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Abstract

Protein structure prediction, i.e., computationally predicting the three-dimensional structure of a 

protein from its primary sequence, is one of the most important and challenging problems in 

bioinformatics. Model refinement is a key step in the prediction process, where improved 

structures are constructed based on a pool of initially generated models. Since the refinement 

category was added to the biennial Critical Assessment of Structure Prediction (CASP) in 2008, 

CASP results show that it is a challenge for existing model refinement methods to improve model 

quality consistently.

This paper presents three evolutionary algorithms for protein model refinement, in which 

multidimensional scaling(MDS), the MODELLER software, and a hybrid of both are used as 

crossover operators, respectively. The MDS-based method takes a purely geometrical approach 

and generates a child model by combining the contact maps of multiple parents. The 

MODELLER-based method takes a statistical and energy minimization approach, and uses the 

remodeling module in MODELLER program to generate new models from multiple parents. The 

hybrid method first generates models using the MDS-based method and then run them through the 

MODELLER-based method, aiming at combining the strength of both. Promising results have 

been obtained in experiments using CASP datasets. The MDS-based method improved the best of 

a pool of predicted models in terms of the global distance test score (GDT-TS) in 9 out of 16test 

targets.
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I. INTRODUCTION

Proteins are essential biochemical compounds that contribute to many processes in life. 

Functional properties of cells depend on correctly folded protein structures[1]. Misfolded 

proteins may lead to diseases, such as Alzheimer’s, Parkinson’s, Type II Diabetes, and even 

cancers[2] [3]. The knowledge of protein tertiary structure can help in basic research on 
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protein functions, as well as in drug development. Both experimental methods and 

computational methods can be used in protein structure acquirement. Among experimental 

methods, X-ray crystallography and nuclear magnetic resonance (NMR) are the most wildly 

used. However, it is slow, costly, and difficult to find protein tertiary structures through 

experimental technologies [4]. Computational techniques are aimed at predicting protein 

structures from primary sequences information and have the potential of being fast, cheap, 

and widely available. Therefore, obtaining an accurate prediction of the three-dimensional 

structure of a protein by automatic prediction is one of the most important problems in 

bioinformatics and has been actively studied for many years.

The Critical Assessment of Structure Prediction (CASP) is a biennial world-wide event in 

the structure prediction community to assess the current protein modeling techniques and 

identify their quality. Different prediction software programs from various research groups 

predict the structure of an unknown protein or refine an existing model of a protein. 

Generating high-quality protein models and refining existing models are two major steps in 

the computational process of protein structure prediction.

In model refinement, improved structures are constructed based on a pool of initially 

generated models. A model refinement category was first added to the CASP8 competition 

in 2008 to evaluate the state-of-the-art of this area. Participants were given a pool of protein 

models submitted by the prediction servers, with the best model identified. CASP results 

show that it is a challenge for existing model refinement methods to improve model quality 

consistently [5–10]. In CASP10 in 2012, i3 Drefine is the only fully automated server that 

can improve both local and global structures of prediction models, even though its 

improvement is small. This method iteratively minimizes an energy function consisting of 

physics and knowledge-based force fields, and uses a hydrogen bonding (HB) network 

optimization technique [5]. Galaxy Refine has the best performance in CASP10 in terms of 

improving local structure quality. It rebuilt side chains, repacked them, and relaxed the 

models by molecular dynamics simulation [6]. KoBaMIN is another method based on 

minimization of a knowledge-based potential of mean force [7]. I-TASSER is an automated 

pipeline for predicting protein 3D structure by multiple threading alignments and iterative 

structure assembly simulations, and it has an internal refinement module as well [8].

Although existing methods sometimes perform well on model refinement, especially in 

template-based modeling, further improvement is needed for practical use. During CASP8 

and CASP9 [11] [12], only a few groups were able to improve the protein model quality 

consistently. In CASP10, only two groups improve the protein model quality consistently. 

The maximum improvement in high accuracy of GDT-TS (GDT-HA) is only about 0.1 [13].

In this paper, three new evolutionary algorithms for protein model refinement, in which 

multidimensional scaling (MDS), the MODELLER software, and a hybrid of both are used 

as crossover operators, respectively. The MDS-based method takes a purely geometrical 

approach and generates a child model by combining the contact maps of multiple parents. 

The MODELLER-based method takes a statistical and energy minimization approach and 

uses the remodeling module in MODELLER program to generate new models from multiple 

parents. The hybrid method first generates models using the MDS-based method and then 
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run them through the MODELLER-based method, aiming at combining the strengths of 

both. Promising results have been obtained in experiments using CASP datasets.

This paper is organized as follows. Section II introduces the basics of major techniques used 

in the proposed methods and some related work. Section III presents the three new 

evolutionary algorithms to refine protein models in details. Section IV presents experimental 

results on CASP datasets. Finally, Section V concludes the paper.

II. BASICS OF KEY TECHNIQUES AND RELATED WORK

A. Protein Model Quality Evaluation

Assessing the quality of a computationally generated protein model is essential in protein 

structure prediction and refinement. A basic hypothesis of protein models is that the native 

structure has the minimum free energy in general [1]. Most model quality evaluation 

methods use energy or scoring functions, either physics-based or knowledge/statistics-based 

[14]. Physics-based functions are designed based on physics laws, such as the rmodynamic 

equilibrium, to evaluate the models’ quality, while knowledge-based functions are designed 

based on information and properties of protein structures derived from known structures. 

Another major approach is consensus based: given a pool of predicted models, the quality of 

a model is the average similarity between it and other models in the pool. In CASP 

competitions, consensus methods perform much better than scoring functions [15]. 

However, a major problem of consensus methods is that they require a pool of diverse 

models of generally high quality to perform well, which is not practical in many real 

applications, whereas scoring functions can evaluate a single model.

1) Consensus methods based on structure similarity—A key element of consensus 

methods is the similarity measurement between two 3-D structures or models. Commonly 

used pairwise similarity metrics include the Root-Mean-Squared Deviation (RMSD), the 

Template Modeling Score (TM-score), and the Total Score of Global Distance Test (GDT-

TS) [2,15,16].

GDT-TS [16] is a global quality measure of the corresponding positioning of amino acid 

sequences between two protein models. It is one of the major quality assessment metrics in 

CASP competitions. The GDT-TS score is calculated by averaging the percentage of 

corresponding residues (represented by the C-α atoms) between two models within a certain 

cutoff distance after the two models are optimally superimposed over each other. The GDT-

TS value is calculated as follows:

(1)

Where Si and Sj are two protein 3D structures and Pd is the percentage that the C-α atoms in 

Si is within a defined cut off distance d, d ∈ {1,2,4,8 Å}, from the corresponding C-α atoms 

in Sj [15]. GDT-TS values range from 0 to 1 with higher value indicating two structures are 

more similar.
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In consensus methods, GDT-TS is commonly used to measure the similarity of a pair of 

models. Given a set of prediction models S and a reference set R, and the consensus score, 

the CGDT-TS score of each model Si is defined as:

(2)

The reference set R is a subset of S and can be the same as S. CGDT-TS values also range 

from 0 to 1.

2) Energy or scoring functions—Many software programs have been developed using 

energy or scoring functions to evaluate the quality of predicted models. OPUS_Cα [17] has 

a knowledge-based potential function just using the information of C-α positions in a model. 

This software is based on seven major representative molecular interactions in proteins: 

distance-dependent pairwise energy with orientation preference, hydrogen bonding energy, 

short-range energy, packing energy, tri-peptide packing energy, three-body energy, and 

salvation energy. dDFIRE [18] treats each polar atom as a dipole and is based on the 

orientation angles in dipoles interactions and distance between two atoms dipoles. It 

considers the hydrogen bonding interactions, the physical dipole-dipole interactions, 

orientation-dependent interactions between polar and nonpolar atoms, and interactions 

between non-hydrogen-bonded polar atoms. It has an all-atom parameter-free statistical 

energy function. calRW [19] has two major functions: a) a pairwise distance-dependent 

atomic statistical potential function using an ideal random walk chain as reference state and 

b) a side chain orientation-dependent energy function. GOAP [20] is a generalized 

orientation and distance-dependent all-atom statistical potential that is determined by the 

relative orientations of the planes, which rely on each heavy atom in interacting pairs. It only 

considers the distance and angle information between representative atoms or blocks of side-

chain or polar atoms. ProQ2 uses support vector machines to validate each residue quality 

and the global quality of protein models. It combines previously used features with updated 

structural and predicted features to evaluate the predicted models [21]. Because ProQ2 is the 

best single-model quality assessment (QA) method in CSAP10, it is used as one of the QA 

methods in our proposed algorithms to represent single-model QA methods. Its performance 

is compared with a consensus method within our new evolutionary algorithm framework.

B. Multi-dimensional scaling (MDS)

The contact map of a protein model is a two dimensional matrix, in which each value 

represents the distance between two residues’ C-α atoms in the protein model. Under certain 

conditions the contact map can reconstruct the 3D coordinates of a protein [22]. Contact 

map predictions have been used in the modeling of protein 3D structures [23–26].

MDS is a set of data analysis techniques originated in psychometrics and psychophysics 

[27–29]. MDS starts with one or more dissimilarity matrices that are presumed to have been 

derived from points in a multidimensional space, and it finds a placement of the points in a 

low-dimensional space, where the distances between points resemble the original 

dissimilarities [30]. MDS is often used as part of exploratory data analysis or information 

visualization. It is also related to principal component analysis, factor analysis, and cluster 

Chen et al. Page 4

Proc Congr Evol Comput. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis. In this work, we use the weighted MDS (WMDS). The goal of WMDS is to find a 

configuration of points in a multidimensional space such that the inter-point distances are 

related to the provided proximities by some transformation (e.g., a linear transformation) 

while a weight of a distance entry corresponds to its importance. If the proximity data were 

measured without error in the Euclidean space, then WMDS would exactly recreate the 

configuration of points. Otherwise, it minimizes the sum of the weighted least squared errors 

between the proximity and the computed distances between all pair of points.

Using MDS, a 3D protein model could be constructed given a contact map. MDS can also 

be used to compare orthologous sequence sets [31], predict the protein models binding [32], 

and obtain improved, clash-free placement of loops obtained from a database of protein 

models [33].

C. MODELLER

MODELLER is a popular software program for protein modeling. It tries to satisfy spatial 

restraints deduced from homology to template structures and energy objective functions 

[34–36]. The spatial restraints include homology-derived restraints, stereo chemical 

restraints, statistical preferences for dihedral angles and non-bonded inter-atomic distances, 

and optional manually curated restraints. Those restraints presented as probability density 

functions are optimized by a combination of conjugate gradients and molecular dynamics 

with simulated annealing. Its basic inputs include an alignment of a sequence, the atomic 

coordinates of the templates and a script file. MODELLER calculates many distances and 

angle restraints from the alignment with the template tertiary structure and generates an 

atomic model.

III. THREE NEW EVOLUTIONARY ALGORITHMS FOR 

PROTEINMODELREFINEMENT

Evolutionary algorithms mimic natural evolution process to optimize an objective function, 

commonly called a fitness function, in a parametric space. They start with a population of 

individuals, select individuals for reproduction proportional to their fitness, use genetic 

operators such as crossover and mutations to generate new individuals to form a new 

population, and repeat these steps until a certain termination condition is met.

In this section, we present three new evolutionary algorithms within a general framework for 

protein model refinement. Figure 1 shows the framework, where the three algorithms differ 

in their crossover operators. One generation consists of three stages: protein model quality 

evaluation, selection, and crossover.

A. Initial pool of models

In our experiments on CASP datasets, the initial pool of models contains all predicted 

models submitted by different teams [37].
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B. Evaluation

In the evaluation stage, redundant models and partial models are removed and the best 200 

models are selected to form the initial population. In the subsequent generations, the best 

200 models selected from a pool containing newly generated models and previous models 

forms a new population. One of two QA methods, ProQ2 or consensus GDT-TS, can be 

used to calculate the fitness value of a model. ProQ2 is a single-model scoring method, i.e., 

it can assess the quality of a single model, and is selected due to its good performance in 

CASP10. Figure 2 shows ProQ2 against true GDT-TS values (i.e., the true quality, the GDT-

TS value of a model to its native structure.) of 200 models in the initial population of CASP 

target T0654. The correlation is weak.

The consensus GDT-TS method, CGDT-TS, needs a collection of models to assess the 

quality of one model. It performed very well in the CASP QA category, outperforming 

single-model QA methods by a large margin. It is based on pairwise GDT-TS values 

calculated using the TM-score software [38]. The true quality of a model is the GDT-TS 

value of it against the native structure of the protein. Figure 3 shows CGDT-TS against true 

GDT-TS (i.e., the true quality) values of 200 models in the initial population of CASP target 

T0654. The correlation is very strong.

C. Selection

Fitness proportional selection is a simple and widely used selection method in evolution 

algorithms. Individuals are selected for reproduction in proportional to their fitness values 

[39]. In our experiments, each new model is a child of a group of current models selected 

according to the selection scheme. The group of models is passed through a crossover 

operator, which is to be presented in the next subsection, to generate a new model. Thus, to 

generate n child models, n groups of models will be selected and the crossover operations 

will be executed n times.

D. Three New Crossover Operators

1) MDS-based method—The MDS-based crossover algorithm is shown in Fig. 4.

Given k models and their respective ProQ2 scores, the algorithm generates one new model. 

For each given model, its ProQ2 score contains a global score for the overall quality of the 

model and a vector of local scores representing the quality of each predicted C-α atom 

position.

First, the contact map of each model is calculated and the average contact map becomes a 

proximity matrix as the first input to the WMDS function. Then, the weight matrix for each 

model is computed based on the local ProQ2 scores of as follows:

(3)
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Where qi is the local ProQ2 score of the ith C-α atom. The second input to the WMDS 

function is the average weight matrix of all given models. Residues with larger weights will 

have a stronger influence on the results.

In our implementation, the MATLAB function ‘MDSCALE’ (non-classical 

multidimensional scaling) is used to perform WMDS. “metricstress” is chosen as the default 

parameter when running the WMDS function. In the metric scaling, “MDSCALE” tries to 

find a configuration whose pairwise Euclidean distances approach the proximity input.

In the end, the program xyz2pdb is used to construct the PBD file of the new model from the 

coordinates generated by WMDS.

2) MODELLER-based method—The MODELLER-based crossover algorithm is shown 

in Figure 5. Given a set of models, the protein sequence, and a script configuration file, 

MODELLER generates one or more models. In our experiments, the default “automodel” 

modeling protocol in MODELLER is used.

3) Hybrid method—The hybrid crossover operator is shown in Figure 6. Given a set of 

models, their ProQ2 scores, the protein sequence, and a script file containing a MODELLER 

configuration, the function first runs the MDS-based crossover operator multiple times, e.g. 

3 times, to generate multiple new models. Then, the MODELLER-based crossover operator 

is run once on these new models to generate one final model as output.

IV. EXPERIMENTAL RESULTS

In our experiments, CASP10 predicted models of 16 targets were used. The computational 

time and solution quality of the proposed evolutionary algorithms using the MDS-based, 

MODELLER-based, and hybrid crossover operator, respectively, are compared. The 

crossover operators use two or three models to create one new model. Table I shows the 

name for different EA methods. The results trend to be stable after several iterations. In 

addition, considering that the computation time should not be too long, all evolutionary 

algorithms in this experiment ran for 10 generations.

Figures 7 and 8 compare the computational times of 6 different algorithms. The results show 

that the MDS-based method is much faster than the MODELLER-based method because the 

MDS-based crossover operator is much faster. In all of these algorithms, the selection step 

took very little time. In terms of evaluation methods, ProQ2 is much faster than CGDT-TS. 

For example, comparing P_2P_W and C_2P_W, CGDT-TS used more than 8 minutes, 

whereas ProQ2 used less than 2 minutes, 4 times faster.

1) Using ProQ2 in evaluation

Figures 9, 10, and 11 compare the solution quality of three evolutionary algorithm settings, 

P_2P_W, P_3P_M, and P_2P_H, all using ProQ2 in the evaluation step. In Fig. 9, the true 

GDT-TS value of the best model in the final population is shown. P_2P_W improves over 

the initial models in 9 out of 16 cases and is the same in 5 cases. The most improvement 

happens on target T0680, where the best model after refinement has a true GDT-TS value of 
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0.833, much better than the initial best model, 0.763. P_3P_M improves over the initial 

models in 8 out of 16 cases, with the most improvement, a difference of 0.046 in true GDT-

TS value, occurred on target T0662. P_2P_Hperforms slightly worse thanP_3P_M, with the 

biggest improvement happened to target T0669, an increase of true GDT-TS value by 

0.0412. On the other hand, both P_3P_M and P_2P_H perform poorly on T0700, with a 

final model much worse than the initial best model.

Figures 10 and 11 compare the solution quality in terms of the average true GDT-TS value 

of the best 10 and all models in the final population, respectively. For the best 10 cases, 

P_2P_Wslightly improves the initial models on 13 targets. For example on target T0698, 

P_2P_W, P_3P_M, and P_2P_H raised the average true GDT-TS value by 0.0427, 0.0501 

and 0.0358, respectively. On the other hand, they perform poorly on three targets. The 

average quality of total generated models was improved. Figure 11 shows that in terms of 

the average of all models, in most cases, these algorithms improve over the initial population 

significantly.

2) Using CGDT-TS in evaluation

Figures 12, 13, and 14 compare the solution quality of three evolutionary algorithm settings, 

C_2P_W, C_3P_M, and C_2P_H, all using CGDT-TS in the evaluation step. In Fig. 12, the 

true GDT-TS value of the best model in the final population is shown. The final solutions of 

these algorithms are generally worse than the initial best models. The result is similar for the 

best-10-models case, as shown in Fig. 13. In contrast, these algorithms improve the average 

true GDT-TS value of all models in the final population over the initial population, as shown 

in Fig. 14.

These refinement algorithms using CGDT-TS evaluation perform worse than using ProQ2. 

The reason is that CGDT-TS gives models most similar to other models get higher scores, 

leading to premature convergence.

Finally, Figure 15 shows the average improvement in terms true GDT-TS values for five 

different algorithm settings. P_2P_W improves over the initial population in terms of the 

best model, the average of best 10 models, and the average of all models. The results of the 

other algorithms are mixed. Using ProQ2 in the evaluation step is much better than using 

CGDT-TS.

The result shows that the MDS-based crossover is fast and can generate better solutions to 

refold existing predicted models can be a promising approach to improve the best predicted 

protein models’ quality.

V. SUMMARY

The paper presents an evolutionary algorithm framework and three new crossover operators, 

MDS-based, MODELLER-based, and hybrid, for protein model refinement. Their 

performances are compared based on the ProQ2 and CGDT-TS evaluation. The 

MODELLER-based method is much slower than the MDS-based method. Using ProQ2 to 

evaluate models’ quality is much faster than CGDT-TS. All methods improve the overall 
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quality of the population, whereas only P_2P_W improves the top 1 and top 10 models 

determined by comparing with the native structures. The MDS-based crossover operator is 

purely geometric-based and fast, and is a promising complement to energy function based 

methods.

In this study, the global ProQ2 score was used for quality assessment and the local ProQ2 

score was used to construct the weight matrices. In our future work, other promising local 

score program such as IDDT [40] could be used.
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Fig. 1. 
The framework of the three new evolutionary algorithms for protein model refinement. The 

three algorithms differ in their crossover operators.
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Fig. 2. 
The corresponding ProQ2 and true GDT-TS values of the 200 models in the initial 

population for CASP target protein T0654.
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Fig. 3. 
The corresponding CGDT-TS and true GDT-TS values of the 200 models in the initial 

population for CASP target protein T0654.
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Fig. 4. 
The MDS-based crossover operator.
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Fig. 5. 
The MODELLER-based crossover operator.
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Fig. 6. 
The hybrid crossover operator using both MDS-based and MODELLER-based crossover 

operations.
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Fig. 7. 
Comparison of computational times(in minutes) of 6 different algorithms.
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Fig. 8. 
The breakdown of computation times (in minutes) of 6 different algorithms.
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Fig. 9. 
Comparison of solution quality, the true GDT-TS value of the best model in the final 

population, of three evolutionary algorithms against the best model in the initial population, 

all using ProQ2 in the evaluation step.
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Fig. 10. 
Comparison of solution quality, the average true GDT-TS value of the 10 best models in the 

final population, of three evolutionary algorithms against the initial population, all using 

ProQ2 in the evaluation step.
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Fig. 11. 
Comparison of solution quality, the average true GDT-TS value of all models in the final 

population, of three evolutionary algorithms against the initial population, all using ProQ2 in 

the evaluation step.
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Fig. 12. 
Comparison of solution quality, the true GDT-TS value of the best model in the final 

population, of three evolutionary algorithms against the best model in the initial population, 

all using CGDT-TS in the evaluation step.
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Fig. 13. 
Comparison of solution quality, the average true GDT-TS value of the best 10 models in the 

final population, of three evolutionary algorithms against the initial population, all using 

CGDT-TS in the evaluation step.
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Fig. 14. 
Comparison of solution quality, the average true GDT-TS value of all models in the final 

population, of three evolutionary algorithms against the initial population, all using CGDT-

TS in the evaluation step.
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Fig. 15. 
Summary of improvement of 5 different evolutionary algorithm settings over initial models. 

A positive value means an algorithm’s final solution improves its input, whereas a negative 

value means its solution is worse than its input.
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TABLE I

NAMING FOR DIFFERENT METHODS

Evaluation Num of Parents Crossover Operator

P_2P_W ProQ2 2 WMDS_based

P_3P_M ProQ2 3 MODELLER_based

P_2P_H ProQ2 2 Hybrid

C_2P_W CGDT-TS 2 WMDS_based

C_3P_M CGDT-TS 3 MODELLER_based

C_2P_H CGDT-TS 2 Hybrid
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