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Abstract—Differential Evolution can be used to construct
effective and compact artificial training datasets for machine
learning algorithms. In this paper, a series of comparative
experiments are performed in which two simple interpretable
supervised classifiers (specifically, Naive Bayes and linear Support
Vector Machines) are trained (i) directly on “real” data, as would
be the normal case, and (ii) indirectly, using special artificial
datasets derived from real data via evolutionary optimization.
The results across several challenging test problems show that
supervised classifiers trained indirectly using our novel evolution-
based approach produce models with superior predictive clas-
sification performance. Besides presenting the accuracy of the
learned models, we also analyze the sensitivity of our artificial
data optimization process to Differential Evolution’s parameters,
and then we examine the statistical characteristics of the artificial
data that is evolved.

Keywords—Differential Evolution, supervised machine learning,
interpretable models, artificial data.

I. INTRODUCTION

Machine learning algorithms for building predictive models
typically assume that the input or training data for a particular
learning algorithm is fixed.

This training data is commonly in the form of a two-
dimensional table consisting of features (the columns) and
labelled examples (the rows). In data mining practice, it is
common to consider subsets of this data if the table is too
large along one or both of these dimensions.

For example, many methods exist for feature selection
(e.g. Deng & Runger [1]). Less commonly used but none-
the-less effective methods also exist for selecting subsets of
examples, such as Cano et. al’s [2] evolutionary instance
selection algorithm.

Practitioners may also project the data in order to reduce
its dimensionality. Principle Components Analysis [3] is a
standard example of this.

By and large, however, beyond row/column selection and
performing projections, the training data for data mining exper-
iments is traditionally an unchanging constant. Yet, ironically,
the choice of training data can have a significant impact on
classifier performance.

In this paper we explore the possibility that training
datasets for machine learning algorithms may be artificially
created using state-of-the-art Evolutionary Algorithm methods.
The evolutionary method we propose “wraps” an existing

machine learning algorithm, optimizing an artificial dataset that
is used as input to the machine learning algorithm.

We demonstrate that performance increases are possible
for two simple, interpretable machine learning classification
algorithms, specifically Naive Bayes and linear Supper Vector
Machines (SVMs). The increase appears to be most pro-
nounced for Naive Bayes.

Furthermore, we also demonstrate that only very small
artificial datasets are required to train effective classifiers.
Whereas real data may have thousands of examples, in all of
our experiments, the evolved artificial datasets consist of only
ten examples.

In the next section, we briefly describe the algorithms used
in this paper. In Section III, we outline our novel algorithms
for artificial dataset construction, namely Instance Optimiza-
tion for Naive Bayes (IO-NB) and Instance Optimization for
Support Vector Machines (IO-SVM). Sections V, VI and VII
then detail extensively the result of our experiments, before
the paper is concluded in the final section.

II. BACKGROUND

Differential Evolution (DE) and the simple classification
methods that we utilized in our experiments are detailed in
this section. We also briefly review the role of artificial data
in machine learning.

A. High Dimensional Optimization using Differential Evolu-
tion

Differential Evolution (DE) is a meta-heuristic search algo-
rithm for multi-dimensional continuous optimization. It is ideal
for situations where there is no gradient function available, and
where the cost function is discontinuous and non-linear.

We have focussed on DE in this research (i) because it is
simple to implement and understand, with fewer parameters
than other methods; and (ii) because it frequently performs
at or near the state-of-the-art in current competitions and
evaluations [5].

Figure 1 depicts pseudocode for the variant of DE used in
our experiments. We chose the “DE/best/1/bin” version of DE
because it was found to outperform classic DE in Tasoulis et.
al [6], and is therefore a good choice for experimentation.

The algorithm has three key parameters: NP , the pop-
ulation size; F , the amplification parameter; and CR, the



1: procedure MINIMIZECOSTDE(V ) . DE/best/1/bin
2: Pop← InitializePopulation(V,NP )
3: CostsPop ← EvaluatePop(Pop)
4: while MaxFEsNotExceeded() do
5: TrialPop← {}
6: D∗ ← Best(Pop)
7: for Dx ∈ Pop do . Mutate/Recombine
8: r ← RandomInt(1, Length(Dx))
9: Dr1, Dr2 ← RandomlyP ick(Pop)

10: T x ← EmptyV ector()
11: for i = 1 to Length(Dx) do
12: if Random(0, 1) ≤ CR||i == r then
13: T x[i]← D∗[i] + F (Dr1[i]−Dr2[i])
14: else
15: T x[i]← Dx[i]
16: end if
17: end for
18: TrialPop← TrialPop ∪ {T x}
19: end for
20: CostsTrialPop ← EvaluatePop(TrialPop)
21: for T x ∈ Pop do . Select
22: if CostsTrialPop[x] ≤ CostsPop[x] then
23: Dx ← T x

24: end if
25: end for
26: end while
27: return Best(Pop)
28: end procedure

Fig. 1. Differential Evolution algorithm.

crossover rate. The dimensionality of the vectors that are
evolved is fixed and dependent on the problem.

Essentially, the algorithm maintains a population of indi-
vidual vectors, where NP is the fixed population size.

After initialization and evaluation of the starting popula-
tion, the main loop (from line 4 to line 26) commences and
runs until some terminating condition is true. In our case
termination occurs when the total number of cost function
evaluations exceeds a fixed limit.

For each iteration of the main loop, a trial population of
vectors, the same size as the main population, is generated.
The construction of trial vectors is undertaken by using DE’s
mutation and recombination operators, both of which are
applied in unison for efficiency (although they may be applied
separately if need be). Lines 7 to 19 of the algorithm are the
mutation/recombination steps.

It is important to note that the mutation and recombination
operators use several very specific random selections.

The first random number, r, is a random index between
1 and the dimensionality of the optimization problem. This is
used to ensure that at least one element from the trial vector
will always be crossed over (see line 12), so that trial vectors
will never be identical to their parents.

The second important random selection occurs on line 8 of
the algorithm. Essentially, the idea is to pick two random vec-
tors from the population, Dr1 and Dr2, such that Dr1 6= Dr1,
and neither are equal to the current best population member,

D∗.

The final random number selected is a random value
between 0 and 1 on line 12. This is compared to the crossover
rate, CR, and if the value is less than or equal to CR (or if
the current index happens to be equal to r, which is tested
in the second part of the if statement), then the element of
the trial vector at position i is replaced by the ith element of
the current best vector D∗ plus the scaled difference between
the ith elements of Dr1 and Dr2. This step is known as a
mutation, with the parameter F (the amplification parameter)
regulating the degree of scaling.

If the random number between 0 and 1 exceeds CR (and
the current index is not equal to r) on the other hand, then
the ith element of T x is simply copied across from the parent
Dx. In this case, mutation is not applied.

It should be evident therefore that lower values for CR
ensure that trial vectors will be more similar to their parent
vectors.

Higher values of both CR and F , conversely, result in more
diverse trial vectors.

Once the trial vectors are generated, they are evaluated
using the cost function (line 20). Trial vectors then replace
their parents in the next generation if and only if their cost is
not greater than that of their parents (see the second nested
loop inside the main loop, lines 22 to 25).

Numerous papers have been written about DE and its
variants, and the reader is referred to Das & Suganthan [5]
for more information.

B. Machine Learning Algorithms

In this paper, we make use of two well-known machine
learning algorithms for supervised classification, Naive Bayes
[7] and Support Vector Machines (SVMs) with a linear kernel
[8], [9]. Space prevents a detailed description of these algo-
rithms, but the reader can find descriptions in most standard
machine learning textbooks.

C. Artificial Data in Machine Learning

Most applications of artificial data in machine learning are
for testing algorithms, i.e. artificial data with a known pattern is
generated, and a classifier is trained using that data in order to
determine if the pattern can be learned correctly. For example,
see the “people database” techniques developed by Agrawal
et. al [11], which is frequently used in the literature.

The closest related work to our work is from the field of
nearest neighbour classification. Nearest neighbour classifica-
tion is typically slow at testing time if the training data is
large because each test example must be compared to every
single training example. Prior work as surveyed by Triguero
et. al [12] concerns techniques for both selecting and creating
appropriate small sets of “prototype” examples that can replace
the training data and therefore speed up nearest neighbour
classification.

In contrast, our work is more general and can be applied
to any supervised classification (or regression) method. It is
not at all confined to only nearest neighbour methods.



1: procedure COST(Dx,V )
2: C ← LearnClassifier(Dx)
3: m← Evaluate(C, V )
4: return 1−m
5: end procedure

Fig. 2. Cost function. Dx is an artificial dataset, V is the validation set
(V ⊆ D), C is a classifier, and m is a measure of performance (AUROC) of
C against V .

III. INSTANCE OPTIMIZATION FOR CLASSIFICATION

This section outlines the Instance Optimization algorithms
that are the main contribution of this paper.

Most machine learning algorithms for supervised classifica-
tion assume the existence of a training set of labeled examples.

In this paper, we refer to this “real” training data as D and
to the number of real training examples as |D|. Equation 1 de-
scribes the training data. Each example or instance comprises
of a vector of features xi along with a singular label or target
yi.

D = {x1, y1), (x2, y2), . . . , (x|D|, y|D|)} (1)

In contrast to the real training data, Figure 1 and the rest
of this paper refer to the artificial data as Dx and the artificial
examples as (x′i, y

′
i). Equation 2 defines Dx, where N is the

fixed size of the artificial dataset (which, in our experiments,
is N = 10).

Dx = {(x′1, y′1), (x′2, y′2), . . . , (x′N , y′N )} (2)

A. Cost Function

The heart of our proposed Instance Optimization algo-
rithms is the cost function which is used to evaluate individual
artificial datasets.

The cost function is defined as the predictive performance
of a classifier C learned on an artificially-created dataset Dx

when tested against an a-priori fixed validation set of V , which
is a subset of the original “real” data D.

In other words, we use artificial data to learn a classifier
and then evaluate it using part of the real data. Figure 2 depicts
this cost function.

One difficulty when evaluating classifier performance is
that the classes may be imbalanced. For example, a dataset
(such as the “Churn” dataset in our experiments) may comprise
two classes, but one class may be considerably less represented
than the other in terms of the number of examples. In the
“Churn” dataset, to illustrate, one class consists of only 8% of
the examples.

Optimizing directly for accuracy in that case may be prob-
lematic, as an algorithm that simply predicts the majority class
can appear to be highly accurate (e.g. 92% correct) without
any learning occurring. Accuracy consequently may cause a
significant local optima to be produced in the optimization
space.

To avoid this problem, we therefore use an alternative
performance metric, specifically Area Under the Receiver
Operating Characteristics Curve (AUROC) [10].

AUROC has the characteristic that it is insensitive to class
imbalance. A classifier that achieves an AUROC value of 0.5
is either predicting randomly or simply predicting the same
single class label for all examples. Alternatively, an AUROC
value of 1.0 indicates perfect predictive performance.

To use AUROC in our cost function, we subtract it from
1.0 in order to obtain a value to minimize, as Figure 2 shows.

B. Optimization Constraints

We also add the constraint that the dataset must conform
in its specification to the real data.

That is, the artificial dataset Dx must consist of the same
number of numeric and non-numeric attributes, and the same
set of class labels, as the original data D has. Equation 3 states
this as a constraint on the optimization problem when D∗ is
the optimal artificial dataset that is found.

minimize
D∗

Cost(D∗, V )

subject to Schema(D∗) = Schema(D), V ∈ D
(3)

One difficulty encountered in the application of DE to
artificial dataset generation is that datasets for machine learn-
ing are two dimensional tables with constraints on some of
the columns (which we have characterized as the “schema”
mentioned in Equation 3). DE, on the other hand, is designed
to optimize only one dimensional continuous vectors.

In order to apply the standard DE recombination and
mutation operators to two-dimensional datasets with rows and
columns, therefore, we must first of all “unroll” each dataset
into a one-dimensional vector.

For example, with N = 10 examples in the artificial dataset
and ten features, the dataset is unrolled to a vector of length
100. If the dataset has 335 features (which is the case for one
of the datasets we use), then the dimensionality of the problem
is 3,350. It should be clear from these examples that artificial
dataset optimization is therefore a very challenging, very high
dimensional problem!

After unrolling, mutation and recombination can then
be applied within the DE algorithm to generate trial one-
dimensional vectors, but before these trial vectors can be “re-
rolled” back into two-dimensional datasets, modifications must
be made to ensure that the schema of the new trial artificial
datasets still matches that of the original one.

This amounts to firstly preventing numeric values from
going higher or lower than those observed in the real dataset,
and secondly to preserving the discreteness of some features. If
an attribute in a trial artificial dataset does exceed the allowable
range, then our method simply clips the value to either the
maximum or minimum allowed value.

Next, some attributes in the original, real dataset may be
discrete (e.g. taking allowable values {1,2,3} only), but trial
datasets may contain values outside of the allowable set due



1: procedure TRAINCLASSIFIER(D)
2: V ← Sample(D)
3: D∗ ←MinimizeCostDE(V )
4: return LearnClassifier(D∗)
5: end procedure

Fig. 3. Classifier training function. D is the original training set, V is a
sample of it (the validations set), and D∗ is the artificial dataset that minimizes
cost with respect to V . The classifier is learned from the optimal artificial
dataset rather than the real dataset.

to the addition of scaled differences (see line 13 of Figure
1). For example, suppose that we are calculating the value of
T x at position i, with D∗[i] = 3, Dr1[i] = 1, Dr1[i] = 2
and F = 0.4. According to the DE algorithm, the value of
the trial vector T x[i] will be D∗[i] + F (Dr1[i] − Dr2[i]) =
3 + 0.4(1− 2) = 2.6.

To solve this problem, we round all values that should be
discrete to the nearest allowable discrete value, so therefore in
the above example the invalid value 2.6 will be rounded up to
the nearest valid value of 3.

These two measures ensure that the schema consistency
constraint between the artificial and the real datasets as speci-
fied in Equation 3 holds, and they must be applied before the
cost function is evaluated on each artificial dataset.

A similar process is taken during the initialisation phase of
the DE algorithm to create the initial population: random one
dimensional vectors are generated uniformly using maximum
and minimum allowable values as determined from the real
data, and then the constraints and “rolling up” process is
applied in order to turn the initial vectors into valid two-
dimensional datasets.

C. Supervised Training Procedure

We now come to describe the method of training a classifier
using Instance Optimization.

The basic procedure is outlined in Figure 3. Essentially,
the classifier training steps are firstly to select a subsample of
the real data to use as a validation set. Next, the best artificial
dataset D∗ minimizing the cost function with respect to V
is found using DE. Finally, a Naive Bayes or linear SVM
classifier is built from this artificial dataset (as opposed to the
real dataset).

Note that the real dataset is used during the training
process, but its use is implicit as a part of the cost function
that DE attempts to minimize.

IV. EXPERIMENTAL SETUP

Having described the Instance Optimization algorithm, we
now describe the experiments we performed.

A. Parameters

As mentioned previously, DE requires a only small number
of parameters, specifically the amplification parameter (F ), the
crossover rate (CR) and the population size (NP ).

For our initial experiments, we used arbitrary initial values
for F and CR that seemed to work well during initial testing.

We also chose a deliberately small value for the population
size, specifically NP = 20, which in initial testing also worked
well.

With respect to timeliness, the maximum number of cost
function evaluations was set to 4,000. That is, DE was termi-
nated as soon as 4,000 cost function evaluations had occurred,
which amounted to 4000

20 = 200 generations per run of DE. A
fixed value for the number of evaluations was chosen primarily
because the dimensionality of the datasets varies considerably,
and therefore had the number of function evaluations been
a function of the dimensionality (as it usually is), then this
parameter would have varied considerably between datasets.
It was felt therefore that a low fixed number of function
evaluations would be the most suitable, at least for initial
exploratory testing.

Table I gives the definitive set of parameters used in
our experiments. The additional parameter V is the size of
the validation set as a proportion of the size of original,
real, training dataset. The validation set is chosen by random
subsampling in our approach.

TABLE I. PARAMETERS USED IN THE EXPERIMENTS.

Name Definition Value
F DE amplification factor 0.5
CR DE crossover rate 0.1
NP DE population size 20
FE max. function evals 4,000
N num. artificial examples 10
V validation set size 1.0

B. Algorithm Variants

For evaluating the effectiveness of evolutionary optimisa-
tion methods, a comparison of the optimizer’s performance
with random search is warranted. If random search performs
as well as the optimizer, then it may be the case that the cost
function is simply too noisy to permit effective optimization.

To investigate the performance of random search, therefore,
we developed two simple random search algorithms: RS-NB
and RS-SVM.

These algorithms essentially generate 4,000 random artifi-
cial datasets using the same initialization method as our DE-
based algorithms. The 4,000 random datasets are evaluated and
the best single dataset is returned.

Table II summarizes the four algorithms that we evaluated
in our experiments.

TABLE II. SEARCH ALGORITHM VARIANTS USED IN THE
EXPERIMENTS.

Name Description
RS-NB Random search for Naive Bayes
RS-SVM Random search for Linear SVM
IO-NB Instance Optimization for Naive Bayes
IO-SVM Instance Optimization for Linear SVM

C. Datasets

We tested the four algorithms in Table II on a broad
selection of challenging supervised classification datasets.

The datasets can be divided into two classes: artificial and
real. The artificial datasets are all low dimensional and have



Fig. 4. Artificial datasets used in the experiment. From top to bottom, left to
right, they are (i) circle, (ii) xor, (iii) two-norm, (iv) three-norm, (v) ring-norm,
and (vi) smiley.

a small number of instances, but despite this deceptive sim-
plicity, some of these datasets are designed to be specifically
challenging to certain classes of learning algorithm.

The second group of datasets that we used, on the other
hand, were much more challenging in terms of both the
dimensionality (ranging up to 335 for one of the datasets),
size (up to 10,000 examples per dataset) and difficulty of the
classification tasks. They are also real-world datasets used in
recent difficult machine learning competitions.

All of the datasets utilised in this research are currently
available online1.

1) Artificial Datasets: The artificial classification datasets
we used were generated using algorithms in the R package
MLBench [13]. Each dataset consists of two features (x1 and
x2) and a single class y, and they are all depicted visually in
Figure 4.

These datasets were chosen for several reasons.

Firstly, the “circle” and “xor” datasets represent problems
where the attributes are clearly not independent. For example,
the “circle” dataset consists of one class of all points falling
inside a unit circle, and another class of all points falling
outside of the circle.

Similarly, “xor” is a well-known challenging problem with
dependent features where the class label is only predictable
when the features are combined in a non-linear way.

1https://github.com/mmayo888/MayoSunDatasets

The datasets “two-norm”, “three-norm” and “ring-norm”
were suggested by Breiman [14] as good tests for classification
methods, and are also included. Finally, the four-class “smiley”
dataset has been added for brevity.

2) Real Datasets: Table III enumerates the ten large and
challenging real datasets used in our experiments. These
datasets were originally downloaded by the second author from
(i) the UCI repository, (ii) the UCSD FICO data mining contest
2011 website and (iii) the KDD Cup 2009 website (please see
[15] for the original legacy links).

The datasets were selected because they are large and
come from very diverse research and industrial areas. To make
timely experiments feasible, any datasets that were originally
multiclass were converted into binary classification problems
by retaining only the two largest classes and deleting all of the
remaining classes. Following this, the size of each dataset was
evaluated. For datasets having more than 10,000 examples,
a subset of 10,000 examples were randomly selected. The
interested reader is referred to Sun and Phafringer [15] for
more details on these datasets as well as the results of previous
machine learning experiments utilising these datasets.

TABLE III. REAL DATASETS USED IN THE EXPERIMENTS. ALL
DATASETS ARE BINARY CLASS DATASETS WITH 10,000 EXAMPLES EXCEPT

FOR CHESS THAT COMPRISES 8,747 EXAMPLES.

Dataset Num. Attributes Minority Class Size
Adult 14 23%
Chess 6 48%
Connect-4 42 26%
Covtype 54 43%
Churn 190 8%
Localization 8 37%
MAGIC 11 35%
MiniBooNE 50 28%
Poker 11 45%
UCSD FICO 335 9%

D. Evaluation Methodology

For all experiments, we took each dataset and split it into
20% training data and 80% testing data.

Classifiers were then trained using all four algorithms from
Table II on the same training split. The final best models
learned using the algorithm in Figure 3 was evaluated against
the test split.

This training/testing process was repeated thirty times with
different random training and testing splits in each repetition
in order to obtain averaged performance metrics.

The performance metric of each classifier on the test data
that we recorded was the same one that was optimized on the
training data, specifically the AUROC. In order to determine
the significance of the difference between the Instance Opti-
mization classifiers and their base classifiers alone, as well
as between Instance Optimization and Random Search, we
compared the results using a standard paired t-test. A paired
t-test is appropriate here because the samples from each group
are paired, i.e. the same training/test split is shared across
algorithms for each of the thirty repetitions.

V. EXPERIMENT 1: CLASSIFICATION RESULTS

The first set of results that we present are given in Tables
IV and V.



TABLE IV. RESULTS USING IO-NB. KEY: ◦, • INDICATES
STATISTICALLY SIGNIFICANT IMPROVEMENT, DEGRADATION COMPARED

TO NB.

Dataset NB RS-NB IO-NB
circle 0.94 0.96 ◦ 0.98 ◦
xor 0.52 0.61 ◦ 0.59 ◦
twonorm 1.00 0.99 • 0.99 •
threenorm 0.96 0.96 • 0.96 •
ringnorm 0.86 0.84 • 0.85 •
smiley 1.00 0.98 • 1.00
Adult 0.89 0.81 • 0.89
Chess 0.76 0.71 • 0.77 ◦
Connect4 0.83 0.66 • 0.81 •
Covtype 0.80 0.77 • 0.83 ◦
Churn 0.57 0.61 ◦ 0.64 ◦
Localiz. 0.88 0.80 • 0.88
MAGIC 0.75 0.83 ◦ 0.86 ◦
MiniBooNE 0.52 0.83 ◦ 0.88 ◦
Poker 0.51 0.51 0.51 ◦
UCSD FICO 0.60 0.58 • 0.61 ◦
Average 0.77 0.78 0.82

Table IV comprises the results for IO-NB. Mean perfor-
mances are shown to two decimal places.2 The first point to
note from this table is that the performance improvement as
a result of using IO-NB instead of NB is quite dramatic: on
average the AUROC improves by 0.05 across all datasets.

Secondly, most of these improvements are in the real
datasets as opposed to the simple artificial datasets. In fact,
only the “Adult”, “Localization” and “Poker” datasets fail to
record significantly improved performance as a consequence
of the IO-NB algorithm being used. The largest improvement
from NB to IO-NB is on the “MiniBooNE” dataset that records
an increase in mean AUROC from 0.52 to 0.88.

With regard to the artificial datasets, the Naive Bayes
learning algorithm by itself clearly performs very well on most
of the datasets already, except for “xor”. Surprisingly, IO-NB
is able to produce a better model for this particular dataset,
and performance is improved from 0.52 (i.e. nearly random)
to 0.59 – although in fact the random search algorithm RS-NB
in this single case actually outperforms IO-NB.

Table V depicts the results for IO-SVM. In general, the
effect achieved by replacing SVM with IO-SVM is much less
pronounced, and on some datasets, the improvement is actually
reversed to become a significant degradation. Comparing IO-
SVM’s results to those of IO-NB, it is evident that this
lesser improvement is mostly a consequence of the SVM
classifier without instance optimization (itself a very powerful
state-of-the-art classifier) actually performing much better on
many of the datasets than Naive Bayes does without instance
optimization.

In spite this, there is still an average overall improvement
of AUROC from 0.75 for the SVM algorithm to 0.77 for the
IO-SVM algorithm.

The final analysis we performed was to compare IO-NB to
RS-NB, and IO-SVM to RS-SVM, in order to gauge how many
times instance optimization significantly outperformed random

2It should be noted that some differences are significant but small, such as
the “threenorm” data in which the difference is at the third decimal place and
therefore not shown in the table.

TABLE V. RESULTS USING IO-SVM. KEY: ◦, • INDICATES
STATISTICALLY SIGNIFICANT IMPROVEMENT, DEGRADATION COMPARED

TO SVM.

Dataset SVM RS-SVM IO-SVM
circle 0.51 0.59 ◦ 0.60 ◦
xor 0.50 0.58 ◦ 0.61 ◦
twonorm 0.99 1.00 0.99
threenorm 0.93 0.93 0.93
ringnorm 0.71 0.71 • 0.71 •
smiley 1.00 0.96 • 1.00
Adult 0.88 0.81 • 0.86 •
Chess 0.77 0.70 • 0.74 •
Connect4 0.88 0.66 • 0.78 •
Covtype 0.85 0.72 • 0.82 •
Churn 0.49 0.61 ◦ 0.65 ◦
Localiz 0.72 0.68 • 0.72
MAGIC 0.83 0.83 • 0.84 ◦
MiniBooNE 0.88 0.88 • 0.90 ◦
Poker 0.50 0.50 0.51 ◦
UCSD FICO 0.56 0.59 ◦ 0.61 ◦
Average 0.75 0.73 0.77

search (as opposed to the base classifiers NB and SVM learned
on the real datasets).

The results of this analysis are given in Table VI. The
first four lines of this table summarize the significance results
in Tables IV and V. The final two lines compare the IO-*
classifiers against their RS-* variants. The results clearly show
that IO-NB and IO-SVM significantly outperform RS-NB and
RS-SVM on most (12 or 13) of the datasets, and they are never
significantly worse on the remaining datasets.

TABLE VI. COMPARISONS BETWEEN NB, SVM, RS-NB, RS-SVM,
IO-NB AND IO-SVM IN TERMS OF STATISTICALLY SIGNIFICANT

WINS/LOSSES/DRAWS.

Comparison Wins/Losses/Draws
IO-NB vs. NB 9/4/3
IO-SVM vs. SVM 7/5/4
RS-NB vs. NB 5/10/1
RS-SVM vs. SVM 4/9/3
IO-NB vs. RS-NB 13/0/3
IO-SVM vs. RS-SVM 12/0/4

An examination of which datasets the IO-* classifiers failed
to outperform their corresponding RS-* counterparts revealed
that they were all artificial datasets, except for one – namely
the “Poker” dataset. The IO-* classifiers improve significantly
on random search in every other case. All significance tests
were performed with 95% confidence.

VI. EXPERIMENT 2: DE PARAMETER OPTIMIZATION
RESULTS

In the next set of experiments, we aimed to determine how
sensitive the IO-* algorithms are to DE’s parameters.

Although DE has only a small number of parameters,
previous research has shown that the algorithm’s performance
on different problems is often highly dependent on the values
for the parameters [5].

For example, on problems where the variables are highly
separable (i.e., where each dimension can be optimized in-
dividually, to some degree), then low values of CR often
perform well. Conversely, in situations where the variables are
not separable (or non-linear), higher values of CR are superior.



We repeated the experiments from the previous section
several times, this time varying the values of F and CR from
the very small (0.05) to the very large (1.0 in the case of CR
and 1.5 in the case of F ). For expediency, we reduced the
number of repetitions from 30 in the previous experiments to
ten in these ones, but other than that, all other parameter values
were the same.

The results for IO-NB and IO-SVM are given in Tables
VII and VIII.

As can be observed from the tables, in the case of IO-NB,
there is a distinct preference for certain values of F and CR.
For both IO-NB and IO-SVM, performance peaks at CR =
0.5. This indicates that the problem must be to some degree
non-separable, and that therefore DE is an ideal optimization
algorithm for this problem. In terms of the F parameter, the
optimal value appears to lie in the 0.25-0.5 range.

TABLE VII. AUROC RESULTS OF PARAMETER OPTIMIZATION
EXPERIMENTS FOR IO-NB USING DIFFERENT VALUES OF F AND CR, ALL

OTHER PARAMETERS REMAINING THE SAME.

CR=0.05 CR=0.10 CR=0.50 CR=1.0
F=0.05 0.8090 0.8170 0.8093 0.7473
F=0.10 0.8117 0.8183 0.8102 0.7547
F=0.25 0.8125 0.8140 0.8150 0.7785
F=0.50 0.8109 0.8103 0.8206 0.7913
F=1.00 0.8086 0.8072 0.7983 0.7906
F=1.50 0.8084 0.8021 0.7899 0.7883

TABLE VIII. AUROC RESULTS OF PARAMETER OPTIMIZATION
EXPERIMENTS FOR IO-SVM USING DIFFERENT VALUES OF F AND CR,

ALL OTHER PARAMETERS REMAINING THE SAME.

CR=0.05 CR=0.10 CR=0.50 CR=1.0
F=0.05 0.7613 0.7641 0.7659 0.7041
F=0.10 0.7590 0.7642 0.7655 0.7077
F=0.25 0.7634 0.7674 0.7754 0.7266
F=0.50 0.7625 0.7647 0.7717 0.7453
F=1.00 0.7616 0.7577 0.7503 0.7536
F=1.50 0.7609 0.7555 0.7489 0.7562

VII. ANALYSIS OF ARTIFICIAL DATASETS

In order to understand more fully the nature of the artificial
datasets that the Instance Optimization algorithms produce,
we selected three datasets – specifically, “circle”, “Churn”
and “MAGIC”, all of which IO-NB was able to significantly
improve Naive Bayes on – and we executed the IO-NB
algorithm using 100% of the dataset for training data (as
opposed to 20%, which was used in previous experiments).
All other parameters were kept the same as specified in Table
I.

Unlike the previous experiments, this time we retained the
artificial dataset used to train the best Naive Bayes model for
further analysis.

We computed two statistics of interest from the artificial
datasets, and compared these values to the same statistics
computed from the real datasets. The two statistics were (i)
the mean absolute correlation between predictive features and
the class label, and (ii) the mean entropy per column of the
datasets.

The mean absolute correlation between features/class is de-
fined in Equation 4, where C is a correlation matrix computed
from a dataset, k is the index of the class label, and n is the
number of columns in the dataset.

MAC(C, k, n) =

n∑
i=1,i6=k

|Ci,k|
n− 1

(4)

Intuitively, this statistic measures the strength of the rela-
tionship (positive or negative) between each feature in a dataset
and the class. Higher values should indicate that the features
are better able to individually predict the class label; conversely
low values near zero indicate that the features are less able to
predict the class.

For the entropy calculation, we used a standard entropy
formula available in most statistics textbooks. Entropy is
calculated from frequencies, and to convert our datasets into
this form, we took each column, divided the range of values for
the current column into ten bins, and converted the raw data for
the column into the form of a ten-bin frequency histogram. The
entropy for each column was computed from this histogram,
and then averaged over all the columns in the dataset.

The results of our analysis are given in Tables IX and X .

TABLE IX. MEAN ABSOLUTE CORRELATION BETWEEN FEATURES
AND CLASS FOR REAL AND ARTIFICIAL DATASETS.

Dataset Real Artificial
circle 0.02 0.27
MAGIC 0.16 0.30
Churn 0.01 0.29

TABLE X. MEAN COLUMN ENTROPY FOR REAL AND ARTIFICIAL
DATASETS.

Dataset Real Artificial
circle 1.76 1.60
MAGIC 1.37 1.64
Churn 0.14 0.31

We can make two interesting observations from this anal-
ysis. Firstly, the correlation between the features and the class
labels in the artificial datasets is considerably higher than it is
in the original datasets.

This suggests that in the artificial data, the features may be
more separable than they are in the real data. In turn this may
explain why Naive Bayes is frequently much improved by IO-
NB: the Naive Bayes assumption that features are independent
given the class appears to be more true in the artificial data
than it is in the real data. This is very interesting given that
in most of the datasets, there is a clear and large degree of
non-separability between features. For example in the “circle”
dataset, the class label (indicating whether a point is inside or
outside a unit circle) is obviously a non-linear function of the
two features.

The second observation is that the entropy per-column in
the artificial datasets is, with the exception of the smallest
dataset, increased in the artificial data. This suggests that the
process of evolving the artificial data is also one of reducing
the amount of redundancy in the data.

VIII. CONCLUSIONS

To conclude, we have proposed a new DE and artificial
data-based meta learner for machine learning called Instance
Optimization (IO). DE is used to construct an artificial dataset
that is in turn used to train a classifier. In this paper the



classifiers are either Naive Bayes or a linear Support Vector
Machine.

This paper has outlined the technical details involved in
using DE to learn artificial datasets conforming to specific
schema. A significant number of experimental results show
that IO frequently outperforms equivalent classifiers trained
on original training data in a standard way.

The classifiers that we tested were Naive Bayes and linear
Support Vector Machines. While both of these classifiers make
a number of simplifying assumptions about their training data
(which may or may not be true), the result is that these
algorithms produce straightforward and interpretable models.

We have also attempted to analyze the performance of IO in
terms of both the algorithm’s sensitivity to parameters, and the
statistical characteristics of the artificial data that the algorithm
produces.

It needs to be noted that in terms of runtime, IO is
certainly not competitive. This is obviously because our ap-
proach requires multiple (4,000 in this paper) train/test iter-
ations whereas the corresponding base classifiers without IO
require only a single train/test iteration. We see the advantage
of this method primarily in boosting the quality of simple
interpretable machine learning models where this is desired.

Future work in this area could look at further analysis of
and enhancements to IO. For example, our analysis in Section
VII shows that artificial datasets have a significantly higher
mean correlation between features and the predictive class than
real datasets do. This is a very interesting observation, and it
would be a fascinating experiment to include the MAC (see
Equation 4) of a dataset explicitly in the cost function along
with the AUROC in the hope that high quality optima will be
more readily discoverable.

We are also interested in applying this method of learn-
ing classifiers to other interpretable models such as decision
trees. Exploring the ease or difficulty of learning much larger
datasets, for example datasets with 100 or more examples, is
yet another avenue for future research.

Finally, other applications of this approach remain to be
explored. For example, classifier recommendation is a problem
in which a machine learning system must suggest (for a naive
user and a given particular dataset) the k best classifiers for
the user to try on the dataset, in order from best to worst.
One problem is how to train these classifier recommendation
systems, as example datasets covering all possible classifier
ranking permutations may not be available. Instance Optimiza-
tion could help in this case, as it should be possible to evolve
artificial datasets such that the cost of a dataset corresponds
to a particular ranking of a set of classifiers obtained when
machine learning experiments are performed on the dataset.

In summary, Instance Optimization appears to be a promis-
ing new approach in evolutionary algorithm-based machine
learning and we plan to pursue approach in the future.
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