.00 200,053.88 1.00 600,000.00
EPSDE-LS 0.96 208,379.90 1.00 600,028.00

C02 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 0.68 294,167.82 1.00 600,033.60
CoBe-MmDE 1.00 200,000.00 1.00 600,000.00
EPSDE-LS 1.00 200,025.84 0.04 15,000,575.00

C03 FDSADE 1.00 200,000.00 0.84 714,285.71
MADE 1.00 200,000.00 0.36 1,666,666.67
MS-CAP 1.00 200,030.40 0.80 750,033.75
CoBe-MmDE 1.00 200,000.00 1.00 600,112.96
EPSDE-LS 1.00 200,039.68 0.44 1,363,985.74

C04 FDSADE 0.76 263,157.89 0.00 -
MADE 0.96 208,333.33 0.00 -
MS-CAP 0.84 238,143.99 0.00 -
CoBe-MmDE 0.92 217,449.39 0.92 652,234.64
EPSDE-LS 1.00 200,035.88 0.32 1,875,057.81

C05 FDSADE 0.96 208,333.33 0.04 15,000,000.00
MADE 1.00 200,000.00 0.88 681,818.18
MS-CAP 0.92 217,428.17 0.16 3,750,062.50
CoBe-MmDE 1.00 200,000.00 0.92 652,231.66
EPSDE-LS 0.96 208,368.71 0.24 2,500,154.17

C06 FDSADE 0.84 238,095.24 0.16 3,750,000.00
MADE 1.00 200,000.00 0.96 625,000.00
MS-CAP 1.00 200,034.40 0.44 1,363,719.01
CoBe-MmDE 1.00 200,000.00 1.00 600,000.00
EPSDE-LS 1.00 200,023.72 1.00 600,018.72

C07 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,030.40 1.00 600,032.00
CoBe-MmDE 1.00 200,000.00 1.00 600,053.08
EPSDE-LS 1.00 200,035.44 1.00 600,036.48

C08 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,032.80 1.00 600,036.00
CoBe-MmDE 1.00 200,051.64 1.00 600,039.40
EPSDE-LS 1.00 200,037.20 0.92 652,201.98

C09 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,028.00 1.00 600,021.60
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TABLE 6.4: Fesibility Rate (FR) and Success Performance (SP) for C10
to C18 test problems at 10D and 30D. Boldface remarks those best

values.

Problem Algorithm
10D 30D

FR SP FR SP
CoBe-MmDE 1.00 200,000.00 1.00 600,000.00

EPSDE-LS 1.00 200,032.08 1.00 600,056.76
C10 FDSADE 1.00 200,000.00 1.00 600,000.00

MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,030.40 1.00 600,036.80

CoBe-MmDE 1.00 200,000.00 0.76 789,522.16
EPSDE-LS 1.00 200,033.40 1.00 600,068.60

C11 FDSADE 0.96 208,333.33 0.12 5,000,000.00
MADE 0.84 238,095.24 0.68 882,352.94

MS-CAP 0.76 263,193.91 0.76 789,522.16
CoBe-MmDE 1.00 200,000.00 0.60 1,000,219.89

EPSDE-LS 1.00 200,025.08 1.00 600,048.88
C12 FDSADE 1.00 200,000.00 0.64 937,500.00

MADE 0.96 208,333.33 0.76 789,473.68
MS-CAP 1.00 200,026.40 0.92 652,208.88

CoBe-MmDE 1.00 200,045.08 1.00 600,000.00
EPSDE-LS 1.00 200,036.36 1.00 600,056.24

C13 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00

MS-CAP 1.00 200,031.20 1.00 600,032.80
CoBe-MmDE 1.00 200,000.00 1.00 600,050.68

EPSDE-LS 1.00 200,025.40 1.00 600,060.44
C14 FDSADE 1.00 200,000.00 1.00 600,000.00

MADE 0.96 208,333.33 0.96 625,000.00
MS-CAP 1.00 200,024.00 1.00 600,034.40

CoBe-MmDE 1.00 200,000.00 1.00 600,123.44
EPSDE-LS 1.00 200,022.44 1.00 600,020.16

C15 FDSADE 1.00 200,000.00 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00

MS-CAP 1.00 200,037.60 1.00 600,039.20
CoBe-MmDE 1.00 200,000.00 1.00 600,121.84

EPSDE-LS 1.00 200,022.12 1.00 600,016.04
C16 FDSADE 1.00 200,000.00 1.00 600,000.00

MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 0.96 208,372.40 1.00 600,034.40

CoBe-MmDE 0.92 217,444.09 0.92 652,300.09
EPSDE-LS 1.00 200,036.60 1.00 600,039.24

C17 FDSADE 0.92 217,391.30 1.00 600,000.00
MADE 1.00 200,000.00 1.00 600,000.00

MS-CAP 0.60 333,388.89 0.60 1,000,071.11
CoBe-MmDE 1.00 200,000.00 1.00 600,000.00

EPSDE-LS 1.00 200,034.00 1.00 600,057.84
C18 FDSADE 1.00 200,000.00 1.00 600,000.00

MADE 1.00 200,000.00 1.00 600,000.00
MS-CAP 1.00 200,031.20 1.00 600,034.40
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FIGURE 6.6: Boxplots of error values in 10D test problems.
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FIGURE 6.7: Boxplots of error values in 30D test problems.

against those of a group of state-of-the-art algorithms for constrained optimization:
E-MODE [98], SAMO-DE [149], ε-DEag [14], DE-DPS [150] and, ECHT-ARMOR-
DE [151]. All algorithms are based on Differential Evolution. Nevertheless, each
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proposal uses different mechanisms to improve the DE search capabilities. While E-
MODE and SAMO-DE adopt mechanisms to handle multiple DE operators, ε-DEag
uses a gradient-based mutation as LSO with an archive. On the other hand, DE-DPS
implements a mechanism to select the best performing combinations of parameters
dynamically. Finally, ECHT-ARMOR-DE uses a ranking technique to select mutation
operators. 95%-confidence Wilcoxon rank-sum-test was computed to determine the
significant differences between algorithms. The comparison is summarized in Table
6.9. The approximation sign (“≈”) determines that there is no significant difference
between the two algorithms, while sign (“−”) means that the first algorithm is sig-
nificantly worse.

The statistical results show that CoBe-MmDE is competitive regarding the compared
state-of-the-art algorithms. Moreover, the proposed approach is simpler to imple-
ment than the other algorithms compared, since no second-order information of test
functions are required as well as archives storage or calculations of diverse popu-
lations. On the other hand, the CoBe allows the control of multiple LSOs without
requiring previous information from them. However, it is important to analyze the
behaviors of each LSO, to adopt those that have a higher contribution to the exploita-
tion of promising areas in constrained search spaces.

6.3 Conclusions

Numerical results demonstrated that the proposed method was suitable to coor-
dinate a set of LSOs adequately within a memetic Differential Evolution scheme
under constrained search spaces. According to the experimental results, the co-
ordination scheme proposed (CoBe) can modulate the LSOs activations robustly
and efficiently, showing stability of the behavior in different types of constrained
problems. Likewise, CoBe obtained a competitive performance with three different
types of coordination mechanisms. Finally, CoBe-MmDE proved to be competitive
in both performance and numerical results compared to algorithms with more so-
phisticated operations. The results also demonstrated the versatility of DE to adopt
memetic schemes, which leaves the question if CoBe can be adapted within multi-
meme schemes based on other types of evolutionary algorithms or swarm intelli-
gence algorithms, and this is precisely the initial topic of future research.
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TABLE 6.5: 10D statistical results comparison. Boldface remarks those
best values and Italics remark those values that are equal than the
other reported. Std denotes the standard deviation of 25 runs per test

problem

Problem Algorithm Best Mean Std

C01

CoBe-MmDE -7.473104E-01 -7.418165E-01 1.201706E-02
E-MODE -7.473104E-01 -7.473104E-01 2.451306E-16
SAMO-DE -7.473104E-01 -7.470402E-01 1.350638E-03
εDEag -7.473104E-01 -7.470402E-01 1.323339E-03
DE-DPS -7.473104E-01 -7.473104E-01 2.266230E-16
ECHT-ARMOR-DE -7.473000E-01 -7.470000E-01 1.400000E-03

C02

CoBe-MmDE -2.169218E+00 -2.030492E+00 1.031954E-01
E-MODE -2.277711E+00 -2.277711E+00 2.540214E-10
SAMO-DE -2.277709E+00 -2.276842E+00 1.154957E-03
εDEag -2.277702E+00 -2.258870E+00 2.389779E-02
DE-DPS -2.277711E+00 -2.277512E+00 2.540350E-04
ECHT-ARMOR-DE -2.277700E+00 -2.277000E+00 3.300000E-03

C03

CoBe-MmDE 0.000000E+00 0.000000E+00 0.000000E+00
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 4.173000E-23 1.640510E-22
εDEag 0.000000E+00 0.000000E+00 0.000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00

C04

CoBe-MmDE -9.996233E-06 -9.939055E-06 6.820370E-08
E-MODE -1.000000E-05 -1.000000E-05 0.000000E+00
SAMO-DE -1.000000E-05 -1.000000E-05 1.446083E-11
εDEag -9.992345E-06 -9.918452E-06 1.546730E-07
DE-DPS -1.000000E-05 -1.000000E-05 9.096330E-15
ECHT-ARMOR-DE -1.000000E-05 -1.000000E-05 0.000000E+00

C05

CoBe-MmDE -4.836106E+02 -4.836106E+02 1.292164E-10
E-MODE -4.836106E+02 -4.836106E+02 3.480934E-13
SAMO-DE -4.836106E+02 -4.836106E+02 4.144280E-06
εDEag -4.836106E+02 -4.836106E+02 3.890350E-13
DE-DPS -4.836106E+02 -4.836106E+02 1.258260E-10
ECHT-ARMOR-DE -4.836100E+02 -4.836100E+02 0.000000E+00

C06

CoBe-MmDE -5.786624E+02 -5.786544E+02 3.676885E-02
E-MODE -5.786624E+02 -5.786624E+02 3.248872E-13
SAMO-DE -5.786624E+02 -5.786562E+02 9.352190E-03
εDEag -5.786581E+02 -5.786528E+02 3.627169E-03
DE-DPS -5.786624E+02 -5.786620E+02 8.053790E-04
ECHT-ARMOR-DE -5.786600E+02 -5.786600E+02 4.000000E-13

C07

CoBe-MmDE 0.000000E+00 5.338143E-28 2.615145E-27
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 7.762750E-23 3.880800E-22
εDEag 0.000000E+00 0.000000E+00 0.000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00

C08

CoBe-MmDE 0.000000E+00 2.983917E+01 6.683484E+01
E-MODE 0.000000E+00 1.006621E+01 3.029575E+00
SAMO-DE 0.000000E+00 2.520090E-25 1.260047E-24
εDEag 0.000000E+00 6.727528E+00 5.560648E+00
DE-DPS 0.000000E+00 3.950387E+00 5.019040E+00
ECHT-ARMOR-DE 0.000000E+00 7.526200E+00 5.000000E+00

C09

CoBe-MmDE 0.000000E+00 1.763261E-01 8.638180E-01
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 5.089752E+00 2.410828E+01
εDEag 0.000000E+00 0.000000E+00 0.000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 1.763300E-01 8.800000E-01
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TABLE 6.6: 10D statistical results comparison. Boldface remarks those
best values and Italics remark those values that are equal than the
other reported. Std denotes the standard deviation of 25 runs per test

problem

Problem Algorithm Best Mean Std

C10

CoBe-MmDE 0.000000E+00 3.236223E-28 1.585419E-27
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 4.467656E-01 1.546298E+00
εDEag 0.000000E+00 0.000000E+00 0.000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00

C11

CoBe-MmDE -1.522713E-03 -1.522713E-03 6.903733E-15
E-MODE -1.522713E-03 -1.522713E-03 8.902015E-17
SAMO-DE -1.522710E-03 -1.522710E-03 3.667610E-09
εDEag -1.522713E-03 -1.522713E-03 6.341035E-11
DE-DPS -1.522710E-03 -1.522710E-03 3.142750E-12
ECHT-ARMOR-DE -1.522700E-03 - 4.400000E-02

C12

CoBe-MmDE -4.265165E+02 -7.050982E+01 1.390978E+02
E-MODE -4.231332E+02 -9.461033E+01 1.476318E+02
SAMO-DE -5.700899E+02 -1.166134E+02 1.830005E+02
εDEag -5.700899E+02 -3.367349E+02 1.782166E+02
DE-DPS -1.992500E-01 -1.992500E-01 4.195990E-10
ECHT-ARMOR-DE -1.992500E-01 -1.992500E-01 1.600000E-13

C13

CoBe-MmDE -6.842937E+01 -5.610207E+01 9.940010E+00
E-MODE -6.842937E+01 -6.842930E+01 2.965727E-04
SAMO-DE -6.842937E+01 -6.842937E+01 1.542877E-07
εDEag -6.842937E+01 -6.842936E+01 1.025960E-06
DE-DPS -6.842937E+01 -6.842937E+01 0.000000E+00
ECHT-ARMOR-DE -6.842900E+01 -6.716900E+01 2.100000E+00

C14

CoBe-MmDE 0.000000E+00 0.000000E+00 0.000000E+00
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 1.206380E-21 2.435928E-21
εDEag 0.000000E+00 0.000000E+00 0.000000E+00
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00

C15

CoBe-MmDE 0.000000E+00 7.195912E-01 1.648790E+00
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 7.053800E-04 2.441385E-03
εDEag 0.000000E+00 1.798978E-01 8.813156E-01
DE-DPS 0.000000E+00 5.438912E-26 2.193290E-25
ECHT-ARMOR-DE 0.000000E+00 2.824600E+00 1.600000E+00

C16

CoBe-MmDE 0.000000E+00 4.343286E-01 3.894433E-01
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 6.469600E-03 1.087042E-02
εDEag 0.000000E+00 3.702054E-01 3.710479E-01
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 2.847800E-02 5.000000E-02

C17

CoBe-MmDE 3.133588E-02 1.089780E+00 1.135979E+00
E-MODE 0.000000E+00 3.417493E-30 1.707206E-29
SAMO-DE 0.000000E+00 1.265501E-23 3.217991E-23
εDEag 1.463180E-17 1.249561E-01 1.937197E-01
DE-DPS 0.000000E+00 1.061273E-24 3.887260E-24
ECHT-ARMOR-DE 0.000000E+00 3.697800E-33 3.100000E-33

C18

CoBe-MmDE 0.000000E+00 1.185738E-22 5.782501E-22
E-MODE 0.000000E+00 1.528418E-32 2.196087E-32
SAMO-DE 1.173999E-23 4.447988E-19 6.636705E-19
εDEag 3.731439E-20 9.678765E-19 1.811234E-18
DE-DPS 0.000000E+00 3.209082E-23 7.124570E-23
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00
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TABLE 6.7: 30D statistical results comparison. Boldface remarks those
best values and Italics remark those values that are equal than the
other reported. Std denotes the standard deviation of 25 runs per test

problem

Problem Algorithm Best Mean Std

C01

CoBe-MmDE -8.218626E-01 -8.215353E-01 1.047177E-03
E-MODE -8.218840E-01 -8.198980E-01 2.862970E-03
SAMO-DE -8.218838E-01 -8.143674E-01 4.766000E-03
εDEag -8.218255E-01 -8.208687E-01 7.103893E-04
DE-DPS -8.218840E-01 -8.212036E-01 1.796480E-03
ECHT-ARMOR-DE -8.180600E-01 -7.899200E-01 2.510000E-02

C02

CoBe-MmDE -2.182167E+00 -2.090841E+00 6.780124E-02
E-MODE -2.280970E+00 -2.276230E+00 4.897230E-03
SAMO-DE -2.280962E+00 -2.276111E+00 3.706000E-03
εDEag -2.169248E+00 -2.151424E+00 1.197582E-02
DE-DPS -2.280671E+00 -2.244631E+00 5.205480E-02
ECHT-ARMOR-DE -2.260700E+00 -2.170600E+00 7.360000E-02

C03

CoBe-MmDE 2.060656E-06 1.555854E-05 1.363499E-05
E-MODE 0.000000E+00 3.123600E-25 5.729750E-25
SAMO-DE 4.599600E-24 4.826000E-22 1.146000E-21
εDEag 2.867347E+01 2.883785E+01 8.047159E-01
DE-DPS 1.620000E-19 1.847900E-13 4.179940E-13
ECHT-ARMOR-DE 2.580100E-24 2.638000E+01 7.940000E+00

C04

CoBe-MmDE 4.323673E-04 2.667384E-02 1.271518E-01
E-MODE -3.333330E-06 -3.333330E-06 2.459250E-16
SAMO-DE -3.248000E-06 -2.411300E-06 4.492340E-07
εDEag 4.698111E-03 8.162973E-03 3.067785E-03
DE-DPS -3.331800E-06 -3.312300E-06 2.039260E-08
ECHT-ARMOR-DE -3.332600E-06 8.371300E-02 2.890000E-01

C05

CoBe-MmDE -4.637711E+02 -4.377643E+02 1.643445E+01
E-MODE -4.836110E+02 -4.836110E+02 2.036340E-13
SAMO-DE -4.836106E+02 -4.836106E+02 5.389910E-06
εDEag -4.531307E+02 -4.495460E+02 2.899105E+00
DE-DPS -4.836106E+02 -4.836106E+02 4.420740E-06
ECHT-ARMOR-DE -4.812200E+02 -4.333500E+02 1.460000E+02

C06

CoBe-MmDE -5.257563E+02 -5.198528E+02 3.304011E+00
E-MODE -5.306380E+02 -5.306380E+02 4.661020E-10
SAMO-DE -5.306368E+02 -5.306155E+02 1.288050E-02
εDEag -5.285750E+02 -5.279068E+02 4.748378E-01
DE-DPS -5.306379E+02 -5.306329E+02 5.893640E-03
ECHT-ARMOR-DE -5.246500E+02 -4.893100E+02 1.320000E+02

C07

CoBe-MmDE 2.233625E-26 3.189299E-01 1.081544E+00
E-MODE 0.000000E+00 1.605130E-27 4.135470E-27
SAMO-DE 9.495250E-23 1.782790E-13 3.628040E-13
εDEag 1.147112E-15 2.603632E-15 1.233430E-15
DE-DPS 5.487860E-20 1.033590E-13 2.205400E-13
ECHT-ARMOR-DE 0.000000E+00 1.078900E-25 2.200000E-25

C08

CoBe-MmDE 5.519847E-26 2.369536E+02 4.680700E+02
E-MODE 0.000000E+00 1.373980E-27 4.091250E-27
SAMO-DE 6.425810E-21 1.032930E-09 2.373300E-09
εDEag 2.518693E-14 7.831464E-14 4.855177E-14
DE-DPS 4.575719E-13 3.447568E-09 8.863660E-09
ECHT-ARMOR-DE 0.000000E+00 2.010100E+01 4.700000E+01

C09

CoBe-MmDE 1.706569E-21 1.285319E+02 1.930639E+02
E-MODE 0.000000E+00 9.277620E-27 1.819230E-26
SAMO-DE 1.186170E-20 6.079667E+00 1.432599E+01
εDEag 2.770665E-16 1.072140E+01 2.821923E+01
DE-DPS 3.815800E-23 5.290590E-14 1.279390E-13
ECHT-ARMOR-DE 0.000000E+00 4.611000E+00 2.310000E+01
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TABLE 6.8: 30D statistical results comparison. Boldface remarks those
best values and Italics remark those values that are equal than the
other reported. Std denotes the standard deviation of 25 runs per test

problem

Problem Algorithm Best Mean Std

C10

CoBe-MmDE 2.447880E-23 5.499459E+01 6.338358E+01
E-MODE 0.000000E+00 6.987910E-27 1.426400E-26
SAMO-DE 9.769000E-21 1.960780E+01 2.123749E+01
εDEag 3.252002E+01 3.326175E+01 4.545577E-01
DE-DPS 1.637780E-21 2.239280E-13 6.240580E-13
ECHT-ARMOR-DE 6.020900E-13 6.553600E+01 1.070000E+02

C11

CoBe-MmDE -3.923434E-04 -3.923223E-04 1.827407E-08
E-MODE -3.923440E-04 -3.923440E-04 1.074800E-10
SAMO-DE -3.923000E-04 -3.869000E-04 6.149660E-06
εDEag -3.268462E-04 -2.863882E-04 2.707605E-05
DE-DPS -3.923440E-04 -3.923423E-04 8.776880E-10
ECHT-ARMOR-DE -3.923400E-04 - 5.280000E-03

C12

CoBe-MmDE -1.992635E-01 -8.785374E-02 4.174691E-01
E-MODE -1.992630E-01 -1.992630E-01 2.902920E-09
SAMO-DE -1.992598E-01 -1.992573E-01 1.321890E-06
εDEag -1.991453E-01 3.562330E+02 2.889253E+02
DE-DPS -1.992635E-01 -1.992600E-01 2.602870E-08
ECHT-ARMOR-DE -1.992600E-01 -1.607600E-01 1.930000E-01

C13

CoBe-MmDE -6.842737E+01 -6.799795E+01 5.087294E-01
E-MODE -6.842860E+01 -6.516740E+01 1.918000E+00
SAMO-DE -6.842940E+01 -6.819178E+01 3.891641E-01
εDEag -6.642473E+01 -6.535310E+01 5.733005E-01
DE-DPS -6.842940E+01 -6.633141E+01 2.084930E+00
ECHT-ARMOR-DE -6.741600E+01 -6.464600E+01 1.970000E+00

C14

CoBe-MmDE 1.565253E-24 9.567897E-01 1.702620E+00
E-MODE 0.000000E+00 2.075870E-27 5.756600E-27
SAMO-DE 1.747000E-22 1.196910E-08 2.569420E-08
εDEag 5.015863E-14 3.089407E-13 5.608409E-13
DE-DPS 8.925796E-21 5.137406E-14 1.317910E-13
ECHT-ARMOR-DE 1.580900E-27 6.613500E+02 2.470000E+03

C15

CoBe-MmDE 2.552281E-26 1.875528E+01 1.453617E+01
E-MODE 0.000000E+00 2.536820E-27 6.807380E-27
SAMO-DE 5.842400E-18 2.112810E+00 4.510670E+00
εDEag 2.160345E+01 2.160376E+01 1.104834E-04
DE-DPS 6.336258E-20 1.957805E-13 5.226870E-13
ECHT-ARMOR-DE 1.171600E-04 3.131600E+08 1.200000E+09

C16

CoBe-MmDE 0.000000E+00 3.465391E-02 1.084541E-01
E-MODE 0.000000E+00 0.000000E+00 0.000000E+00
SAMO-DE 0.000000E+00 4.160700E-03 7.677900E-03
εDEag 0.000000E+00 2.168404E-21 1.062297E-20
DE-DPS 0.000000E+00 0.000000E+00 0.000000E+00
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00

C17

CoBe-MmDE 6.406286E-10 5.771224E-07 2.441370E-06
E-MODE 1.954820E-32 2.771470E-21 8.439140E-21
SAMO-DE 0.000000E+00 1.022630E-10 1.455150E-10
εDEag 2.165719E-01 6.326487E+00 4.986691E+00
DE-DPS 3.236013E-12 8.766191E-02 1.559660E-01
ECHT-ARMOR-DE 3.356400E-16 4.033600E-01 3.510000E-01

C18

CoBe-MmDE 3.768347E-03 9.561410E-02 8.921330E-02
E-MODE 1.277640E-28 1.340360E-20 6.550390E-20
SAMO-DE 9.192800E-18 2.568100E-09 6.984800E-09
εDEag 1.226054E+00 8.754569E+01 1.664753E+02
DE-DPS 6.747743E-13 9.459914E-08 1.912240E-07
ECHT-ARMOR-DE 0.000000E+00 0.000000E+00 0.000000E+00
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TABLE 6.9: 95%-confidence Wilcoxon rank-sum test results for CoBe-
MmDE and state-of-the-art algorithms. Dim means the search space
dimension, while w+ and w−mean the sum of positive and negative
ranks, respectively. Diff denotes wheter there is a significant differ-

ence

Algorithm Dim Criteria w+ w− Diff

CoBe-MmDE – to – E-MODE
10

Best Fitness 17 11 ≈
Average Fitness 50 28 ≈

30
Best Fitness 167 4 −
Average Fitness 171 0 −

CoBe-MmDE – to – SAMO-DE
10

Best Fitness 18 3 ≈
Average Fitness 79 74 ≈

30
Best Fitness 153 4 −
Average Fitness 168 3 −

CoBe-MmDE – to – εDEag
10

Best Fitness 35 70 ≈
Average Fitness 53 118 ≈

30
Best Fitness 111 60 ≈
Average Fitness 73 98 ≈

CoBe-MmDE – to – DE-DPS
10

Best Fitness 34 80 ≈
Average Fitness 43 98 ≈

30
Best Fitness 23 83 ≈
Average Fitness 73 128 ≈

CoBe-MmDE – to – ECHT-ARMOR-DE
10

Best Fitness 32 11 ≈
Average Fitness 18 77 ≈

30
Best Fitness 78 87 ≈
Average Fitness 107 19 ≈
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Chapter 7

Conclusions and Future Work

During the development of this thesis, five studies on memetic algorithms based on
differential evolution (MDE) were carried out. (1) Literature review, (2) study of local
search performance influence, (3) study of local search depth influence, (4) analysis
of Baldwin effect, and (5) the local search coordination proposed for a multimeme
scheme.

In Chapter 4 several memetic algorithms based on differential evolution where com-
mented. We can summarize those works in three parts. Most memetic approaches
based on differential evolution made use of zero order local search operators, that
is, free of derivatives. Likewise, the activation of local search operators was done
through probabilistic mechanisms or mechanisms based on frequency. On the other
hand, most of the MDE syntactic models maintain the use of local search through-
out the evolutionary cycle of differential evolution, that is, the local search was not
limited to only exploiting feasible regions of the search space.

Regarding multimeme schemes based on differential evolution, most used coordi-
nation mechanisms based on population diversity. Likewise, the probabilistic mech-
anisms for the activation of local search operators were a constant in this type of
approach, where the focus was on adapting the local search intensity and also adap-
tively selecting candidate points to operate through the optimization process.

Finally, in real-world problems, the most used memetic approaches were those that
use a single local search operator with probabilistic methods as activation mecha-
nisms. In the same way, the use of parameters self-adaptation was frequent in those
approaches.

From all of the above, it can be concluded that the versatility of differential evolution
(DE) allows adapting multiple memetic schemes, of which, the computational effort
is distributed either in the local search operators and DE as well.

Chapter 5 presented three empirical studies about the local search operators influ-
ence in Memetic DE Approaches for CNOPs. For the studies we designed three
memetic algorithms based on different DE, starting from the same syntactic model,
which consisted in the activation of a local search operator in a probabilistic manner
just after applying the DE variation operators. Derived from the three studies, we
can conclude the following points:

• The local search performance does not necessarily influence the final results
of the memetic algorithm. Therefore, the usage of coordination mechanisms
based only on the performance of the local search algorithm does not guaran-
tee a competitive behavior of the memetic algorithm.
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• Search depth in local search algorithms of zero order does not significantly
affect the final results of the algorithm. Therefore, it is not necessary to carry
out an excessive exploitation process during the application of the local search
algorithm.

• The Lamarckian learning mechanism allows greater robustness in memetic al-
gorithms based on DE for constrained search spaces.

Finally, Chapter 6 presented a local search coordination mechanism for a multimeme
scheme based on DE, which was based on a cost-benefit approach (CoBe) to control
the selection of a pool of local search operators. CoBe is able to modulate the local
search activations robustly and efficiently, due to the stability of their behavior in
different types of constrained problems. This is because the most significant benefit
of local search operators in constrained problems is obtained at the beginning of
the evolutionary process, and CoBe allows to gradually reduce the probability of
activation.

Part of our future work includes the following:

• Test the proposed mechanism (CoBe) in multimeme approaches based on other
evolutionary or swarm intelligence algorithms

• Test CoBe with a high number of local search operators.

• Test CoBe with other constraint handling techniques.



93

Appendix A

Problem Definitions CEC 2006

TABLE A.1: Features of the 24 test problems. D dimension of the
problem; LI linear inequality constraint; NI nonlinear inequality con-
straint; LE linear equality constraint; NE nonlinear equality con-
straint. ρ estimates the ratio between the feasible region and the entire

search space

Function D Type ρ LI NI LE NE
g01 13 quadratic 0.0111% 9 0 0 0
g02 20 nonlinear 99.9971% 0 2 0 0
g03 10 polynomial 0.0000% 0 0 0 1
g04 5 quadratic 52.1230% 0 6 0 0
g05 4 cubic 0.0000% 2 0 0 3
g06 2 cubic 0.0066% 0 2 0 0
g07 10 quadratic 0.0003% 3 5 0 0
g08 2 nonlinear 0.8560% 0 2 0 0
g09 7 polynomial 0.5121% 0 4 0 0
g10 8 linear 0.0010% 3 3 0 0
g11 2 quadratic 0.0000% 0 0 0 1
g12 3 quadratic 4.7713% 0 1 0 0
g13 5 nonlinear 0.0000% 0 0 0 3
g14 10 nonlinear 0.0000% 0 0 3 0
g15 3 quadratic 0.0000% 0 0 1 1
g16 5 nonlinear 0.0204% 4 34 0 0
g17 6 nonlinear 0.0000% 0 0 0 4
g18 9 quadratic 0.0000% 0 13 0 0
g19 15 nonlinear 33.4761% 0 5 0 0
g20 24 linear 0.0000% 0 6 2 12
g21 7 linear 0.0000% 0 1 0 5
g22 22 linear 0.0000% 0 1 8 11
g23 9 linear 0.0000% 0 2 3 1
g24 2 linear 79.6556% 0 2 0 0

g01

Minimize:

f(~x) = 5

4∑
i=1

xi − 5

4∑
i=1

x2i −
13∑
i=5

xi
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subject to:
g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1(i = 1, . . . , 9), 0 ≤ xi ≤ 100(i = 10, 11, 12)and0 ≤
x13 ≤ 1

g02

Minimize:

f(~x) = −

∣∣∣∣∣∣
∑n

i=1 cos4(xi)− 2
∏n
i=1 cos2(xi)√∑n

i=1 ix
2
i

∣∣∣∣∣∣
subject to:

g1(~x) = 0.75−
n∏
i=1

xi ≤ 0

g2(~x) =

n∑
i=1

xi − 7.5n ≤ 0

where n = 20 and 0 < xi ≤ 10(i = 1, . . . , n)

g03

Minimize:

f(~x) = −(
√
n)n

n∏
i=1

xi

subject to:

h(~x) =

n∑
i=1

x2i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1(i = 1, . . . , n).

g04

Minimize:

f(~x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141
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subject to:

g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45(i = 3, 4, 5)

g05

Minimize:
f(~x) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32

subject to:

g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0

h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55 and −0.55 ≤ x4 ≤ 0.55.

g06

Minimize:
f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100

g07

Minimize:

f(~x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
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subject to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(~x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10(i = 1, . . . , 10)

g08

Minimize:

f(~x) = −sin3(2πx1) sin(2πx2)

x31(x1 + x2)

subject to:
g1(~x) = x21 − x2 + 1 ≤ 0

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10

g09

Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7

subject to:
g1(~x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0

g4(~x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10for(i = 1, . . . , 7)

g10

Minimize:
f(~x) = x1 + x2 + x3
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subject to:

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000(i = 2, 3) and 10 ≤ xi ≤ 1000(i =
4, . . . , 8)

g11

Minimize:
f(~x) = x21 + (x2 − 1)2

subject to:
h(~x) = x2 − x21 = 0

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1

g12

Minimize:
f(~x) = −(100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100

subject to:
g(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10(i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9

g13

Minimize:
f(~x) = ex1x2x3x4x5

subject to:
h1(~x) = x21 + x22 + x23 + x24 + x25 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x31 + x32 + 1 = 0

where −2.3 ≤ xi ≤ 2.3(i = 1, 2) and −3.2 ≤ xi ≤ 3.2(i = 3, 4, 5)

g14

Minimize:

f(~x) =

10∑
i=1

xi

(
ci + ln

xi∑10
j=1 xj

)
subject to:

h1(~x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(~x) = x3 + x7 + x8 + 2x9 + x10 = 0
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where the bounds are 0 < xi ≤ 10(i = 1, . . . , 10), and c1 = −6.089, c2 = −17.164,
c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708,
c9 = −26.662, c10 = −22.179

g15

Minimize:
f(~x) = 1000− x21 − 2x22 − x23 − x1x2 − x1x3

subject to:
h1(~x) = x21 + x22 + x23 − 25 = 0

h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are 0 ≤ xi ≤ 10(i = 1, 2, 3)

g16

Minimize:

f(~x) = 0.000117y14 + 0.1365 + 0.0002358y13 + 0.000001502y16 + 0.0321y12

+ 0.004324y5 + 0.0001
c15
c16

+ 37.48
y2
c12
− 0.0000005843y17
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subject to:

g1(~x) =
0.28

0.72
y5 − y4 ≤ 0

g2(~x) = x3 − 1.5x2 ≤ 0

g3(~x) = 3496
y2
c12
− 21 ≤ 0

g4(~x) = 110.6 + y1 −
62212

c17
≤ 0

g5(~x) = 213.1− y1 ≤ 0

g6(~x) = y1 − 405.23 ≤ 0

g7(~x) = 17.505− y2 ≤ 0

g8(~x) = y2 − 1053.6667 ≤ 0

g9(~x) = 11.275− y3 ≤ 0

g10(~x) = y3 − 35.03 ≤ 0

g11(~x) = 214.228− y4 ≤ 0

g12(~x) = y4 − 665.585 ≤ 0

g13(~x) = 7.458− y5 ≤ 0

g14(~x) = y5 − 584.463 ≤ 0

g15(~x) = 0.961− y6 ≤ 0

g16(~x) = y6 − 265.916 ≤ 0

g17(~x) = 1.612− y7 ≤ 0

g18(~x) = y7 − 7.046 ≤ 0

g19(~x) = 0.146− y8 ≤ 0

g20(~x) = y8 − 0.222 ≤ 0

g21(~x) = 107.99− y9 ≤ 0

g22(~x) = y9 − 273.366 ≤ 0

g23(~x) = 922.693− y10 ≤ 0

g24(~x) = y10 − 1286.105 ≤ 0

g25(~x) = 926.832− y11 ≤ 0

g26(~x) = y11 − 1444.046 ≤ 0

g27(~x) = 18.766− y12 ≤ 0

g28(~x) = y12 − 537.141 ≤ 0

g29(~x) = 1072.163− y13 ≤ 0

g30(~x) = y13 − 3247.039 ≤ 0

g31(~x) = 8961.448− y14 ≤ 0

g32(~x) = y14 − 26844.086 ≤ 0

g33(~x) = 0.063− y15 ≤ 0

g34(~x) = y15 − 0.386 ≤ 0

g35(~x) = 71084.33− y16 ≤ 0

g36(~x) = −140000 + y16 ≤ 0

g37(~x) = 2802713− y17 ≤ 0

g38(~x) = y17 − 12146108 ≤ 0
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where:

y1 = x2 + x3 + 41.6

c1 = 0.024x4 − 4.62

y2 =
12.5

c1
+ 12

c2 = 0.0003535x21 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 =
c2
c3

y4 = 19y3

c4 = 0.04782(x1 − y3) +
0.1956(x1 − y3)2

x2
+ 0.6376y4 + 1.594y3

c5 = 100x2

c6 = x1 − y3 − y4
c7 = 0.950− c4

c5
y5 = c6c7

y6 = x1 − y5 − y4 − y3
c8 = (y5 + y4)0.995

y7 =
c8
y1

y8 =
c8

3798

c9 = y7 −
0.0663y7

y8
− 0.3153

y9 =
96.82

c9
+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 =
12.3

752.3
c11 = (1.75y2)(0.995x1)

c12 = 0.995y10 + 1998

y12 = c10x1 +
c11
c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312

y9 + x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095

y15 =
y13
c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 +
c14
c12

c15 =
y13
y15
− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5
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and where the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤ x3 ≤
134.75, 193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988.

g17

Minimize:
f(~x) = f(x1) + f(x2)

where:

f1(x1) =

{
30x1 0 ≤ x1 < 300

31x1 300 ≤ x1 < 400

f2(x2) =


28x2 0 ≤ x2 < 100

29x2 100 ≤ x2 < 200

30x2 200 ≤ x2 < 1000

subject to:

h1(~x) = −x1 + 300− x3x4
131.078

cos(1.48477− x6) +
0.90798x23
131.078

cos(1.47588)

h2(~x) = −x2 −
x3x4

131.078
cos(1.48477 + x6) +

0.90798x24
131.078

cos(1.47588)

h3(~x) = −x5 −
x3x4

131.078
sin(1.48477 + x6) +

0.90798x24
131.078

sin(1.47588)

h4(~x) = 200− x3x4
131.078

sin(1.48477− x6) +
0.90798x23
131.078

sin(1.47588)

where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤ 420,
−1000 ≤ x5 ≤ 1000 and 0 ≤ x6 ≤ 0.5236

g18

Minimize:

f(~x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

subject to:
g1(~x) = x23 + x24 − 1 ≤ 0

g2(~x) = x29 − 1 ≤ 0

g3(~x) = x25 + x26 − 1 ≤ 0

g4(~x) = x21 + (x2 − x9)2 − 1 ≤ 0

g5(~x) = (x1 − x5)2 + (x2 − x6)2 − 1 ≤ 0

g6(~x) = (x1 − x7)2 + (x2 − x8)2 − 1 ≤ 0

g7(~x) = (x3 − x5)2 + (x2 − x6)2 − 1 ≤ 0

g8(~x) = (x3 − x7)2 + (x2 − x8)2 − 1 ≤ 0

g9(~x) = x27 + (x8 − x9)2 − 1 ≤ 0

g10(~x) = x2x3 − x1x4 ≤ 0

g11(~x) = −x3x9 ≤ 0

g12(~x) = x5x9 ≤ 0

g13(~x) = x6x7 − x5x8 ≤ 0
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where the bounds are −10 ≤ xi ≤ 10(i = 1, . . . , 8) and 0 ≤ x9 ≤ 20

g19

Minimize:

f(~x) =
5∑
j=1

5∑
i=1

ci,jx(10+j) + 2
5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi

subject to:

g(~x) = −2

5∑
i=1

ci,jx(10+j) − ej +

10∑
i=1

ai,jxi ≤ 0 j = 1, . . . , 5

where b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1]. The bounds are 0 ≤ xi ≤
10(i = 1, . . . , 15)

g20

Minimize:

f(~x) =

24∑
i=1

aixi

subject to:

gi(~x) =
(xi + x(i+12)∑24
j=1 xj + ei

≤ 0 i = 1, 2, 3

gi(~x) =
(x(i+3) + x(i+15)∑24

j=1 xj + ei
≤ 0 i = 4, 5, 6

hi(~x) =
x(i+12)

b(i+12)

∑24
j=13

xj
bj

− cixi

40bi
∑12

j=1
xj
bj

= 0 i = 1, . . . , 12

h13(~x) =

24∑
i=1

xi − 1 = 0

h14(~x) =

12∑
i=1

xi
di

+ k

24∑
i=13

xi
bi
− 1.671 = 0

where k = (0.7302)(530)(14.740 ). The bounds are 0 ≤ xi ≤ 10(i = 1, . . . , 24)

g21

Minimize:
f(~x) = x1

subject to:

g1(~x) = −x1 + 35x0.622 + 35x0.63 ≤ 0

h1(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h2(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h3(~x) = −x5 + ln(−x4 + 900) = 0

h4(~x) = −x6 + ln(x4 + 300) = 0

h5(~x) = −x7 + ln(−2x4 + 700) = 0
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where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤ x5 ≤ 6.7,
5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤ 6.25

g22

Minimize:
f(~x) = x1

subject to:
g1(~x) = −x1 + x0.622 + x0.63 + x0.64 ≤ 0

h1(~x) = x5 − 100000x8 + 1× 107 = 0

h2(~x) = x6 + 100000x8 − 100000x9 = 0

h3(~x) = x7 + 100000x9 − 5× 107 = 0

h4(~x) = x5 + 100000x10 − 3.3× 107 = 0

h5(~x) = x6 + 100000x11 − 4.4× 107 = 0

h6(~x) = x7 + 100000x12 − 6.6× 107 = 0

h7(~x) = x5 − 120x2x13 = 0

h8(~x) = x6 − 80x3x14 = 0

h9(~x) = x7 − 40x4x15 = 0

h10(~x) = x8 − x11 + x16 = 0

h11(~x) = x9 − x12 + x17 = 0

h12(~x) = −x18 + ln(x10 − 100) = 0

h13(~x) = −x19 + ln(−x8 + 300) = 0

h14(~x) = −x20 + ln(x16) = 0

h15(~x) = −x21 + ln(−x9 + 400) = 0

h16(~x) = −x22 + ln(x17) = 0

h17(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0

h18(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0

h19(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ x2, x3, x4 ≤ 1 × 106, 0 ≤ x5, x6, x7 ≤
4× 107, 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤ 399.99, 100.01 ≤ x10 ≤ 300, 100 ≤ x11 ≤ 400,
100 ≤ x12 ≤ 600, 0 ≤ x13, x14, x15 ≤ 500, 0.01 ≤ x16 ≤ 300, 0.01 ≤ x17 ≤ 400,
−4.7 ≤ x18, x19, x20, x21, x22 ≤ 6.25

g23

Minimize:
f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)

subject to:
g1(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(~x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

h1(~x) = x1 + x2 − x3 − x4 = 0

h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(~x) = x3 + x6 − x5 = 0

h4(~x) = x4 + x7 − x8 = 0
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where the bounds are 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200 and
0.01 ≤ x9 ≤ 0.03

g24

Minimize:
f(~x) = −x1 − x2

subject to:
g1(~x) = −2x41 + 8x31 − 8x21 + x2 − 2 ≤ 0

g2(~x) = −4x41 + 32x31 − 88x21 + 96x1 + x2 − 36 ≤ 0

where the bounds are0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4
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Appendix B

Problem Definitions CEC 2010

TABLE B.1: Details of 18 test problems. D is the number of decision
variables. S, NS and R are Separable, Non Separable and Rotated

functions, respectively.

Problem Range Type of Objective
Number of Constraints
Equality Inequality

C01 [0, 10]D Non Separable - 2-NS
C02 [-5.12, 5.12]D Separable 1-S 2-S
C03 [-1000, 1000]D Non Separable 1-NS -
C04 [-50, 50]D Separable 2-S / 2-NS -
C05 [-600, 600]D Separable 2-S -
C06 [-600, 600]D Separable 2-R -
C07 [-140, 140]D Non Separable - 1-S
C08 [-140, 140]D Non Separable - 1-R
C09 [-500, 500]D Non Separable 1-S -
C10 [-500, 500]D Non Separable 1-R -
C11 [-100, 100]D Rotated 1-NS -
C12 [-1000, 1000]D Separable 1-NS 1-S
C13 [-500, 500]D Separable - 2-S / 1-NS
C14 [-1000, 1000]D Non Separable - 3-S
C15 [-1000, 1000]D Non Separable - 3-R
C16 [-10, 10]D Non Separable 2-S 1-S / 1-NS
C17 [-10, 10]D Non Separable 1-S 2-NS
C18 [-50, 50]D Non Separable 1-S 1-S

C01

Minimize:

f(x) = −

∣∣∣∣∣
D∑
i=1

cos4(zi)− 2

D∏
i=1

cos2(zi)

∣∣∣∣∣
z = x− o
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subject to:

g1(x) = 0.75−
D∏
i=1

zi ≤ 0

g2(x) =
D∑
i=1

zi − 7.5D ≤ 0

x ∈ [0, 10]D

C02

Minimize:
f(x) = max(z)

z = x− o
y = z − 0.5

subject to:

g1(x) = 10− 1

D

D∑
i=1

[
z2i − 10cos(2Πzi) + 10

]
≤ 0

g2(x) =
1

D

D∑
i=1

[
z2i − 10cos(2Πzi) + 10

]
− 15 ≤ 0

h(x) =
1

D

D∑
i=1

[
y2i − 10cos(2Πyi) + 10

]
− 20 = 0

x ∈ [−5.12, 5.12]D

C03

Minimize:

f(x) =
D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2)

z = x− o

subject to:

h(x) =
D−1∑
i=1

(zi − zi+1)
2 = 0

x ∈ [−1000, 1000]D

C04

Minimize:
f(x) = max(z)

z = x− o
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subject to:

h1(x) =
1

D

D∑
i=1

(zicos(
√
|zi|)) = 0

h2(x) =

D/2−1∑
i=1

(zi − zi+1)
2 = 0

h3(x) =
D−1∑
i=1

(z2i − zi+1)
2 = 0

h4(x) =
D∑
i=1

z = 0

x ∈ [−50, 50]D

C05

Minimize:
f(x) = max(z)

z = x− o

subject to:

h1(x) =
1

D

D∑
i=1

(−zisin(
√
|zi|)) = 0

h2(x) =
1

D

D∑
i=1

(−zicos(0.5
√
|zi|)) = 0

x ∈ [−600, 600]D

C06

Minimize:
f(x) = max(z)

z = x− o
y = (x+ 483.6106156535− o)M − 483.6106156535

subject to:

h1(x) =
1

D

D∑
i=1

(−yisin(
√
|yi|)) = 0

h2(x) =
1

D

D∑
i=1

(−yicos(0.5
√
|yi|)) = 0

x ∈ [−600, 600]D

C07
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Minimize:

f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2)

z = x+ 1− o
y = x− o

subject to:

g(x) = 0.5− exp

−0.1

√√√√ 1

D

D∑
i=1

y2i

− 3exp

(
1

D

D∑
i=1

cos(0.1y)

)
+ exp(1) ≤ 0

x ∈ [−140, 140]D

C08

Minimize:

f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2)

z = x+ 1− o
y = (x− o)M

subject to:

g(x) = 0.5− exp

−0.1

√√√√ 1

D

D∑
i=1

y2i

− 3exp

(
1

D

D∑
i=1

cos(0.1y)

)
+ exp(1) ≤ 0

x ∈ [−140, 140]D

C09

Minimize:

f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2)

z = x+ 1− o
y = x− o

subject to:

h(x) =

D∑
i=1

(ysin(
√
|yi|)) = 0

x ∈ [−500, 500]D

C10

Minimize:

f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2)

z = x+ 1− o
y = (x− o)M
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subject to:

h(x) =

D∑
i=1

(ysin(
√
|yi|)) = 0

x ∈ [−500, 500]D

C11

Minimize:

f(x) =
1

D

D∑
i=1

(−zicos(2
√
|zi|))

z = (x− o)M
y = x+ 1− o

subject to:

h(x) =

D−1∑
i=1

(100(y2i − yi+1)
2 + (yi − 1)2) = 0

x ∈ [−100, 100]D

C12

Minimize:

f(x) =
1

D

D∑
i=1

(zisin(
√
|zi|))

z = x− o

subject to:
h(x) =

∑
i = 1D−1(z2i − zi+1)

2 = 0

g(x) =
∑

i = 1D(z − 100cos(0.1z) + 10) ≤ 0

x ∈ [−1000, 1000]D

C13

Minimize:

f(x) =
1

D

D∑
i=1

(−zisin(
√
|zi|))

z = x− o

subject to:

g1(x) = −50 +
1

100D

D∑
i

z2i ≤ 0

g2(x) =
50

D

D∑
i=1

sin

(
1

50
Πz

)
≤ 0

g3(x) = 75− 50

(
D∑
i=1

z2i
4000

−
D∏
i=1

cos

(
zi√
i

)
+ 1

)
≤ 0

x ∈ [−500, 500]D
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C14

Minimize:

f(x) =
D−1∑
i=1

(100(z2i − zi+1)
2 + (z − 1)2)

z = x+ 1− o
y = x− o

subject to:

g1(x) =
D∑
i=1

(−yicos(
√
yi))−D ≤ 0

g2(x) =
D∑
i=1

(yicos(
√
yi))−D ≤ 0

g3(x) =

D∑
i=1

(yisin(
√
yi))− 10D ≤ 0

x ∈ [−1000, 1000]D

C15

Minimize:

f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (z − 1)2)

z = x+ 1− o
y = (x− o)M

subject to:

g1(x) =

D∑
i=1

(−yicos(
√
yi))−D ≤ 0

g2(x) =

D∑
i=1

(yicos(
√
yi))−D ≤ 0

g3(x) =
D∑
i=1

(yisin(
√
yi))− 10D ≤ 0

x ∈ [−1000, 1000]D

C16

Minimize:

f(x) =
D∑
i=1

z2i
4000

−
D∏
i=1

cos

(
zi√
i

)
+ 1

z = x− o
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subject to:

g1(x) =

D∑
i=1

[z2i − 100cos(Πzi) + 10] ≤ 0

g2(x) =
D∏
i=1

zi ≤ 0

h1(x) =
D∑
i=1

(zisin(
√
|zi|)) = 0

h2(x) =

D∑
i=1

(−zisin(
√
|zi|)) = 0

x ∈ [−10, 10]D

C17

Minimize:

f(x) =

D−1∑
i=1

(zi − zi+1)
2

z = x− o

subject to:

g1(x) =

D∏
i=1

zi ≤ 0

g2(x) =

D∑
i=1

zi ≤ 0

h1(x) =
D∑
i=1

(zisin(4
√
zi)) = 0

x ∈ [−10, 10]D

C18

Minimize:

f(x) =
D−1∑
i=1

(zi − zi+1)
2

z = x− o

subject to:

g(x) =
1

D

D∑
i=1

(−zisin(
√
zi)) ≤ 0

h(x) =
1

D

D∑
i=1

(zisin(
√
zi)) = 0

x ∈ [−50, 50]D
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