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Abstract—We propose the first large-scale message passing
distributed scheme for parallelizing the computational flow of
MOEA/D, a popular decomposition-based evolutionary multi-
objective optimization algorithm. We show how synchronicity and
workload granularity can impact both quality and computing
time, in an extremely fine-grained configuration where each
individual in the MOEA/D population is mapped to a single
distributed processing unit. More specifically, we deploy our dis-
tributed protocol using a large-scale environment of 128 comput-
ing cores and conduct a throughout analysis using a broad range
of bi-objective combinatorial ρMNK-landscapes. Besides being
able to show significant speed-ups while maintaining competitive
search quality, our experimental results provide insights into
the behavior of the proposed scheme in terms of quality/speed-
up trade-offs; thus pushing a step towards the achievement of
effective and efficient parallel decomposition-based approaches
for large-scale multi-objective optimization.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) refer to
the situation where multiple objectives are to be optimized
in a simultaneous manner. Many-often, the objectives to be
optimized are conflicting, and solving a given MOP turns out
to seek a whole set of solutions instead of just a single one.
The set of optimal solutions is called the Pareto set, which
is the set of all non-dominated solutions, i.e., solutions for
which there exist no other solution providing a better trade-
off in all objectives. It is well understood that computing the
Pareto set is a difficult task which is in addition intractable
for several MOPs. In this context, evolutionary multi-objective
optimization (EMO) algorithms have been proved extremely
helpful in computing a high-quality approximation of the
Pareto set which portrays good and representative balance
among conflicting objectives. One can find different classes
and paradigms in EMO algorithms, ranging from Pareto-
based methods, indicator-based methods, and aggregation-
based methods. In this paper, we are interested in the last group
of methods and particularly on the design of new advantageous
approaches dedicated to large-scale and distributed computing
environments. In this respect, the motivation of this paper is
to be understood from two perspectives.

On the one hand, aggregation-based EMO methods have
attracted a lot of attention during the last few years. In
particular, the so-called MOEA/D (multi-objective evolutionary
algorithm based on decomposition) framework [1] is being
actively developed by the community due to its simplicity, but
also due to its high search ability, computational efficiency,
and adaptability to many problems. In MOEA/D, a MOP is
reformulated as a set of single-objective sub-problems by
means of scalarizing functions configured with different weight
vectors in the objective space. As such, MOEA/D solves the so-
obtained single objective sub-problems in a cooperative man-

ner using evolutionary mating selection, replacement and varia-
tion operators. On the other hand, when abstracting away from
the optimization-specific operations, one can view MOEA/D as
a divide-and-conquer algorithm which might expose intrinsic
parallelism since the original MOP is explicitly decomposed
in order to be solved. Such a claim would allow one to
tackle large-scale problems and to take much benefits from
the increased availability and computing power of nowadays
large-scale distributed platforms such as clusters and grids.
Generally speaking, designing parallel and distributed EMO
algorithms has a well established foundation and a long-term
practical usefulness in solving difficult MOPs. Nevertheless,
investigating to what extent the MOEA/D framework can be
redesigned to run efficiently in large-scale compute environ-
ments is surprisingly not yet fully addressed although one can
find some recent attempts in this direction [2], [3], [4]. We
attribute this to the following two challenging questions:

• How to maintain the search ability of the MOEA/D
framework when attempting to break the dependencies
in the computational flow of its original implementa-
tion? In fact, MOEA/D is inherently sequential and it
needs to be accurately adapted in order not only to fit
the distributed setting, but also to guarantee as much
approximation quality as possible.

• How to deal with the fine-grained parallelism that is
likely to be encountered when effectively deploying
the so-obtained variants at a large distributed scale?
In fact, fine-grained workload can drastically pre-
vent high performance when scaling up computing
resources, especially in the scenario where communi-
cation cost is non-negligible compared to objectives’
evaluation cost of the target MOP.

The ultimate challenge standing behind the previous questions
is to derive novel parallel MOEA/D algorithms presenting a
good balance between approximation quality and speed-up in
the largest scales where fine-grained computations are unavoid-
able. The aim of this paper is to address this challenge and to
shed more light into decomposition-based EMO best practices
in the context of large-scale distributed environments. More
precisely, our contributions can be summarized as follows:

• We propose a new fine-grained message-passing
scheme to distribute the MOEA/D computations. Our
scheme can be configured so as to run in synchronous,
as well as in asynchronous manner, and has an
additional parameter allowing to control workload
granularity; thus eliciting different trade-offs between
parallel efficiency and approximation quality.

• We implement our distributed scheme using the MPI
message-passing library and deploy the so-obtained



distributed protocols in a real experimental set-up
on top of a cluster of 128 computing cores. To our
best knowledge, this is the first time that such a
computing environment is considered. As a case study,
we consider an extensive set of combinatorial bi-
objective ρMNK-landscapes, ranging from small- to
large-size instances, as well as instances with different
characteristics in terms tractability and difficulty.

• We provide a throughout evaluation of our distributed
scheme and its implemented variants. Overall, we are
able to experimentally validate the accuracy of our
approach. In particular, we obtain significant speed-
ups while maintaining very competitive approximation
quality even in the most fine-grained scenarios; thus
pushing parallelism in MOEA/D to its limits. More
importantly, our experimental study provides the first
comprehensive results on the benefits and the limits
of parallelizing the MOEA/D computational flow.

The rest of this paper is organized as follows. In Section II,
we recall some basic definitions and provide a related work
overview. In Section III, we describe our distributed scheme
and discuss its message passing implementation. In Section IV,
we provide a throughout experimental study on bi-objective
ρMNK-landscapes. In Section V, we conclude the paper.

II. BACKGROUND AND RELATED WORK

A. Multi-objective Optimization

A multi-objective optimization problem (MOP) can be de-
fined by a set of M objective functions f = (f1, f2, . . . , fM ),
and a set X of feasible solutions in the decision space. In the
combinatorial case, X is a discrete set. Let Z = f(X) ⊆ IRM

be the set of feasible outcome vectors in the objective space. To
each solution x ∈ X is assigned an objective vector z ∈ Z, on
the basis of the vector function f : X → Z. In a maximization
context, an objective vector z ∈ Z is dominated by an objective
vector z′ ∈ Z (z ≺ z′) iff ∀m ∈ {1, 2, . . . ,M}, zm ≤ z′m
and ∃m ∈ {1, 2, . . . ,M} such that zm < z′m. A solution
x ∈ X is dominated by a solution x′ ∈ X (x ≺ x′) iff
f(x) ≺ f(x′). A solution x? ∈ X is termed Pareto optimal
(or non-dominated), if there does not exist any other solution
x ∈ X such that x? ≺ x. The set of all Pareto optimal solutions
is the Pareto set. Its mapping in the objective space is the
Pareto front. In the combinatorial case, the size of the Pareto
set is typically exponential in the size of the problem instance,
and deciding if a solution belongs to the Pareto set may be NP-
complete. Therefore, our goal is to identify a good Pareto set
approximation. For this purpose, evolutionary multi-objective
optimization (EMO) constitute a popular, effective and efficient
alternative. In this paper, we are interested in decomposition-
based methods, and especially on the MOEA/D framework.

B. The MOEA/D framework

Decomposition-based EMO algorithms [1], [5], [6] seek
a good-performing solution in multiple regions of the Pareto
front by decomposing the original MOP into a number of
scalarized single-objective sub-problems. Different scalarizing
functions have been proposed so-far [7]. In this paper, we use

the weighted Chebyshev (gte) function, to be minimized:

gte(x, λ) = max
i∈{1,...,m}

λi ·
∣∣z?i − fi(x)∣∣ ,

where x ∈ X , λ = (λ1, . . . , λm) is a positive weighting coef-
ficient vector such that λi > 0 for all i, and z? = (z?1 , . . . , z

?
m)

is a reference point.

In the MOEA/D framework, sub-problems are optimized
in a dependent manner by defining a neighborhood relation
between sub-problems. In fact, solving a single sub-problem
is likely to benefit from the current solutions found for
the corresponding neighboring sub-problems. In more details,
let (λ1, . . . , λµ) be a set of µ uniformly distributed weight-
ing coefficient vectors defining µ sub-problems. MOEA/D
maintains a population P = (x1, . . . , xµ), each individual
corresponding to a good-quality solution for one sub-problem.
For each sub-problem i ∈ {1, . . . , µ}, a set of neighbors
B(i) is defined by considering the T closest weight vec-
tors. To evolve the population, sub-problems are optimized
iteratively. At a given iteration corresponding to one sub-
problem i, two solutions are selected at random from B(i),
and an offspring solution x is created by means of variation
operators (mutation and crossover). A problem-specific repair
or improvement heuristic is potentially applied on solution x
to produce x′. Then, for every sub-problem j ∈ B(i), if x′
improves over j’s current solution xj then x′ replaces it, i.e.,
if gte(x′, λj) ≤ gte(xj , λj) then set xj = x′. The algorithm
loops over sub-problems until a stopping condition is satisfied.

One can find other more specific variations of MOEA/D
which may differ in the way scalarizing functions are defined,
or in the way the neighbors are computed. We do not address
these variations and we rather focus on the parallelization of
the main MOEA/D components. In fact, the design of MOEA/D
is inherently sequential since sub-problems are considered
iteratively in a dependent manner. These dependencies are one
of the main issues one has to deal with in a parallel setting.
In the following, we review existing related solutions.

C. Parallelism in MOEA/D

Although one can find an extensive literature on the benefits
of parallel and distributed computing with respect to EMO
algorithms in general [8], we can report relatively few recent
work related to the MOEA/D framework. The first study is con-
ducted in [2] where the authors investigated the intuitive idea
that non-overlapping sub-problems, i.e. sub-problems having
disjoint T -neighbors, could be processed in parallel. A thread-
based implementation, specific to a shared memory system
with multi-core processors, was derived. The population is
partitioned so that each thread handles a separate partition.
Since the neighbors of sub-problems at the borders of partitions
overlap, some elements of a thread could be concurrently
modified. To avoid race conditions, critical sessions are iden-
tified and implemented accordingly. Using eight-core machine
and continuous MOP benchmarks, it is shown that speed-ups
can be obtained at the price of significantly deteriorating the
approximation quality compared to the sequential MOEA/D.
Actually, above 4 partitions for a population size of 600,
the approximation quality starts to drop substantially, which
indicates that the proposed approach cannot scale properly.



The idea of partitioning the MOEA/D population was
extended in [3], and the partitions were made disjoint to
avoid the overlapping issues. The observation that disjoint
partitions may require different computational efforts was
investigated. Advanced mechanisms controlling the size of
partitions dynamically or evenly distributing the number of
function evaluations were studied. Experimental results with 8
partitions for a population size of 300 were shown. Besides
the limitations inherent to such a configuration, no parallel
implementation was actually provided. In fact, the focus there-
in was on studying the impact of the proposed models on
quality, and not on parallel issues.

More recently, a parallel variant of MOEA/D based on the
island model, and called PaDe, was investigated in [4]. In such
a model, every island evolves a sub-population of individuals
with respect to given sub-problems. Selected individuals are
then sent to other islands during a migration phase. The parallel
efficiency of the so-designed model is demonstrated with a 8-
core shared-memory machine on a thread-basis implementa-
tion where a thread can handle a subset of islands. However,
two major issues are left open. While PaDe is experimented
with a self-adaptive differential evolution (DE) operator, dif-
ferent from the standard DE operator used to run MOEA/D,
it is still not able to output similar approximation results.
More importantly, a thread-based implementation is suitable
for a shared memory system, and it is known that scaling up
and adapting it for a distributed setting while maintaining its
accuracy can suffer several shortcomings; because concurrent
shared-memory read/write operations are no more possible,
and distributed communication is typically many orders of
magnitude more costly, which can be prohibitive.

Tightly related to the island model, novel generational
sequential MOEA/D variants were described in [9]. The idea
developed there-in is to rethink MOEA/D selection and re-
placement mechanisms by evolving the whole individuals
simultaneously at once instead of iteratively one after the other.
In their conclusion, the authors pointed out that a genera-
tional approach opens the door to incorporating parallelism
in MOEA/D. However, moving to a distributed setting is not
obvious and requires further careful investigations.

D. Discussion and Contribution Positioning

Despite the skillful design and the valuable efforts involved
in the mentioned approaches, understating how the quality
of MOEA/D is affected by parallelism, and what speed-ups
can be attained when facing fine-grained parallelism at large
distributed scales, is not yet fully accomplished. In this respect,
our work departs from the previous studies in several aspects;
but it also retains insightful lessons learnt from them. As
in [2], [3], the idea of handling overlapping neighbors is a
key point for scalability and high-quality approximation. As
in [9], we adopt a generational approach to maintain good
approximation quality. As in [4], we get inspired by the island
model for the purpose of parallel efficiency. However, our
approach is not explicitly based on the concept of islands and
it is finely optimized to face fine-grained parallelism and to
handle concurrency in the MOEA/D computational flow. As a
by-product, the so-obtained scheme is proved very competitive
when effectively implemented using message-passing under
harsh configurations. This is a distinctive aspect of our work
which gives room for further research in this line.

III. A FINE GRAINED DISTRIBUTED SCHEME

Our MOEA/D distributed scheme, called MP-MOEA/D,
and its high-level implementation using the message passing
paradigm are summarized in Algorithm 1 and the procedures
of Algorithms 2 and 3. Before going into the details, it is
important to remark that the template of Algorithm 1 is to
be executed independently in parallel by every processing unit
(all variables are local and not shared in any way). In fact, we
assume that each processing unit (PU) pi, i ∈ {0, . . . , µ}, is
handling one single sub-problem with respect to weight vec-
tor λi, obtained by decomposition as in the standard MOEA/D
framework. In other words, the population is partitioned into
disjoint single-individual sub-populations evolved separately
by every single PU1. In addition, the T neighbors of PU pi
are defined consequently as those holding the T neighboring
sub-problems corresponding to weight vectors λj , j ∈ B(i).
Having this in mind, the main responsibility of a PU is to
identify the best solution with respect to its sub-problem while
cooperating with its neighbors. For this purpose, the compu-
tations performed by PU pi within the MP-MOEA/D scheme
can be divided in two stages: The first stage (lines 3 to 14)
is performed locally without any communication, whereas the
second stage requires distributed communication with neigh-
bors (line 16) as expanded in Algorithms 2 and 3.

A. Stage #1: Local Computations

The goal of PU pi is two-fold: (i) to identify an improving
solution for its own sub-problem, and (ii) to check whether an
improving solution is found w.r.t. neighboring sub-problems.
For this purpose, pi maintains a representative copy of the
solution of each neighbor. For clarity, we delay the mechanism
to distributively maintain these copies to later.

Using its own solution and the copies with respect to
its neighbors, a PU pi performs the same selection and
variation mechanisms as in the conventional MOEA/D, with
essentially three main modification: (i) pi’s actual solution xi
is always selected for reproduction (line 7), (ii) the number of
iterations during which new offspring solutions are generated
is controlled by a parameter tmax (line 5), and (iii) since the
actual remote solutions of neighbors are not known nor directly
accessible, PU pi simply checks whether any newly generated
offspring does improve any of the local copy maintained for
every neighbor (lines 13 to 14). The idea here is that, if the
local copies are sufficiently up-to-date, then the protocol has
the ability to distributively generate a ‘good’ offspring and
to correctly detect any improvement on behalf of neighboring
PUs. The improving offspring solutions are momentarily saved
for the next stage.

B. Stage #2: Distributed Update

After the local computation stage, the second stage in-
volving distributed communications and encapsulated within
procedure DISTRIBUTED UPDATE (line 16) is activated. Its
goal is to distributively update the local states of PUs. In fact,
two main situations can occur at every PU pi after executing
the first stage: (i) an improving offspring solution for its own
sub-problem has been identified, (ii) an improving offspring
solutions for one (or more) neighboring sub-problem(s) has

1Notice that this is a harsh assumption which allows us to fairly study the
scalability of our scheme with very fine-grained computations.



Algorithm 1: MP-MOEA/D: High level code to be exe-
cuted by every processing unit (PU) pi, i ∈ {0, . . . , µ}

Input: B(i): neighboring sub-problems;
λj for every j ∈ B(i): neighbors’ weight vectors;

1 INITIALIZE
(
∪j∈B(i)x

j , z?
)

; flag ← 0;
2 while STOPPING CONDITION do

// Stage #1: Local computations
3 for j ∈ B(i) \ {i} do yj ← xj ;
4 ;
5 Repeat tmax times:

// Mating selection and variation
6 `← rand(B(i) \ {i});
7 y ← CROSSOVER MUTATION REPAIR(xi, x`);
8 for m ∈ {1, . . . ,M} do
9 if z?m < fm(y) then z?m ← fm(y);

10 ;

// Local Replacement
11 if g(y, λi) < g(xi, λi) then
12 xi ← y; flag ← 1;

// Check for neighbors’ improvements
13 for j ∈ B(i) \ {i} do
14 if gte(y, λj) < gte(yj , λj) then yj ← y;
15 ;

// Stage #2: Distributed update
16 DISTRIBUTED UPDATE ();

been identified. In the first case, pi has to notify its neighbors
so that they can update their local copies with pi’s new current
solution. In the second case, pi has to notify the corresponding
neighbors so that they can update their own solutions with
a new improving offspring. Symmetrically, pi has to check
whether these situations occur at one (or more) neighbor(s)
before resuming a new stage of local computations.

The implementation of the above described mechanism is
to be handled with special care since this is where fine-grained
parallelism can prevent scalability. In fact, the fastest the states
of PUs are updated with fresh information from neighbors,
the better should be the approximation quality. On the other
side, synchronizing the PU states distributively more often
implies more communication cost, that might dominate the
cost of local computations. Notice that this is precisely the
reason why we introduced the parameter tmax in the previous
stage, which offers the possibility of controlling the relative
cost of local computations by fixing the communication fre-
quency. Moreover, we experiment both synchronous (Algo. 2)
and asynchronous (Algo. 3) message passing implementations
where all distributed update operations are aggregated into a
single message in order to reduce the number of messages
transmitted over the network.

In the synchronous case, every PU sends a message with
accurate information to its neighbors, and then blocks waiting
for their respective messages to be received. This synchronous
implementation provides the guarantee that all PUs will be
updated with fresh information before resuming a new round
of local computations. However, in order to avoid deadlocks,
we need that every PU sends an acknowledgement (empty
message) to its neighbors even if no change in the PU local
state was observed. This has the drawback of introducing idle

Algorithm 2: DISTRIBUTED UPDATE: Synchronous
message-passing implementation
// Notify neighbors

1 for j ∈ B(i) \ {i} do
2 if flag = 1 then Msg[0] ← xi;
3 ;
4 if xj 6= yj then Msg[1] ← yj ;
5 ;
6 Send (Non-blocking) Msg to pj ;

// Wait for neighbors’ notifications
7 flag ← 0;
8 for j ∈ B(i) \ {i} do
9 Wait until reception (Blocking) of Msg from pj ;

// Update neighbor’s copy
10 v ← Msg[0];
11 if v 6= ∅ then xj ← v;
12 ;

// Update local solution
13 x ← Msg[1];
14 if x 6= ∅ and gte(x, λi) < gte(xi, λi) then
15 xi ← x; flag ← 1;

// Update local reference point
16 for m ∈ {1, . . . ,M} do
17 if z?m < vm then z?m ← vm;
18 ;
19 if z?m < xm then z?m ← xm;
20 ;

Algorithm 3: DISTRIBUTED UPDATE: Asynchronous
message-passing implementation
// Differences with Algo.2 are highlighted

1 for j ∈ B(i) \ {i} do
2 if xj 6= zj or flag = 1 then
3 if flag = 1 then
4 Msg[0] ← i ; Msg[1] ← xi;

5 if xj 6= yj then Msg[2] ← yj ;
6 ;
7 Send (Non-blocking) Msg to pj ;

// Check for neighbors’ notifications
8 flag ← 0;
9 while There is a pending message Msg do

10 j ← Msg[0] ;
11 v ← Msg[1];
12 if v 6= ∅ then xj ← v;
13 ;
14 x ← Msg[2];
15 if x 6= ∅ and gte(x, λi) < gte(xi, λi) then
16 xi ← x; flag ← 1;

17 for m ∈ {1, . . . ,M} do
18 if z?m < vm then z?m ← vm;
19 ;
20 if z?m < xm then z?m ← xm;
21 ;

times where PUs are actually waiting for non-useful messages.
The difficulty here is that a PU has no way to know whether
a remote neighbor actually received a useful information.

The asynchronous implementation is technically very sim-
ilar, but it removes the need to systematically send a message
for neighbors and to wait for their messages. In fact, a PU
updates a neighbor by sending non-empty messages containing



useful fresh information only when needed. Symmetrically, a
PU needs to simply check, without blocking, whether some
messages are pending. Although this asynchronous mechanism
removes waiting times and synchronization costs, it has a
major limitation compared to the synchronous version. In fact,
depending on the relative cost of communications compared
to local computations, a PU may miss to update itself with
fresh information. Hence, the first stage can eventually be re-
sumed for several rounds with outdated information, which can
constitute a sever penalty in terms of approximation quality.

C. Discussion

We notice that once a PU pi receives an offspring from a
neighbor, this does not mean that the offspring is necessarily
improving the actual solution of pi since the sender PU has
only a copy of pi’s solution which may be outdated at the
time the new offspring was computed. In addition, if a PU pi
updates its solution because it received an improving offspring,
then PU pi needs to inform its neighbors. This is handled using
the flag variable. Another important point is the update of the
reference point (z?) required by the Chebyshev function. In
our implementation, each PU relies only on the information
received from neighbors. To terminate the description of our
scheme, we also notice that every process needs to initialize the
local copies of its neighbors. This is performed before starting
the main optimization loop by making every PU generating
an initial solution for its sub-problem, and then sending it to
its neighbors.

All along the previous description, each PU was assumed
to optimize a single sub-problem. It should be clear that the
scenario where population size is much larger than the number
of available PUs can also be captured by simply partitioning
the population accordingly and modifying our protocols to
handle the local copies of neighboring sub-problems being at
the frontier of each partition. It should also be clear that such a
scenario would be much more favorable and less challenging.
In fact, our preliminary experiments showed that the resulting
workload is less fine-grained and maintaining the local state
at each PU’s partition is less critical. We however choose to
focus on the most harsh scenario where every PU is handling
one single solution in order to push our scheme to its limits
and to fairly appreciate its strengths and weaknesses.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

1) ρMNK-Landscapes: To analyze the behavior of our
approach, we consider combinatorial bi-objective ρMNK-
landscapes with a broad range of instances with different
structures and sizes. The family of ρMNK-landscapes con-
stitutes a problem-independent model used for constructing
multi-objective multi-modal landscapes with objective corre-
lation [10]. A multi-objective ρMNK-landscape aims at maxi-
mizing an objective function vector f : {0, 1}N → [0, 1]M . So-
lutions are binary strings of size N . The parameter K defines
the number of variables that influence a particular position
from the bit-string (the epistatic interactions). By increasing
the number of variable interactions k from 0 to (N − 1),
landscapes can be gradually tuned from smooth to rugged. The
objective correlation parameter ρ defines the degree of conflict

between the objectives. The positive (resp. negative) data corre-
lation allows to decrease (resp. increases) the degree of conflict
between the objective function values. This has an impact on
the cardinality of the Pareto front [10]. We investigate 50 ran-
dom ρMNK-landscapes with ρ ∈ {−0.8,−0.4, 0.0, 0.4, 0.8},
M = 2, N ∈ {128, 256, 512, 1024, 2048} and K ∈ {4, 8}.

2) Parameter setting: We deploy our scheme on top of the
Grid5000 French grid [11]. We use a number of µ = 128
cores (using a cluster of 46 times 2 CPUs Intel@2.83GHz,
4 cores/CPU), which also corresponds to the population size
used in all our experiments. Our synchronous and asyn-
chronous implementations are based on the C++ MPI library.
The conventional sequential MOEA/D [1] is also considered as
a baseline algorithm. All approaches use an independent bit-
flip mutation with a rate 1/N and one-point crossover with
probability 0.9. The initial population is generated randomly.
The stopping condition is set to µ · 104 evaluation function
calls. Based on preliminary experiments, we investigate a
neighborhood size T ∈ {3, 5, 7} and tmax ∈ {1, 2, 3, 4, 5, 6}.
Overall, we tested 1 950 different configurations, each one
executed 30 times. Due to space limitations, we only highlight
a subset of settings allowing us to state our findings.

B. Impact of Synchronicity

1) Approximation Quality: We follow the performance
assessment design proposed in [12] using the hypervolume
difference and the multiplicative epsilon indicators [13] which
are both to be minimized. The hypervolume difference indica-
tor (I−H ) gives the difference between the portion of the objec-
tive space that is dominated by a Pareto set approximation and
some reference set. The reference point is set to the worst value
obtained over all approximations, and the reference set is the
best-found approximation over all tested configurations. The
epsilon indicator (I×ε ) gives the minimum multiplicative factor
by which the approximation set has to be translated in the
objective space in order to weakly dominate the reference set.

In Table I, we show a representative subset of results
assessing the approximation quality of MP-MOEA/D when
compared against the conventional MOEA/D. The sign “N”
(resp. “∇”, “≈”) indicates that the algorithm in the column
outperforms (resp. is outperformed by, equivalent to) MOEA/D
significantly using a Wilcoxon signed ranked test with a p-
value of 0.05. We can see that synchronous MP-MOEA/D
is the best performing algorithm. It is able to significantly
improve upon the standard MOEA/D w.r.t. both the epsilon
and hypervolume indicators in 25 out of 50 instances, while
never being worst. The asynchronous implementation provides
less impressive results since it improves upon MOEA/D on 7
instances, while being worst in also 7 instances (w.r.t. both
indicators). It is also clear that the difference between MP-
MOEA/D and MOEA/D is more substantial when considering
higher dimensions, no matter whether the synchronous or the
asynchronous implementation is considered.

Remember that the only difference between the syn-
chronous and the asynchronous implementation is that in the
former PUs have the guarantee to receive fresh information
about neighbors states after every local computation stage,
whereas in the latter, PUs do not spend time waiting for
this information. Hence, these first observations show that
synchronicity in the distributed update stage is a critical point



TABLE I. APPROXIMATION QUALITY OF MOEA/D vs. MP-MOEA/D FOR T = 5 AND tmax = 1. A LOWER INDICATOR-VALUE INDICATES A BETTER
PERFORMANCE. THE AVERAGE VALUE AND THE STANDARD DEVIATION (IN BRACES, WITH A MULTIPLICATIVE FACTOR OF 102) ARE REPORTED.

N K ρ
Hypervolume Difference (I−H ) Epsilon Indicator (I×ε )

MOEA/D
MP-MOEA/D MOEA/D

MP-MOEA/D
Synchronous Asynchronous Synchronous Asynchronous

128 4 −0.8 0.013 (0.25) 0.013 (0.19) ≈ 0.015 (0.23) ≈ 1.054 (1.15) 1.046 (1.02) N 1.055 (1.33) ≈
128 4 −0.4 0.017 (0.36) 0.017 (0.29) ≈ 0.021 (0.37) ∇ 1.054 (1.00) 1.049 (0.67) ≈ 1.060 (1.07) ∇
128 4 0.0 0.020 (0.30) 0.017 (0.29) N 0.018 (0.22) ≈ 1.073 (1.43) 1.059 (0.85) N 1.068 (1.13) ≈
128 4 0.4 0.011 (0.24) 0.010 (0.27) ≈ 0.010 (0.22) ≈ 1.051 (1.09) 1.046 (1.26) ≈ 1.047 (0.79) ≈
128 4 0.8 0.005 (0.15) 0.004 (0.12) N 0.005 (0.12) ≈ 1.047 (1.38) 1.035 (0.95) N 1.043 (1.07) ≈
128 8 −0.8 0.016 (0.27) 0.016 (0.28) ≈ 0.019 (0.23) ∇ 1.070 (1.24) 1.058 (1.41) N 1.071 (1.43) ≈
128 8 −0.4 0.020 (0.24) 0.018 (0.34) ≈ 0.023 (0.29) ∇ 1.064 (0.86) 1.057 (1.06) N 1.069 (0.88) ∇
128 8 0.0 0.021 (0.41) 0.022 (0.32) ≈ 0.022 (0.36) ≈ 1.073 (1.55) 1.077 (1.35) ≈ 1.078 (1.19) ≈
128 8 0.4 0.016 (0.31) 0.015 (0.31) ≈ 0.015 (0.18) ≈ 1.068 (1.25) 1.064 (1.30) ≈ 1.065 (0.94) ≈
128 8 0.8 0.007 (0.21) 0.007 (0.14) ≈ 0.006 (0.12) ≈ 1.052 (1.66) 1.057 (1.19) ≈ 1.047 (1.05) ≈
256 4 −0.8 0.010 (0.18) 0.011 (0.22) ≈ 0.013 (0.16) ∇ 1.055 (1.11) 1.041 (0.96) N 1.055 (1.18) ≈
256 4 −0.4 0.013 (0.17) 0.012 (0.20) N 0.014 (0.24) ≈ 1.059 (1.05) 1.043 (0.71) N 1.050 (0.87) N
256 4 0.0 0.011 (0.19) 0.010 (0.22) N 0.012 (0.17) ≈ 1.050 (0.79) 1.041 (0.77) N 1.049 (0.81) ≈
256 4 0.4 0.008 (0.16) 0.007 (0.18) ≈ 0.008 (0.13) ≈ 1.045 (1.07) 1.039 (0.72) N 1.044 (0.68) ≈
256 4 0.8 0.004 (0.10) 0.003 (0.10) ≈ 0.004 (0.08) ≈ 1.037 (1.06) 1.033 (0.96) ≈ 1.038 (0.92) ≈
256 8 −0.8 0.010 (0.22) 0.010 (0.18) ≈ 0.013 (0.16) ∇ 1.053 (1.26) 1.042 (0.90) N 1.056 (0.95) ≈
256 8 −0.4 0.013 (0.20) 0.013 (0.23) ≈ 0.014 (0.24) ≈ 1.054 (0.69) 1.044 (0.77) N 1.049 (0.85) N
256 8 0.0 0.028 (0.65) 0.024 (0.53) N 0.027 (0.57) ≈ 1.285 (1.88) 1.274 (1.41) N 1.277 (1.61) ≈
256 8 0.4 0.008 (0.21) 0.009 (0.17) ≈ 0.009 (0.21) ∇ 1.042 (1.11) 1.045 (0.75) ≈ 1.049 (0.87) ∇
256 8 0.8 0.004 (0.12) 0.004 (0.10) ≈ 0.004 (0.12) ≈ 1.039 (1.23) 1.038 (1.06) ≈ 1.041 (1.18) ≈
512 4 −0.8 0.008 (0.14) 0.008 (0.12) ≈ 0.010 (0.14) ∇ 1.053 (1.01) 1.029 (0.43) N 1.043 (1.25) N
512 4 −0.4 0.011 (0.15) 0.009 (0.19) N 0.012 (0.16) ≈ 1.056 (0.73) 1.038 (0.64) N 1.045 (0.53) N
512 4 0.0 0.009 (0.15) 0.007 (0.16) N 0.009 (0.14) ≈ 1.048 (0.78) 1.034 (0.65) N 1.043 (0.46) N
512 4 0.4 0.007 (0.13) 0.006 (0.16) N 0.007 (0.10) ≈ 1.045 (0.59) 1.036 (0.81) N 1.040 (0.46) N
512 4 0.8 0.003 (0.07) 0.003 (0.09) ≈ 0.003 (0.06) ≈ 1.031 (0.62) 1.028 (0.84) ≈ 1.032 (0.67) ≈
512 8 −0.8 0.008 (0.14) 0.008 (0.13) ≈ 0.010 (0.10) ∇ 1.056 (0.98) 1.031 (0.46) N 1.045 (0.72) N
512 8 −0.4 0.010 (0.15) 0.008 (0.16) N 0.011 (0.13) ≈ 1.056 (0.78) 1.035 (0.54) N 1.041 (0.43) N
512 8 0.0 0.010 (0.14) 0.009 (0.16) ≈ 0.011 (0.13) ∇ 1.050 (0.75) 1.042 (0.81) N 1.047 (0.51) ≈
512 8 0.4 0.006 (0.13) 0.005 (0.13) N 0.007 (0.13) ∇ 1.037 (0.75) 1.033 (0.68) N 1.042 (0.73) ∇
512 8 0.8 0.003 (0.09) 0.003 (0.09) ≈ 0.003 (0.07) ≈ 1.033 (0.96) 1.030 (0.86) ≈ 1.036 (0.82) ≈

1024 4 −0.8 0.007 (0.09) 0.006 (0.07) N 0.008 (0.11) ∇ 1.063 (0.70) 1.028 (0.34) N 1.039 (0.57) N
1024 4 −0.4 0.009 (0.13) 0.007 (0.10) N 0.008 (0.09) N 1.061 (0.40) 1.039 (0.65) N 1.038 (0.60) N
1024 4 0.0 0.008 (0.15) 0.007 (0.11) N 0.008 (0.09) ≈ 1.049 (0.65) 1.041 (0.63) N 1.040 (0.44) N
1024 4 0.4 0.005 (0.11) 0.004 (0.11) N 0.005 (0.08) ≈ 1.036 (0.52) 1.029 (0.52) N 1.033 (0.48) N
1024 4 0.8 0.003 (0.08) 0.002 (0.08) N 0.003 (0.05) ≈ 1.023 (0.69) 1.021 (0.70) ≈ 1.029 (0.66) ∇
1024 8 −0.8 0.007 (0.09) 0.007 (0.06) N 0.008 (0.08) ∇ 1.058 (0.67) 1.029 (0.33) N 1.040 (0.83) N
1024 8 −0.4 0.010 (0.10) 0.009 (0.09) N 0.009 (0.11) N 1.061 (0.60) 1.051 (0.92) N 1.043 (0.49) N
1024 8 0.0 0.008 (0.11) 0.006 (0.12) N 0.008 (0.09) N 1.053 (0.65) 1.042 (0.90) N 1.041 (0.33) N
1024 8 0.4 0.006 (0.10) 0.005 (0.10) N 0.006 (0.08) ≈ 1.036 (0.63) 1.035 (0.71) ≈ 1.039 (0.45) ∇
1024 8 0.8 0.002 (0.07) 0.002 (0.06) N 0.003 (0.06) ∇ 1.020 (0.55) 1.017 (0.54) N 1.029 (0.64) ∇
2048 4 −0.8 0.007 (0.08) 0.005 (0.05) N 0.007 (0.05) ∇ 1.074 (0.79) 1.036 (0.43) N 1.039 (0.45) N
2048 4 −0.4 0.009 (0.09) 0.007 (0.10) N 0.008 (0.07) N 1.075 (0.72) 1.057 (1.06) N 1.043 (0.68) N
2048 4 0.0 0.009 (0.10) 0.006 (0.07) N 0.007 (0.05) N 1.057 (0.46) 1.049 (1.05) N 1.047 (0.46) N
2048 4 0.4 0.006 (0.08) 0.003 (0.08) N 0.005 (0.06) N 1.035 (0.45) 1.031 (0.76) N 1.035 (0.48) ≈
2048 4 0.8 0.003 (0.09) 0.002 (0.06) N 0.004 (0.07) ∇ 1.020 (0.50) 1.018 (0.49) ≈ 1.026 (0.47) ∇
2048 8 −0.8 0.007 (0.06) 0.005 (0.05) N 0.007 (0.05) ≈ 1.070 (0.54) 1.033 (0.37) N 1.039 (0.44) N
2048 8 −0.4 0.008 (0.04) 0.007 (0.06) N 0.007 (0.07) N 1.072 (0.34) 1.053 (0.99) N 1.037 (0.43) N
2048 8 0.0 0.008 (0.08) 0.006 (0.09) N 0.006 (0.07) N 1.060 (0.38) 1.047 (0.80) N 1.039 (0.40) N
2048 8 0.4 0.005 (0.07) 0.004 (0.07) N 0.005 (0.05) N 1.036 (0.43) 1.036 (0.64) ≈ 1.036 (0.45) ≈
2048 8 0.8 0.002 (0.06) 0.002 (0.06) ≈ 0.003 (0.05) ∇ 1.016 (0.34) 1.018 (0.65) ≈ 1.028 (0.42) ∇

in terms of approximation quality. However, as analyzed below,
synchronicity comes with a running time penalty.

2) Running Time and Parallel Efficiency: In Fig. 1, we
report some observations rendering the interrelation between
parallel running time and approximation quality. On the left
column of Fig. 1, we can appreciate the acceleration obtained
by our implementations where we also vary the neighborhood
size. The acceleration is measured as the ratio between the
sequential running time of MOEA/D and the parallel running
time of MP-MOEA/D. First, we can see that the asynchronous
MP-MOEA/D is substantially faster. Second, we observe that
the acceleration depends on the neighborhood size and also on
the instance dimension. This is better illustrated in Fig. 2 where
acceleration is analyzed as a function of the problem size. In
fact, the evaluation cost increases with the problem dimension,
thus making the relative cost of communication lower, and
then leading to more significant accelerations. Moreover, larger
neighborhoods imply a lager amount of communication, and
thus less parallel efficiency. Notice however that even for the

smallest instances of size N = 128 and the largest neigh-
borhood, asynchronous MP-MOEA/D is still able to obtain
significant accelerations while being very competitive in terms
of approximation quality. This can be seen in the two last
columns of Fig. 1 where the approximation quality of the
synchronous and asynchronous implementations compared to
sequential MOEA/D is well maintained.

3) Discussion: From the previous subset of results, we
can conclude that there is a non-trivial trade-off to attain
w.r.t. approximation quality and speed-up when parallelizing
MOEA/D; which is well captured by our synchronous and
asynchronous MP-MOEA/D. Actually, the previous analysis
holds for tmax = 1, which means that PUs distributively
update their respective states immediately after performing one
single evolutionary step. Like for synchronicity, controlling
the number of steps a PU is authorized to perform in parallel
before attempting to distributively update its neighbors has a
deep impact on the type of trade-offs our MP-MOEA/D scheme
is able to provide. This is analyzed in the rest of the paper.
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Fig. 1. Acceleration (Left side) vs. Approximation quality (Right side) for ρMNK-landscapes with ρ = 0.0 and K = 4; tmax = 1.
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Fig. 2. Acceleration as a function of the problem size N for ρMNK-
landscapes with ρ = 0.0 and K = 4; tmax = 1.

C. Impact of Workload Granularity

We start by examining the acceleration we are able to
obtain as a function of parameter tmax. This is illustrated in
Fig. 3 where one can additionally appreciate the relative impact
of synchronicity and neighborhood size. We can see that larger
tmax-values lead to better speed-ups, which can clearly be
attributed to the fact that workload granularity increases as a
function of tmax, thus reducing the relative cost of distributed
communications. However, one may wonder the impact on
quality. In order to better analyze the so-obtained trade-offs,
we consider approximation quality (indicator’s value) and
acceleration as the couple of goals one would like to achieve
simultaneously. This is illustrated in Fig. 4 where each point
represents the acceleration (x-axis) and the approximation
quality (y-axis) corresponding to one value of tmax (reported as
a label in the figure), and where the horizontal line with thick
contour represents the average approximation quality obtained
by the sequential MOEA/D with a 95% confidence interval.
Roughly speaking, and since the quality indicators are to be
minimized, the points being below this line indicate that MP-
MOEA/D is competitive compared to MOEA/D. Similarly, since
acceleration is to be maximized (with an ideal value at 128),
points being farther on the right-side of each subfigure indicate

better parallel efficiency.

Several insightful observations can be extracted from the
figure. Firstly, there is a general tendency that approximation
quality drops with higher tmax-values, whereas acceleration
becomes better. The interesting observation is that there exists
values for which quality is very competitive to sequential
MOEA/D with substantial improvements in acceleration. In
particular, when considering small-size instances, for which
relatively high speed-ups are more difficult to achieve since
the evaluation function cost becomes relatively low compared
to communication cost, we observe that the impact of tmax on
quality is less pronounced. Hence, larger tmax-values have the
overall effect of significantly improving acceleration without a
substantial drop in terms of speed-up. Notice for example that
speed-ups of up to 70 can be obtained with a quality being sim-
ilar to MOEA/D for N = 128 whereas a speed-up of only 10
to 20 is obtained with tmax = 1. Secondly, the obtained trade-
offs are surprisingly dependent on the correlation between the
objective functions, especially for large-size instances. In fact,
the more correlated the objective functions, the harder it is
to obtain higher acceleration without a significant drop in
performance. We attribute this to the fact that for such an
objective correlation, an improving offspring solution found
at some PU with respect to a given sub-problem, is more
likely to dominate neighboring solutions, and thus to subse-
quently produce new improving offspring that speed-up the
convergence of the optimization of neighboring sub-problems.
Hence, communicating improving offspring solutions immedi-
ately, as they are discovered at every PU, is more critical for
approximation quality. This is less likely for anti-correlated
instances for which the size of the Pareto front is larger, and
where diversity can balance this side-effect. Notice also that the
more conflicting the objectives, and the larger the instances,
the more the asynchronous dominates the synchronous MP-
MOEA/D in both approximation quality and acceleration. For
example, for such configurations, asynchronous MP-MOEA/D
is able to attain a near linear acceleration of about 100 while



being as good as MOEA/D in terms of approximation quality.

V. CONCLUSIONS AND PERSPECTIVES

The study conducted in this paper provides new insights
into the benefits of using parallel and distributed computations
within the MOEA/D framework. Besides being able to provide
high-quality approximation and acceleration, the proposed
MP-MOEA/D distributed scheme and its message passing im-
plementations allow us to better harness the key ingredients for
a successful distributed deployment of decomposition-based
approaches, and to elicit in a comprehensive manner the differ-
ent trade-offs attainable at a large-scale distributed setting. The
extensive experiments conducted on top of a real distributed
testbed and the throughout analysis, show that MP-MOEA/D is
able to counteract the fine-grained parallelism exposed by the
original sequential MOEA/D framework. Our results are in fact
obtained under the very harsh assumption that the number of
available PUs are equal to the population size. It is our opinion
that relaxing this assumption would hopefully lead to better
trade-offs; however, it would be worthwhile conducting a new
experimental study to complement our results when varying
the number of sub-problems handled at each PU.

In addition, a natural, but challenging, open question is
whether there exist other distributed strategies allowing to
enhance acceleration while providing similar approximation
quality. We believe in fact that there are still some opportunities
to extend and to improve our MP-MOEA/D and its imple-
mentations in order to address this issue An interesting idea
would be to continuously self-adjust the tmax-value (instead of
fixing it), as a function of the offspring improvement observed
both locally at every processing units and remotely when
performing distributed updates from neighboring processes.
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Fig. 3. Acceleration as a function of tmax for ρMNK-landscapes with ρ = 0.0, K = 4 and N ∈ {128, 256, 512, 1024, 2048} resp., from left to right.
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Fig. 4. Acceleration vs. Quality (Epsilon indicator I×ε ) as a function of tmax for ρMNK-landscapes with K = 4; the neighborhood size is T = 5.


