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Abstract—Population-based learning techniques have been
proven to be effective in dealing with noise and are thus
promising tools for the optimization of robotic controllers,
which have inherently noisy performance evaluations. This
article discusses how the results and guidelines derived from
tests on benchmark functions can be extended to the fitness
distributions encountered in robotic learning. We show that the
large-amplitude noise found in robotic evaluations is disruptive
to the initial phases of the learning process of PSO. Under these
conditions, neither increasing the population size nor increasing
the number of iterations are efficient strategies to improve the
performance of the learning. We also show that PSO is more
sensitive to good spurious evaluations of bad solutions than
bad evaluations of good solutions, i.e., there is a non-symmetric
effect of noise on the performance of the learning.

I. INTRODUCTION

There are several sources of randomness that make per-

formance evaluations of robotic controllers inherently noisy.

In addition to the obvious sensor and actuator noise, there

are other factors such as varying initial conditions, manu-

facturing tolerances, or changes in the environment that can

increase the uncertainty in performance measurements.

Population-based learning techniques have been proven to

be effective in dealing with noise in fitness evaluations [1].

Within this family of algorithms, we can find examples on the

successful performance under noise for Particle Swarm Op-

timization [2], [3], Genetic Algorithms [4], and Evolutionary

Strategies [5], [6]. Therefore, these techniques are promising

tools for the design of high-performing robotic controllers.

However, with the exception of [6], most of these studies

were conducted on benchmark functions with an additive

Gaussian noise model only. Since adequate benchmarks help

in the choice of the algorithmic variations and parametriza-

tions to obtain the highest possible performance with the

least number of function evaluations, in this article we would

like to test whether the results and guidelines derived from

tests on the benchmark functions can be extended to the

noisy performance evaluations encountered in multi-robot

learning. In order to achieve this goal, we are going to

analyze the effects of noise found in a robotic learning case

study, and then we will attempt to model and reproduce these
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effects on numerical benchmark functions with different

noise distributions.

We focus this research on the PSO algorithm [7], which

allows a distributed implementation in each robot, speeding

up the optimization process and adding robustness to fail-

ure of individual robots. PSO has been applied to several

problems in the robotics domain, such as robotic search [8],

odor source localization [9], [10], and path planning [11],

[12]. In particular, Pugh et al. [13] showed that PSO could

outperform Genetic Algorithms on benchmark functions and

for a robotic obstacle-avoidance task.

In our previous work [14], we compared PSO with Q-

Learning for the same multi-robot obstacle avoidance bench-

mark task used in this paper, showing that both algorithms

could achieve similar performances if a continuous state

representation was used for Q-Learning. More recently, we

have proposed guidelines to adjust the PSO algorithmic

parameters in multi-robot learning, aiming to reduce the

total evaluation time so that it is feasible to implement the

adaptation process within the limits of the robots’ energy

autonomy [15].

The remainder of this article is organized as follows.

Section II describes the algorithms and parameters used

in this article. Section III presents a robotic learning case

study where we analyze the fitness distributions and their

impact on the learning process. In Section IV we model

the effects of noise found on the robotic case study in

two numerical benchmark functions with added noise, and

discuss the differences with previous results on benchmark

functions. Finally, Section V concludes the article with a

summary of our findings and an outlook for future work.

II. OPTIMIZATION ALGORITHMS

In this article, two different optimization algorithms are

used both for robotic learning and benchmark functions. The

first one is a standard PSO version [7], while the second

is a distributed, noise-resistant, averaging variation of PSO

introduced by Pugh et al. [13]. This noise-resistant version

(PSOavg) operates by re-evaluating personal best positions

and averaging them with the previous evaluations. According

to previous works and the results on this paper, it represents

an improvement when dealing with noisy fitness functions.

The pseudocode for PSOavg is shown in Figure 1. The

difference with the standard PSO pseudocode is the addition

of lines 6 and 7.



1: Intialize particles

2: for Ni iterations do

3: for Np particles do

4: Update particle position

5: Evaluate particle

6: Re-evaluate personal best

7: Aggregate with previous best

8: Share personal best

9: end for

10: end for

Fig. 1. PSOavg algorithm.

TABLE I

PSO PARAMETER VALUES

Parameter Value

Number of robots Nrob 4
Population size Np 24
Iterations Ni 200
Evaluation span te 30 s
Re-evaluations Nre 1
Personal weight pw 2.0
Neighborhood weight nw 2.0
Dimension D 24
Inertia w 0.8
Vmax 20

In PSO, the movement of particle i in dimension j depends

on three components: the velocity at the previous step

weighted by an inertia coefficient w, a randomized attraction

to its personal best x∗i, j weighted by wp, and a random-

ized attraction to the neighborhood’s best x∗
i′, j

weighted by

wn (Eq. 1). rand() is a random number drawn from a uniform

distribution between 0 and 1.

vi, j =w·vi, j+wp ·rand() ·(x
∗
i, j−xi, j)+wn ·rand() ·(x

∗
i′, j−xi, j)

(1)

In the robotic learning, the algorithms are implemented

in a distributed fashion, which reduces the total evaluation

time required by a factor equal to the number of robots.

Each robot evaluates in parallel a possible candidate solution

and shares the solution with its neighbors in order to create

the next pool of candidate solutions. The neighborhood

presents a ring topology with one neighbor on each side.

Particles’ positions and velocities are initialized randomly

with a uniform distribution in a [−X ,X ] interval, and their

maximum velocity is also limited to that interval. In the

robotic learning case this interval is [−20,20], while in the

benchmark functions the interval is [−5.12,5.12].
The PSO algorithmic parameters for the robotic task are

set following the guidelines for limited-time adaptation we

presented in our previous work [15] and are shown in Table I.

The same set of parameters is used for the optimization of

the benchmark functions with noise.

III. ROBOTIC LEARNING

One of the aims of this article is to understand and

analyze the randomness in robotic performance evaluations

and how it affects the learning process. We have chosen

obstacle avoidance as a task to illustrate robotic learning

because it is a fundamental task popular in the robotic

learning literature [16]–[20], and it requires basic sensors

and actuators available in most mobile robots.

We use the metric of performance introduced in [16],

which was also used in [17], [19], [20]. It consists of three

factors, all normalized to the interval [0, 1], which reward

robots that move quickly, turn as little as possible, and stay

away from obstacles.

We conduct experiments in two different environments.

The first one is an empty square arena of 2m x 2m, where

the walls and the other robots are the only obstacles. The

second environment is the same bounded arena with 15

cylindrical obstacles added (diameter 10cm). The obstacles

are randomly repositioned before each fitness evaluation,

meaning that the second environment is not only more

complex but also variable from evaluation to evaluation, and

so more noisy. The initial robots positions are set randomly

with a uniform probability distribution, verifying that they

do not overlap with obstacles or other robots.

All experiments are conducted with 4 Khepera III robots

in simulation. The Khepera III mobile robot is a differential

wheeled vehicle with a diameter of 12 cm. It is equipped

with nine infra-red sensors for short range obstacle detection,

which in our case are the only external inputs for the

controllers. Simulations are performed in Webots [21], a

realistic physics-based submicroscopic simulator that models

dynamical effects such as friction and inertia.

The controller used is a recurrent artificial neural network

of two units with sigmoidal activation functions. The outputs

of the units determine the wheel speeds. Each neuron has

12 input connections: the 9 infrared sensors, a connection

to a constant bias speed, a recurrent connection from its

own output, and a lateral connection from the other neuron’s

output, resulting in 24 weight parameters in total. These 24

parameters define the dimensionality of the learning space

of the algorithms.

More details on the experimental setup and controller can

be found in our previous work [20].

A. Fitness Functions

A major challenge in comparing robotic learning algo-

rithms that is not present in benchmark functions is that

it is not possible to separate the deterministic and random

components of the fitness evaluations, i.e., there is no single

true fitness value for a given position. This implies that a

single evaluation does not provide sufficient information on

the goodness of a particular solution. Therefore, in order

to test the outcome of a given optimization technique, we

characterize each candidate solution by repeatedly evaluat-

ing the fitness a large number of times and look at the

probabilistic distribution of those evaluations. In particular,

for the results presented in this section, we do 1000 a

posteriori evaluations of the candidate solutions given by the

optimization algorithm.
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Fig. 2. Distributions of 1000 a posteriori evaluations of the fitness of
the global best solution at different iterations corresponding to two PSOavg
runs, one in each environment. p value of one-sample Kolmogorov-Smirnov
test in parenthesis. (a) Iteration 1 in obstacles arena (p = 0.000891). (b)
Iteration 3 in obstacles arena (p< 10−6). (c) Iteration 11 in obstacles arena
(p= 0.000017). (d) Iteration 20 in obstacles arena (p< 10−6). (e) Iteration
16 in empty arena (p< 10−6). (f) Iteration 19 in empty arena (p< 10−6).

Figure 2 shows examples of the distributions obtained for

global best positions at several iterations of PSOavg in the

two aforementioned environments (with and without obsta-

cles). The distributions shown in Figures 2a, 2b, 2c, and 2e

are not gaussian according to a one-sample Kolmogorov-

Smirnov statistical test. This test was performed as well

for every distribution of the PSOavg learning in the two

environments with negative results.

Looking at every distribution of the fitness of the solutions

obtained by PSOavg learning in the two environments we

see that those corresponding to the empty environment have

lower standard deviations (ranges from 0.039 to 0.226,

averaging 0.099 over all tested distributions) than those in

the environment with obstacles (ranges from 0.115 to 0.221,

averaging 0.175 over all tested distributions). This is some-

thing that could be expected from the experimental setup

given the randomized placement of obstacles and robots in

each evaluation.

It is important to mention that the distributions shown here

and found in our analysis can not be generalized directly
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Fig. 3. Evolution of the global best fitness for a single run of standard PSO
in the environment with obstacles. (a) The distributions of 1000 a posteriori
evaluations of global best fitness. (b) In blue, the global best value calculated
by standard PSO algorithm. In red, the average of global best fitness over
1000 a posteriori evaluations (vertical bars indicate the standard deviation).

to the whole search space, since they only correspond to

positions found during the PSO learning.

B. Learning with Noise

Figure 3a shows the distributions of the global best so-

lutions (reevaluated 1000 times) for each iteration during

a standard PSO run. In Figure 3b, in red, we can see

the average value of these distributions (and the standard

deviation with vertical bars). Although it only represents

a single run of PSO we can see how standard PSO is

actually not able to learn in a proper way, since the averaged

fitness value decreases sometimes or stays stable for a long

period. The global best value that PSO calculated during the

optimization is shown in blue. We can see it is monotonically

increasing. The problem for the learning algorithm is that

these fitness values obtained with a single sample and used

by PSO for those positions do not correspond with the

more accurate estimations obtained by averaging the 1000

a posteriori evaluations (in red).

In order to better understand this effect, we can look back

to Figure 3a to see that the distribution at iteration 3 has

a large standard deviation. What happened is that the given

position was evaluated by PSO with a high value (0.824),

becoming the global best and staying as such until iteration

34. Since standard PSO does not re-evaluate the personal best

positions this global best candidate was never filtered out.
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Fig. 4. Evolution of the global best fitness for a single run of PSOavg in
the environment with obstacles. (a) The distributions of 1000 a posteriori
evaluations of global best fitness. (b) In blue, the global best value calculated
by PSOavg algorithm. In red, the average of global best fitness over 1000
a posteriori evaluations (vertical bars indicate the standard deviation).

A similar analysis can be done for PSOavg by looking at

Figure 4. For the sake of fairness in terms of total number

of evaluations, we only performed 20 iterations of PSOavg,

corresponding to half of the number of iterations done in

standard PSO. It can be observed how, due to the reevaluation

of the personal bests, there is less difference between the

global best calculated by PSOavg (in blue) and its a posteriori

estimation (in red) than in standard PSO. Therefore, the

estimated fitness of the global bests (Figure 4b in red),

increases during the learning process, which implies that

the overall quality of the solutions is improving. Looking

at the initial distributions of the global best solutions learned

with PSOavg (Figure 4a), we notice that they have a noise

profile similar to the one from standard PSO, since they

correspond to the same environment with obstacles and the

initial learning conditions are the same for both algorithms .

IV. BENCHMARK FUNCTIONS

We perform PSO runs on two standard benchmarks, the

sphere function (Eq. 2) and Rosenbrock’s function (Eq. 3).

f1(x) =
D

∑
i=1

x2i (2)

f2(x) =
D−1

∑
i=1

[(1− x2i )+100(xi+1− x2i )
2] (3)

In order to reproduce the effects encountered in robotic

learning, we normalize the function values to the interval

[0,1] by dividing by the maximum value of each function

in the initial position range xinit = [−5.12, 5.12], which we

denote by max fi. We then add noise from two distributions: a

Gaussian distribution with zero mean and standard deviation

σ (Eq. 4), and a Bernoulli distribution with probability p and

amplitude A (Eq. 5).

f
g
i (x) =

fi(x)

max fi
+N (0,σ) (4)

f bi (x) =
fi(x)

max fi
+A ·B(p) (5)

If after adding noise the function values are greater than

one or less than zero, they are set to one and zero respectively

to maintain the fitness bounded in the interval [0,1].
The parameters for PSO on the benchmark functions are

the same as the ones used for robotic learning (Table I),

with the exception of two parameters that are specific to the

robotic case-study and are therefore omitted in the bench-

mark functions: number of robots and evaluation span (one

benchmark function evaluation is assumed to be equivalent to

the evaluation of a controller for the whole evaluation span).

A significant difference between benchmark functions and

robotic learning is that it is possible to remove the noise

from the benchmark functions to see the real performance of

the algorithm. Therefore, all results reported in this section

show the fitness function values obtained when evaluating the

functions without noise (there is no need of 1000 a posteriori

evaluations since the fitness is obtained in a deterministic

way). Another minor difference is that benchmark functions

are minimized as opposed to maximized.

When comparing PSO and PSOavg, it should be noted that

each iteration of PSOavg requires twice as many function

evaluations as standard PSO due to the re-evaluations of

the personal bests. Therefore, in order to maintain the total

number of evaluations equal and compare both algorithms

fairly, we run PSO for twice as many iterations as PSOavg.

In addition, we define a step of an algorithm to be equal to

one iteration of PSO, and half an iteration of PSOavg, so

that a fixed number of steps represents the same number of

function evaluations for both algorithms.

A. Gaussian Distribution

The purpose of the tests with added Gaussian noise is to

study the effect of large variances relative to the initial fitness

values in the optimization process. We used four increasing
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Fig. 5. Fitness of best solution at each step on function f1 with added
Gaussian noise for PSO and PSOavg. A step is equal to one iteration of
PSO, and half an iteration of PSOavg. (a) σ = 0. (b) σ = 0.01. (c) σ = 0.05.
(d) σ = 0.1.

values of the standard deviation: σ = {0,0.01,0.05,0.1}.
Figure 5 shows the progress of the learning on benchmark

function f1. For low levels of noise, the algorithm makes

progress for a large number of steps. However, for the

levels of noise observed in the experiments with robots, the

optimization process quickly stagnates, and increasing the

number of steps does not improve the performance further.

This effect is not mentioned in previous works on bench-

mark functions with added noise because the standard devia-

tion values used are much lower than the ones considered in

this paper. For example, on the unnormalized sphere function

(without dividing by the maximum value as described in the

beginning of this section), an unnormalized variance of 1.0

might affect the final stages of the optimization process when

the fitness values become small, but is not significant in the

initial phases where the values of the function are in the order

of D · x2init . However, when the fitness values are normalized

to [0,1] and σ = 0.1, the noise is much more disruptive in

the initial stages of the learning. This might explain why the

number of iterations used in the robotic learning literature is

considerably lower than the ones used on numeric benchmark
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Fig. 6. Fitness of best solution at each step on function f2 with added
Gaussian noise for PSO and PSOavg. A step is equal to one iteration of
PSO, and half an iteration of PSOavg. (a) σ = 0. (b) σ = 0.01. (c) σ = 0.05.
(d) σ = 0.1.

functions (order of hundreds versus order of thousands).

We observe a similar behavior in the normalized bench-

mark function f2 (see Figure 6), which suggests that this

effect is not particular to an individual fitness function but

mainly caused by the amount of noise added.

Under the high-amplitude noise conditions observed in

these experiments with σ = 0.05 and σ = 0.1, PSOavg

significantly outperforms standard PSO.

In the genetic algorithms literature, increasing the pop-

ulation size is often mentioned as an effective technique

to deal with noise [4], [5]. In order to test whether this

statement also applies to PSO under the high-amplitude noise

conditions described previously, we ran standard PSO on

benchmark functions f1 and f2 with added Gaussian noise

and increased the population size from 24 to {48,96,192}
while holding the other parameters constant (i.e., the larger

population sizes require a larger number of total function

evaluations). Figure 7 shows the final fitness obtained after

4000 iterations and Figure 8 shows the progress on function

f1. It can be seen from Figure 7 that increasing the population

size achieves better fitness for low amounts of noise, but it
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Fig. 7. Final fitness on functions f1 and f2 with added Gaussian noise for
increasing population sizes. (a) Function f1. (b) Function f2.

does not improve the performance for high-amplitude noise,

even though the total number of functions evaluations is

much higher. Figure 8 shows that even though the population

size was increased eight times the algorithm failed to make

progress for σ = 0.1.

B. Bernoulli Distribution

We employ the Bernoulli distribution to study the effect of

skewed noise with positive and negative amplitudes. This is

a simplified model of both type of outliers that we observed

in robotic learning: bad evaluations of good solutions (e.g.,

hardware failures), and good evaluations of bad solutions

(e.g., unusually advantageous initial conditions).

The variance σ2 of a Bernoulli distribution with probabil-

ity p and amplitude A is given by:

σ2 = A2p(1− p) (6)

We set p = 0.01 and A= {0,±0.1,±0.5,±1} in order to

obtain the same standard deviation σ = {0,0.01,0.05,0.1}
as used in the experiments with Gaussian Noise. Figure 9

shows the final fitness obtained after 4000 steps on both

benchmark functions. In all cases, negative amplitudes per-

form significantly worse than positive amplitudes of the same

magnitude. This means that there is a non-symmetric effect

of the noise: good spurious evaluations of bad solutions are

worse than bad evaluations of good solutions. PSOavg helps

to reduce this effect by discarding bad solutions that had a
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Fig. 8. Fitness of best solution at each iteration on function f1 with added
Gaussian noise for increasing population sizes. (a) σ = 0. (b) σ = 0.01. (c)
σ = 0.05. (d) σ = 0.1.

high fortuitous evaluation through the re-evaluations of the

personal best.

Figure 10 shows the progress of the optimization on

benchmark function f1 with added Bernoulli noise of sev-

eral amplitudes and p = 0.01. The algorithm fails to make

progress in high-noise settings, as we have shown with the

Gaussian noise distribution in both benchmark functions

(Figures 5 and 6). We also conducted tests on benchmark

function f2 with added Bernoulli noise and observed the

same behavior (graphs not shown).

V. CONCLUSIONS AND FUTURE WORK

We have shown that fitness evaluations in multi-robot

learning have a large-amplitude noise that is disruptive to the

initial phases of the learning process of PSO. We were able

to reproduce this behavior on standard benchmark functions

by normalizing the fitness values and adding Gaussian noise

with a large standard deviation relative to the fitness values

obtained at the beginning of the learning process.

We have also modeled two kind of outliers that we

observed in multi-robot learning with a Bernoulli distribution

using positive and negative amplitudes. We showed that
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Fig. 9. Final fitness on functions f1 and f2 with added Bernoulli noise
of positive and negative amplitudes (p = 0.01) for PSO and PSOavg. (a)
Function f1. (b) Function f2.

PSO is more sensitive to good spurious evaluations of bad

solutions than bad evaluations of good solutions.

Under these conditions, neither increasing the population

size nor increasing the number of iterations were able to

improve the performance of the learning. On the other hand,

we have seen that re-evaluations led to an improvement in

performance and are therefore an alternative to deal with

noise in multi-robot settings. As part of our future work,

we intend to design new targeted strategies for re-evaluating

solutions to overcome the challenge of noise in robotic

learning.
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