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Abstract—Metaheuristics assume some kind of coherence
between decision and objective spaces. Estimation of Distribution
algorithms approach this by constructing an explicit probabilistic
model of high fitness solutions, the structure of which is in-
tended to reflect the structure of the problem. In this context,
“structure” means the dependencies or interactions between
problem variables in a probabilistic graphical model. There are
many approaches to discovering these dependencies, and existing
work has already shown that often these approaches discover
“unnecessary” elements of structure - that is, elements which
are not needed to correctly rank solutions. This work performs
an exhaustive analysis of all 2 and 3 bit problems, grouped into
classes based on mononotic invariance. It is shown in [1] that each
class has a minimal Walsh structure that can be used to solve
the problem. We compare the structure discovered by different
structure learning approaches to the minimal Walsh structure for
each class, with summaries of which interactions are (in)correctly
identified. Our analysis reveals a large number of symmetries that
may be used to simplify problem solving. We show that negative
selection can result in improved coherence between discovered
and necessary structure, and conclude with some directions for
a general programme of study building on this work.

I. INTRODUCTION

Metaheuristics in general are motivated by an ability to
search the decision space of a problem to achieve a goal in
the objective spaces. Various concepts of structure exist in
the literature for attempting to describe aspects of algorithm
behaviour on different problems. Structure can be viewed from
the perspective of the problem and the algorithm. Problem
structure means some information about elements of solutions
or subsets of solutions knowledge of which is equivalent to
knowing the fitness function and can be used in principal to
determine the optimal solution. For example, in the Onemax
problem, we know that solutions can be grouped into sets with
the same number of ones in each solution and that the more
ones there are the better the fitness. We can consider solutions
that have similar fitness as being near to one another from the
point of view of the problem structure. Algorithm structure
means some knowledge about the way an algorithm explores
a search space by transitioning from a current (population of)
solution(s) to a successor (population of) solution(s). This will
be determined by the operators an algorithm uses. For example
a typical mutation operator induces a neighbourhood structure
on a search space and the algorithm can use this to transition
from solutions it is currently considering to neighbours of those
solutions.

It is important that an appropriate coherence is achieved
between the problem structure and the algorithm structure to
move efficiently around the search space. Here, by coherence
we mean that the algorithm structure is such that for small
subsets of the search space, it is often possible to find better
solutions than those currently under consideration by using
the algorithm operators. That is to say that subsets which are
nearby from the point of view of algorithm structure are also
nearby from the point of view of problem structure. This is
referred to as the proximal optimality principle [2]. The work
in this paper offers insights into this concept that are important
for researchers developing EDAs for new problems. The use of
problem-specific models will ensure that the algorithm is well-
matched to the problem and better able to solve it efficiently.

There is an increasing interest in approaches that explicitly
make use of the problem structure to increase the search
efficiency, for example [3]–[5]. In the case of Estimation of
Distribution Algorithms (EDAs) [6]–[8] there is a particularly
close relationship between problem structure and algorithm
structure. The EDA makes a model of the distribution of
fitness in the current population and samples that with a bias
to producing the most fit solutions. The model is usually
based on value combinations of the solution variables. Very
often this is a probabilistic graphical model (PGM). In this
situation it is also possible to make a PGM intrinsic to the
problem in the sense that solution fitness is monotonic with
solution probability. We call this the problem model. As these
are both PGMs, when we refer to the structure of these
models we are talking about the structure of the PGM (or
associated hypergraph). The EDA will estimate the problem
model, representing it in what we will call the algorithm
model. Thus coherence here means the extent to which the
algorithm model is concordant with the problem model. That
is, if two solutions are ranked one way by the problem model,
they should also be ranked that way by the algorithm model.
This is supported by existing proof in [9] that the relationship
between the model of an EDA and that of the problem strongly
influence performance. Usually the algorithm model (at any
iteration) will be a heavily factorised approximation of the
problem model intended to generate solutions of higher value.
For the purposes of optimisation, the algorithm model may not
need all of the structure contained in the problem model.

An open question is: how well do current approaches to
learning structure detect the “essential” structure? That is,
the elements of problem structure that allow the algorithm



to distinguish the relative ranking of solutions. For discrete
problems there are two potential sources of error in learn-
ing structures: missing important dependencies and including
erroneous (spurious) dependencies [10]. Also, effort spent in
learning non-spurious but inessential structure is wasted and
may be quite costly. Recent works including [11], [12] have
explored how such errors influence the scalability and effi-
ciency of EDAs, the latter showing that spurious dependencies
decrease performance. A much earlier work with EDAs based
on directed models [13] showed that dependencies generated
by selection may genuinely reflect such a distribution or may
simply be due to a sampling bias imposed by the selection. It
is useful, then, to determine how well existing approaches to
structure learning discover the essential structure of a problem.
In [14], this issue was considered empirically. In this work we
take a systematic approach.

In the special case of binary problems, the problem model
can always be expressed using Walsh coefficients. The non-
zero Walsh coefficients determine the problem model. Simi-
larly the algorithm model, which assigns a non-zero probability
to each solution, can also be expressed as a Walsh sum. We
can therefore talk about the problem and algorithm structure
in the same terms and compare them precisely. In particular
we can use this to describe concepts of essential and non-
essential structure. Essential problem structure is the minimal
set of Walsh coefficients required to fully rank the solutions
of the problem.

In previous work [1] we defined rank equivalence classes
of monotonicity invariant functions as sets of all functions
that rank a set of solutions identically. Restricted to problems
with 2 and 3 binary variables, we are able to exhaustively
evaluate all rank equivalence classes. Our intention is to
provide theoretical insight into learning structure that may be
built on for the more general cases of larger problems and those
with alternative encodings, similar to the approaches taken
by [9], [13]. Similar to this paper, the latter of these works
considers classification of problems by ranking class, but in the
context of local optima resulting from a neighbourhood system
based on Hamming distance. The complementary work also
provides some insight into the relationship between problem
structure and EDA behaviour. For each rank equivalence
class, we look at common approaches to structure learning in
EDAs based on Chi-square independence tests using various
selection operators. The bivariate interactions learned by these
are compared with the interactions discovered by the Linkage
Detection Algorithm [15] and the interactions present in the
minimal Walsh structure.

We draw two major conclusions. Firstly, for some rank
equivalence classes, poor choice of population size is likely
to result in the detection of inessential structure, or failure to
detect essential structure. Secondly, there are patterns within
the rank equivalence classes that could be used to improve
the efficiency of search. There are distinct groups of problems
within rank equivalence classes, for which the probability of
detecting an interaction is equal. These can be mapped on to
each other by relabelling solution variables. Furthermore, there
are groups of problems for which the probability of detecting
an interaction can be increased by using negative selection.

The rest of the paper is structured as follows. Section
II introduces the concept of Walsh structures and minimal

structures. Section III discusses several approaches to structure
learning in the literature. Sections IV and V give the results
of our study on 2 and 3 bit problem classes, with our
analysis. Finally in VI we draw our conclusions and suggest
the direction for future work.

II. WALSH STRUCTURES

For problems with a bit string encoding, Ω = {0, 1}n

is the search space. f(x) is the fitness function and X =
(X1, . . . , Xn) is the variable vector. Xi = xi denotes the
event that variable Xi takes value xi, and x = x1 . . . xn

denotes a joint configuration of X . Any fitness function on bit
strings can be rewritten using the Walsh-Hadamard transform,
and the non-zero Walsh coefficients represent the problem
structure [16]. As in [5], the full set of Walsh functions up
to order-n (order-3 in the present case), are considered. Under
this transform, the f(x) is expressed as a sum of Walsh
coefficients αk multiplied by Walsh functions Wk(x) as shown
in Equations 1 to 3. k iterates over all possible subsets of X .

f(x) =
∑

k⊆X

αkWk(x). (1)

where

W∅(x) = 1 ∀ x (2)

Wk(x) =
∏

i∈k

Xi

{

1 if xi = 1

−1 if xi = 0
(3)

In [1] it was shown that a column vector of Walsh
coefficients could be computed using the Hadamard matrix.
The constant term α∅ is never necessary to maintain the
ordering of function values as it is added to every output.
For many problems, there are multiple problem structures
that apply the same ranking over all solutions. For a given
problem, those structures with the lowest number of non-zero
Walsh coefficients are referred to as the minimal structures.
We argue that minimal problem structure must be detected
for efficient solution of the problem, and that detection of
only the minimal structure further increases efficiency. It
has already been established that spurious dependencies can
decrease efficiency [11], [12] and that omission of parts of
problem structure from the algorithm structure leads to reduced
ability to rank solutions [5]. In EDAs, reduced structure means
fewer model parameters to estimate, leading to reduced model-
building effort.

The Walsh coefficients for 2-bit problem classes are α{∅},
α{0}, α{1} and α{01}. Ignoring the constant term, there are
three coefficients, one for each of the variables and one for
the interaction between the variables. Figure 1 shows the 8
possible combinations of these components.

A problem class is defined simply by listing the ranks of
the solutions. We adopt the convention used in [1] and write
for the function class of f : Cf = [r1, r2, ..., r2n ] where ri
is the rank of the ith solution. (The solutions are ordered as
binary integers.)



Fig. 1. Walsh structural components for 2-bit problems

A. Benchmarks

In our analysis, we also refer to the classes which relate to
two well-known benchmark functions. We now describe these.

Onemax is one of the simplest and most commonly used
univariate benchmarks. The fitness is simply the number of
bits with the value 1, expressed formally in (4).

f(x) =

n
∑

i=1

xi (4)

For 3 bits, the equivalent problem class is COneMax =
[0, 1, 1, 2, 1, 2, 2, 3].

BinVal [17] is also a univariate function, where the fitness
is the sum of bits in the string, each weighted by their position
(treating the bit string as a binary value). Formally:

f(x) =
n
∑

i=1

2ixi (5)

For 3 bits, the equivalent problem class is CBinV al =
[0, 1, 3, 4, 5, 6, 7].

The minimal Walsh structures for Onemax and BinVal with
2 and 3 bits (actually extending to n bits) have no interactions.

III. STRUCTURE LEARNING APPROACHES

There are several approaches taken to learning structure for
undirected networks in EDAs. Typically EDAs learn structure
by sampling the population. A common approach for learning
undirected probabilistic graphical models [14], [18]–[23] is
that a selection operator chooses a subset of solutions and
statistical independence tests such as joint entropy, mutual
information or Chi-square [24] are used to test the significance
of interactions between variables among the selected set. This
will find the bivariate interactions: a deterministic clique-
finding algorithm such as Bron and Kerbosch [25] can then
locate maximal cliques representing higher order interactions.
Common selection operators for this purpose are tournament
selection and truncation selection, detailed further below. Poor
configuration of the selection operator can lead to missing key
interactions, or falsely detecting unnecessary ones, which both
impact on performance [11], [12], [14].

In this paper, the statistical independence test used is Chi-
square. This is a comparison between the joint distribution of a
pair of variables and the product of their marginal distributions.
The test may also be extended to test higher order interactions
by testing for conditional probabilities, but that is not covered
in this study. For a selected population, summed over all
possible values for xi and xj in a population of size S:

χ2

i,j =
∑

xi,xj∈0,1

(Sp(xi, xj)− Sp(xi)p(xj))
2

Sp(xi)p(xj)
(6)

where p(xi, xj) is probability that xi and xj take a par-
ticular combination of values together (the observed value)
and p(xi) and p(xj) is the probability that xi and xj take
those values independently (making p(xi)p(xj) the expected
value). With a value of 3.84, the variables are said to be 95%
independent [26]. Rearranging this equation for S allows us
to determine the minimum population size Smin which would
result in a dependency being detected was calculated (that is,
the population size for which the Chi-Square score would be
over 3.84). Smin = ∞ means that the variables will always
be determined to be completely independent.

An alternative method of structure learning is linkage
detection via probing or perturbation, used by the Linkage
Detection Algorithm [15]. This was specifically designed to
detect the structure components corresponding to non-zero
Walsh coefficients. In the 2 bit case, starting with solution
00, the bits are flipped to 1 individually, then together. If the
change in fitness due to flipping them together is different
to the total change observed when flipping them individually,
then a dependency is regarded to be present. Selection is not
required for LDA.

LDA can be expanded to higher levels of interaction but its
complexity grows rapidly with the order of interaction being
tested. In fact, the number of possible interactions of order k
in a set of n variables is given in (7).

(

n
k

)

=
n!

k!(n− k)!
(7)

A. Selection operators

The selection operators considered for combination with
Chi-square in this study are variants of tournament and trun-
cation selection.

Truncation selection is often used in EDAs. The ex-
periments covered three variants of the operator, originally
described in [27]. In the unaltered form of truncation selection
[28], the population is sorted by descending fitness rank,
and the highest p ∗ N ranking solutions are selected, where
0 < p ≤ 1 and N is the population size. A solution is
selected once only, and the lowest-ranking individuals cannot
be selected. The original truncation selection is referred to here
as top selection, as it selects the top ranking solutions.

Several studies [27], [29]–[33] have shown that including
low-fitness solutions can be beneficial to model building and
optimisation. Further to this, [14] found that selecting the
lowest-ranking solutions resulted in discovery of a similar
number of false interactions as selecting the same proportion
of top-ranking solutions. To explore this further, we include
two variants of truncation selection that explicitly include low-
ranking solutions: bottom selection and top+bottom selection.
Bottom selection replicates top selection, but selects the lowest
p ∗N ranking members of the population. Top+bottom selec-
tion selects the highest (p/2)∗N and lowest (p/2)∗N ranking
solutions.



Tournament selection (with replacement) takes s solutions
chosen at random from the population, and selects the one with
the highest fitness. It is often used by evolutionary algorithms
as it is quite simple but also allows explicit control on selection
pressure to be made by choice of the tournament size s.
Furthermore, with tournament selection it is possible that
very low-ranking solutions will be selected. We also consider
an inverse tournament selection, which always chooses the
solution with the lowest fitness in the tournament.

Both operators are well-defined and it is possible to predict
their behaviour in a perfect system. So, given a uniformly
distributed initial population, we can determine the proportions
of each solution present in the selected set. A similar approach
for analysis of directed probabilistic graphical models was
taken in [13]. In the 2-bit case, for both selection operators,
we assume that each of the four solutions comprises exactly
25% of the initial population. For tournament selection, we
look at all possible tournaments (16 for 2 bits, 64 for 3 bits),
determining the winner of each. The winners are combined
into a pool, representing the selected set of size S. For a class
where the 4 solutions are equally ranked, the selected set will
be comprised of 25% each of the 4 solutions. For a class where
three solutions are equal, but one is higher ranked, then the
higher ranked solution will be 44% of the selected set, and
the others 19% each. For truncation selection, the fraction of
the population to be selected is an algorithm parameter. When
selecting the top 25% of the population: if all solutions are
equally ranked the selected set will be divided equally between
each of the solutions. In the 2-bit case, if one solution is ranked
above all the others, it will take 100% of the selected set.

IV. 2 BIT CLASSES

We now consider the relationship between the minimal
Walsh structure and the structure obtained by the structure
learning approaches discussed in the previous section. We
begin with the minimal case for bit strings showing possible
dependency between variables: 2-bit classes. There are an
infinite number of such functions, but if we consider only
the rank of solutions (the goal of optimisation being to move
towards highly-ranked solutions), there are a finite number of
possible rankings. Different to the notation in [1], we define
the rank of a solution x, for a function f , as the number of
distinct fitness values in the population lower than f(x). In
[1], there was some consideration of the separations (there
referred to as deltas) between the ranks. In the case that the
separations between all ranks were ranks equal, the minimal
structure was discovered. Here, we use the ranks as the raw
fitness values for the probes in LDA. If the ranks are equally
spaced, LDA discovers the minimal structure for all problem
classes. Otherwise, it discovers one of the other structures. The
notation reflects this equal spacing of the ranks.

For classes with 2 bits f : {0, 1}2 → R, there are four
possible solutions 00, 01, 10, 11. There are 75 distinct rank
equivalence classes, considering permutations to be distinct.
This is small enough that an exhaustive evaluation of all rank-
equivalence classes C for 2-bit classes can be performed.
These can be grouped into the categories in Table I. The
categories reflect the number of ranks, with the number of
solutions at each rank. A textual description of each category

TABLE I. CATEGORIES OF RANK-EQUIVALENCE CLASS

Category Description Ranks Num.

ranks

Num.

classes

1 All solutions equal rank 0,0,0,0 1 1

2 3 equal rank, 1 higher 0,0,0,1 2 4

3 3 equal rank, 1 lower 0,1,1,1 2 4

4 2 pairs equally-ranked 0,0,1,1 2 6

5 1 pair equal, 2 distinct and higher 0,0,1,2 3 12

6 1 pair equal, 1 higher, 1 lower 0,1,1,2 3 12

7 1 pair equal, 2 distinct and lower 0,1,2,2 3 12

8 All solutions distinctly ranked 0,1,2,3 4 24

is also given, with an list of the ranks shared by all classes in
the category, sorted ascending.

The purpose of this experiment is to determine the likeli-
hood that the various structure learning approaches will detect
the essential structure for the problem. This is measured in
terms of the selected population size required for the structure
learning approaches to detect an interaction.

Cat: The category number from Table I.
C: A unique number to identify the rank-equivalence class.
Ranks: The order in which the solutions 00, 01, 10, 11 are

ranked. Assuming maximisation, higher values indicate
higher ranking. So 0021 indicates that 10 is ranked
highest, followed by 11, and 00, 01 are the joint-lowest
ranked solutions.

Structure: The Walsh structures that fully determine ranking
for this problem class (left-most is the minimal Walsh
structure), in the same format as Figure 1.

Tournament: The minimum selected population size required
to make the interaction significant (χ2 = 3.84) when
using two variants of tournament selection, in which
the higher-ranked (Best) solution is always selected and
in which the lower-ranked (Worst) solution is always
selected.

Top: The minimum selected population size required to make
the interaction significant (χ2 = 3.84) when using top
truncation selection of the highest-ranked 0.25, 0.33 and
0.5 of the population.

Bottom: As for {Top}, but for bottom truncation selection
where the lowest-rankest solutions are selected from the
population.

T+B: As for {Top}, but for top+bottom truncation selection
where the n/2 lowest and highest-ranked solutions are
selected.

LDA: The Linkage Detection Algorithm finds interaction
when starting with solution 00: (Y)es / (N)o.

There are several things to note from these results. In
terms of the selection operators, truncation selection can detect
structure but because of the homogenous nature of the selected
populations it often fails to detect an interaction where the
other approaches succeed. Essentially detection of the inter-
action is all-or-nothing above fairly small selected population
sizes. The selected set does not have enough variation, so the
range of Chi-square values seen with tournament selection is
not repeated. Top and bottom selections work equally well
over all classes, but within groups 2 and 3 the results for top
selection are the complement of those for bottom selection.
This goes some way towards explaining results from [14] that
shows top selection and bottom selection discovering similar
numbers of unnecessary interactions. The implication is that



TABLE II. RESULTS FOR ALL 75 2-BIT RANK EQUIVALENT CLASSES. COLUMN HEADINGS ARE DESCRIBED IN THE TEXT.

Cat C Ranks Structure Tournament Top Bottom T+B LDA
Best Worst 0.25 0.33 0.5 0.25 0.33 0.5 0.25 0.33 0.5

1 0 0000 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

2 1 0001 96 35 ∞ 61 ∞ 15 15 15 15 15 15 Y

2 0010 96 35 ∞ 61 ∞ 15 15 15 15 15 15 Y

3 0100 96 35 ∞ 61 ∞ 15 15 15 15 15 15 Y

4 1000 96 35 ∞ 61 ∞ 15 15 15 15 15 15 Y

3 5 1110 35 96 15 15 15 ∞ 61 ∞ 15 15 15 Y

6 1101 35 96 15 15 15 ∞ 61 ∞ 15 15 15 Y

7 1011 35 96 15 15 15 ∞ 61 ∞ 15 15 15 Y

8 0111 35 96 15 15 15 ∞ 61 ∞ 15 15 15 Y

4 9 0011 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

10 0101 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

11 1001 15 15 4 4 4 4 4 4 4 4 4 Y

12 0110 15 15 4 4 4 4 4 4 4 4 4 Y

13 1010 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

14 1100 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

5 15 0012 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

16 0021 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

17 0201 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

18 2001 16 14 ∞ 4 4 4 4 4 4 4 4 Y

19 0102 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

20 0120 16 14 ∞ 4 4 4 4 4 4 4 4 Y

21 0210 16 14 ∞ 4 4 4 4 4 4 4 4 Y

22 2010 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

23 1002 16 14 ∞ 4 4 4 4 4 4 4 4 Y

24 1020 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

25 1200 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

26 2100 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

6 27 1102 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

28 1120 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

29 1210 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

30 2110 , 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ N

31 1012 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

32 1021 , 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ N

33 1201 , 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ N

34 2101 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

35 0112 , 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ N

36 0121 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

37 0211 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

38 2011 , 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ Y

7 39 2201 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

40 2210 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

41 2120 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

42 1220 14 16 4 4 4 ∞ 4 4 4 4 4 Y

43 2021 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

44 2012 14 16 4 4 4 ∞ 4 4 4 4 4 Y

45 2102 14 16 4 4 4 ∞ 4 4 4 4 4 Y

46 1202 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

47 0221 14 16 4 4 4 ∞ 4 4 4 4 4 Y

48 0212 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

49 0122 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

50 1022 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

8 51 0123 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

52 0132 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

53 0213 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

54 0231 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

55 0321 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

56 0312 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

57 1023 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

58 1032 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

59 1203 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

60 1230 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

61 1320 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

62 1302 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

63 2103 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

64 2130 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

65 2013 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

66 2031 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

67 2301 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

68 2310 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

69 3120 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

70 3102 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y

71 3210 , 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ N

72 3201 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

73 3021 , 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y

74 3012 , 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ Y



for some classes, the use of negative selection is more likely
to discover essential structure than conventional selection.

The tournament selections also work equally well over all
classes. The results for the two operators are the complement
of each other within groups 2 and 3, and groups 5 and 7. With
a selected population size of 100 (within the common range of
population sizes in EAs), in almost all cases (in)dependence
of the variables is correctly detected. With too large a selected
population size (or too small a threshold) interactions will be
detected for classes 30,32,33,35 (all of which are relabellings
of Onemax) and classes 51,53,58,62,66,67,69,71 (all of which
are BinVal variants). The minimal Walsh structure for each
of these classes excludes the interaction term, although the
full Walsh structure (structure 7) is also applicable for these
classes. In this sense, the detection of an interaction is correct,
but is unnecessary. The operators fail to detect many interac-
tions in category 5 and 7 unless the selected population size
exceeds 726, though for each class the interaction is always
detected by using one of tournament or inverse tournament
selection.

LDA finds structures that perfectly match the Walsh de-
composition. This ought to be expected because LDA is specif-
ically designed to determine the non-zero Walsh coefficients
[15], [34]. LDA was shown to perfectly discover bivariate
structure for the Ising problem in [23].

All structure learning approaches agreed that there was no
interaction in 5 classes: 0,9,10,13,14. The Walsh structure for
these problem classes always excludes the interaction term, or
more accurately the coefficient for this term is zero. For other
classes, the Walsh structure 7, all possible terms being non-
zero, applied to the class in addition to any minimal structure.

The reader might ask whether the given Walsh problem
structures are truly minimal. For class 1, if the xi can take
values {0, 1} rather than the Wi(x) values {−1, 1}, then this
function could be f(x) = x0x1. Alternatively, we could say
that we simply need to know that the rank is determined by
knowing that: x0 == x1 and x0 == 1, or that x0 == x1 and
x1 == 1 or that x0 == 1 and x1 == 1. So in a broad sense an
optimisation algorithm which treats the variables in this way
will need only 1 or 2 terms to model this ranking (although it
will need more terms on other problems that have a simpler
minimal Walsh structure). In practice, this relies on making
terms evaluate to 0 by allowing xi = 0 instead of relying only
on the Walsh coefficients being 0 to eliminate terms from the
structure. This is simply hiding necessary structure rather than
reducing it. This applies to at least classes 1-8, 15-26 and 39-
50.

It is also worth noting the symmetries present in the results.
Categories 2 and 3 are the same, but one is −f(x) of the other.
The same applies to categories 5 and 7. Likewise, there are
matching pairs within category 8. However, the Chi-square
values and minimum selected population sizes are different.
This is corrected by selecting the low-ranked solutions (this
is the same as using conventional selection with −f(x)).
Furthermore, within each category there are equivalent classes
which simply have the variables relabelled. For each set of
equivalent classes the Chi-square values are the same.

V. 3 BIT CLASSES

We now move on to classes with 3 bits f : {0, 1}3 → R,
for which there are eight possible solutions 000, 001, 010,
011, 100, 101, 110, 111 and 545 835 distinct rank equivalence
classes. [1] presents an analysis of the exhaustive set of rank
equivalence classes for 3 bits. Here we consider the same set,
comparing the minimal Walsh structures discovered with those
found by the same approaches as in Section IV. For obvious
reasons of space, only summary statistics are presented here.

For classes with 3 bits there are 8 components that might
contribute to the rank ordering. Here we are interested in
those related to interactions between variables: α01, α02, α12

and α012. For each class, the structure learning approaches
are deployed and the resulting structure compared with the
minimal Walsh structures. The fraction (over all classes) of
dependencies/independencies correctly/incorrectly discovered
for each bivariate interaction are then reported. As noted
in [1], there may be multiple minimal structures for 3-bit
classes. Here the comparisons are made with all minimal Walsh
structures for a given class and if the discovered structure
perfectly matches any that result is used. LDA is run with two
starting solutions: 000 and 111. The dependencies discovered
by both are combined (without doing this, interactions are
often missed).

Tables III and IV summarise the results over all 3-bit
problem classes, with selected population sizes of 100 and
500 respectively. The specific population sizes chosen are
unimportant except to illustrate that for most problem classes
there is a critical population size to find dependencies that is
neither zero nor infinite. Consequently, choice of population
size is important with respect to detecting problem structure
(this is already known) and more importantly, the critical size
is influenced by the selection operator. The first column shows
the structure learning approach used, subsequent columns show
dependencies correctly (D corr) and incorrectly (D incorr)
identified, and independencies correctly (I corr) and incorrectly
(I incorr) identified. Each structure learning approach has three
rows, for the dependencies a01, a02 and a12 respectively.

In the raw data, the same patterns are observed as with 2-bit
classes. The symmetries in selected population size required
to discover dependencies within groups of classes remain.
Both tournament selection operators perform equally well, and
with a selected population size of 100 are more likely to
miss interactions rather than introduce false ones. As pop-
ulation size increases, more essential interactions are found,
but along with more inessential interactions. With tournament
selection, a small number of classes require an infinite selected
population size to discover an interaction: for most classes
it is a few hundred. This again implies that increasing the
selected population size (or decreasing the threshold) will
result in the discovery of further interactions, regardless of
the minimal Walsh structure. The structures learned using
truncation selection again suffer from lack of diversity in
the selected solutions, in that the threshold to discover an
interaction is either a very small population or infinite. This
means that changing from a selected population size of 100
to 500 has no impact on the rates of correctly / incorrectly
discovered structure. For both selected population sizes, T+B
discovers more interactions correctly than top selection or
bottom selection, and higher selection pressure also improves



TABLE III. RESULTS FOR ALL 3-BIT RANK EQUIVALENT CLASSES.
SELECTION OPERATOR WITH THE FRACTION OF EACH DEPENDENCY

CORRECTLY OR INCORRECTLY DISCOVERED, WHEN USING A SELECTED

POPULATION SIZE OF 100. ROWS ARE IN GROUPS OF 3, FOR THE

INTERACTIONS 01,02 AND 12.

Selection / Algorithm D incorr D corr I incorr I corr

Tournament 0.53 0.42 0.00 0.05

0.53 0.42 0.00 0.05

0.52 0.42 0.00 0.05

Tournament Inv 0.53 0.42 0.00 0.05

0.53 0.42 0.00 0.05

0.52 0.42 0.00 0.05

Top, p0.25 0.56 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.55 0.39 0.01 0.04

Top, p0.33 0.26 0.70 0.03 0.02

0.26 0.69 0.03 0.02

0.25 0.69 0.03 0.02

Top, p0.5 0.28 0.67 0.03 0.02

0.28 0.67 0.03 0.02

0.28 0.67 0.03 0.02

Bottom, p0.25 0.56 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.55 0.39 0.01 0.04

Bottom, p0.33 0.26 0.70 0.03 0.02

0.26 0.69 0.03 0.02

0.25 0.69 0.03 0.02

Bottom, p0.5 0.28 0.67 0.03 0.02

0.28 0.67 0.03 0.02

0.28 0.67 0.03 0.02

T+B, p0.25 0.84 0.11 0.00 0.04

0.84 0.11 0.00 0.05

0.83 0.11 0.00 0.05

T+B, p0.33 0.60 0.36 0.01 0.04

0.59 0.36 0.01 0.04

0.59 0.36 0.01 0.04

T+B, p0.5 0.56 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.55 0.39 0.01 0.04

LDA 0.00 0.95 0.00 0.05

0.00 0.95 0.00 0.05

0.00 0.95 0.00 0.05

success. This mirrors the results in [14]. The important point
to note here is that the different selection methods lead to
more or less precise discovery of structure, in patterns that
can be directly related to the problem, rather than the absolute
population sizes involved. Some discussion of population size
and structure discovery can be found in [14], [35].

The success of LDA depends on the starting solution,
but given two starting solutions (covering both values of the
bit not included in the interaction being tested) it perfectly
discovers one of the minimal Walsh structures. Population size
is irrelevant to LDA so the values are the same in both tables.

We now look at two specific classes that showed interesting
properties with 2 bits to draw some further conclusions. For
2 bit classes, the class for Onemax was ID 35 and for BinVal
was 51. These and the relabellings of these classes showed
similar properties. In particular, the selected population size
required to find an interaction using tournament selection was
non-zero and less than infinity. Within the group of classes
and their relabellings, the required selected population size
was the same. The minimal Walsh structures for both classes
have no interactions, so this means that with too high a
selected population size or too low a Chi square threshold
an unnecessary interaction will be discovered.

The selected population sizes to discover an interaction
with Onemax were 327.85 for both tournament selections for
all interactions a01, a02 and a12. For BinVal, these figures

TABLE IV. RESULTS FOR ALL 3-BIT RANK EQUIVALENT CLASSES.
SELECTION OPERATOR WITH THE FRACTION OF EACH DEPENDENCY

CORRECTLY OR INCORRECTLY DISCOVERED, WHEN USING A SELECTED

POPULATION SIZE OF 500. ROWS ARE IN GROUPS OF 3, FOR THE

INTERACTIONS 01,02 AND 12.

Selection / Algorithm D incorr D corr I incorr I corr

Tournament 0.24 0.71 0.02 0.03

0.24 0.71 0.02 0.03

0.24 0.71 0.02 0.04

Tournament Inv 0.24 0.71 0.02 0.03

0.24 0.71 0.02 0.03

0.24 0.71 0.02 0.04

Top, p0.25 0.55 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.54 0.40 0.01 0.04

Top, p0.33 0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

Top, p0.5 0.24 0.72 0.03 0.02

0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

Bottom, p0.25 0.55 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.54 0.40 0.01 0.04

Bottom, p0.33 0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

Bottom, p0.5 0.24 0.72 0.03 0.02

0.23 0.72 0.03 0.02

0.23 0.72 0.03 0.02

T+B, p0.25 0.84 0.11 0.00 0.04

0.84 0.11 0.00 0.05

0.83 0.11 0.00 0.05

T+B, p0.33 0.56 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.55 0.40 0.01 0.04

T+B, p0.5 0.55 0.40 0.01 0.03

0.55 0.40 0.01 0.04

0.54 0.40 0.01 0.04

LDA 0.00 0.95 0.00 0.05

0.00 0.95 0.00 0.05

0.00 0.95 0.00 0.05

were 172.8, 725.76 and 3628.8 for interaction a01, a02 and
a12 respectively: these values were reordered depending on the
specific labelling of variables made by the class. This appears
to be an artefact of the different weights applied to the variables
in determining the ranks. Variables 1 and 2 have a lower impact
on the rank, so have a lower probability of an interaction being
discovered between them.

VI. CONCLUSION

In this paper we have presented an initial study on the
relationship between structures discovered by common struc-
ture learning techniques and the minimal Walsh structure for
all 2 and 3 bit rank equivalence classes. Existing structure
learning techniques work because they do detect minimal
problem structures, in the main. However, the results here
show that in some cases, even assuming no bias introduced
by sampling errors or population convergence, unnecessary
interactions will be detected. We have shown that there are
a large number of symmetries across problem classes that
may be used to simplify problem solving. Negative selection
can result in improved coherence between discovered and
necessary structure. This is in line with a number of other
similar results for both structure learning and more general
improvements to metaheuristic search [27], [29]–[33]. The
Linkage Detection Algorithm was confirmed to discover mini-
mal Walsh structures perfectly, but with rapidly increasing cost
essentially amounting to exhaustive probing over the search
space to achieve such perfection.



We intend for this work to support a more general study
of the relationship between the structure of problems and
search algorithms. The ultimate goal is classification of search
algorithms and problems by their structures, in a way that will
allow us to predict performance and more efficiently explore
search spaces. This will provide a very useful theoretical
foundation for researchers developing search algorithms such
as EDAs for new problems. The next step is clearly to extend
to the more general cases of n-bit problems, and non-binary
spaces. Further work will investigate structural composition
and decomposition of problems aimed at understanding when
complex structure can be decomposed into simpler minimal
structures and under what conditions complexity is essential.
We suggest that it is important that an algorithm is well-
matched to the structure of the problem being solved: the
algorithm structure should be coherent with the problem struc-
ture. This study has shown that, for bit strings, while existing
approaches to discovering structure perform reasonably well
they are likely to discover some parts of problem structure
incorrectly, motivating further research in this area.
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