Abstract:
The aim of multimodal optimization is to locate multiple optima of a given problem. Evolutionary algorithms (EAs) are one of the most promising candidates for multimodal ...Show MoreMetadata
Abstract:
The aim of multimodal optimization is to locate multiple optima of a given problem. Evolutionary algorithms (EAs) are one of the most promising candidates for multimodal optimization. However, due to the use of greedy selection operators, the population of an EA will generally converge to one region of attraction. By incorporating a well-designed selection operator that can facilitate the formation of different species, EAs will be able to allow multiple convergence. Following this research avenue, we propose a novel selection operator, namely, queueing selection (QS) and integrate it with one of the most promising DE variants, called composite differential evolution (CoDE). The integrated algorithm (denoted by CoDE-QS) inherits the strong global search ability of CoDE and is capable of finding and maintaining multiple optima. It has been tested on the CEC2013 benchmark functions. Experimental results show that CoDE-QS is very competitive.
Published in: 2015 IEEE Congress on Evolutionary Computation (CEC)
Date of Conference: 25-28 May 2015
Date Added to IEEE Xplore: 14 September 2015
ISBN Information: