1809.07098v1 [cs.Al] 19 Sep 2018

arxXiv

Novelty-Organizing Team of Classifiers in Noisy and
Dynamic Environments

Danilo Vasconcellos Vargas
Graduate School of Information
Science and Electrical Engineering
Kyushu University
Fukuoka, Japan
Email: vargas@cig.ees.kyushu-u.ac.jp

Abstract—In the real world, the environment is constantly
changing with the input variables under the effect of noise.
However, few algorithms were shown to be able to work under
those circumstances. Here, Novelty-Organizing Team of Classi-
fiers (NOTC) is applied to the continuous action mountain car as
well as two variations of it: a noisy mountain car and an unstable
weather mountain car. These problems take respectively noise
and change of problem dynamics into account. Moreover, NOTC
is compared with NeuroEvolution of Augmenting Topologies
(NEAT) in these problems, revealing a trade-off between the
approaches. While NOTC achieves the best performance in
all of the problems, NEAT needs less trials to converge. It is
demonstrated that NOTC achieves better performance because
of its division of the input space (creating easier problems).
Unfortunately, this division of input space also requires a bit
of time to bootstrap.

I. INTRODUCTION

Everything in the real world is naturally dynamic and
noisy. Although most of the systems employ some type of pre-
processing to treat these type of problems, sometimes the pre-
processing systems may face some unexpected new dynamics
which they were not prepared for or the noise may suddenly
change in type and amplitude. Actually, learning algorithms
seems the most natural solution to these problems, since they
were developed right from the beginning with the idea of
adaptation. That is, all of them are in principle capable of
learning new dynamics or noise variations of the problem on
the fly.

In this paper, NOTC and NEAT are tested on problems that
have noise and need a certain degree of adaptability. On one
hand, NEAT is a promising direct encoding topology evolving
neuroevolution algorithm with a complexification philosophy
(the chromosome starts simple and gets complex over time)
[1]. On the other hand, NOTC is a learning classifier system
based algorithm with a divide and conquer philosophy, it
currently evolves a fixed topology neural network with a direct
encoding genome. NOTC has the following distinct features:

e  Novelty Map Population - Experiments show that this
type of population allows for better adaptation at the
same time that it is not sensitive to noise;

e Dual (team-individual) Fitness - The dual fitness
presents a way to join Michigan and Pittsburgh ap-

978-1-4799-7492-4/15/$31.00 (©2015 IEEE

Hirotaka Takano
Faculty of Information Science
and Electrical Engineering
Kyushu University
Fukuoka, Japan
Email: takano@cig.ees.kyushu-u.ac.jp

Junichi Murata
Faculty of Information Science
and Electrical Engineering
Kyushu University
Fukuoka, Japan
Email: murata@cig.ees.kyushu-u.ac.jp

proaches, leveraging the benefits from both points of
view;
e Hall of Fame - With the Hall of Fame it is possible

to keep the best combination of individuals. This is
important to join Michigan and Pittsburgh approaches.

NOTC was first proposed and superficially described in
[2], with applications only to pole balancing and a discrete
version of mountain car. Here we explain NOTC more deeply
and apply it to continuous action mountain car, noisy mountain
car and unstable weather mountain car (a problem requiring
some level of adaptability). Moreover, a comparison between
NOTC and NEAT is done in all of the problems, revealing a
trade-off between the two approaches.

It is verified that NOTC achieves the best performance in
all of the problems because of its ability to divide the input
space creating smaller easier problems. NEAT, on the other
hand, needs less trials to converge because it does not need to
divide the input space as well as it only has one problem to
solve.

II. RELATED WORK
Allow us to divide the literature in two lines of thought:

e Divide and Conquer Approach - division of the prob-
lem into easier ones and the use of simple computa-
tional models to solve those easier problems;

e  Complexification Approach - start with simple solu-
tions, while increasing the complexity of solutions
over time.

On one hand, Learning Classifier Systems (LCS) falls within
the divide and conquer approach, where a set of agents with
condition-action-prediction rules cooperate and compete in an
evolutionary system to solve the problem at hand [3]], [4]. The
condition coded by each agent automatically divides the input
space, creating smaller problems, therefore the coded solutions
does not need to be complex. On the other hand, many
evolutionary algorithms using variable length genomes fall
within the complexification approach. For example, algorithms
evolving both the topology and parameters of neural networks
complexify the network over time [5].

In the following, there is a brief review of the LCS’s and
Neuroevolution’s literature’s related with this article. Here,



Novelty Map

Input array

Subpopulation
(observed state)

Fig. 1.
consideration.

we will restrain the review to only continuous action LCS
algorithms and some of most salient Neuroevolution methods.
For a complete review of both LCS’s and Neuroevolution’s
literature please refer to [6f], [7] and [5]], respectively.

LCSs with continuous actions were applied to function
approximation first with the XCSF algorithm [8]-[10]], later
with variants using fuzzy logic [11]-[13]], neural-based LCS
algorithms [|12], [[14] and genetic programming-based algo-
rithms [15]]. Regarding reinforcement learning problems, LCSs
with discrete actions were used to solve complex mazes [16],
cart-pole balancing [[17]], [[18] and the two-actions mountain
car [19] problems. Continuous action LCSs were applied to
control robotic arms [20]], [21]], navigation problems [22], [23]],
complex mazes [24]f], [25] and dynamical mazes [26]]. NOTC,
specifically, was applied to pole balancing and a discrete
action of mountain car in [2]. NOTC related algorithm without
the concepts of team and dual fitness, Novelty-Organizing
Classifiers (NOC), was applied to continuous mazes and clas-
sification problems [27].

Neuroevolution, where both the structure and parameters
are evolved, is a relatively new research area. Therefore, there
are fewer algorithms. To cite some: GNARL [28]], NEAT [1],
EANT [29] and EPNet [30].

III. NOTC’S STRUCTURE

In divide and conquer approaches, an algorithm has usually
two distinct procedures, one for breaking the problem (divide
procedure) and another to build the solution for the problem
pieces (conquer procedure). NOTC uses novelty map as the
divide procedure and multilayer perceptron as the conquer
procedure.

The details of NOTC’s structure is shown in Figure [I}
Basically, its components are:

e A Novelty Map population;

e  Subpopulations divided in two groups (best and
novel);

Best Individuals Individual

Output

Novel Individuals (Action to be taken)

NOTC’s structure is illustrated. Notice that this is just an example, the size of the Novelty Map, number of inputs and so on were not taken into

e Individuals.

A. Subpopulation

The subpopulation is a set of individuals. It is divided in
two groups (best and novel). The best and novel groups are
useful to increase the diversity of the population and attain
a good balance between exploration and exploitation. In one
hand, individuals inside the best group are the best individuals,
in the sense that they were already tested before (survived the
last generation). On the other hand, individuals from the novel
group were recently created (created in the last generation).

B. Individuals

Individuals can be any computational model. The individ-
uals used in this paper are feedforward neural networks with
a single hidden layer containing a fixed number of neurons.

Regarding the activation function, the hyperbolic tangent
was used in the neurons from the hidden layer and the identity
function was used in both input and output layer’s neurons.
The bias is absent in the input layer. Naturally, the chromosome
encodes the weights for each connection as well as the bias.

C. Novelty Map and Novelty Map population

Before describing a Novelty Map population, it is necessary
to detail solely the Novelty Map.

1) Novelty Map: Novelty measures, when used as fitness
functions, allow algorithms to keep track of what they have
already seen, i.e., they provide the stepping stones to reach
the objective [31], [32]. Moreover, novelty can also be used
to divide the space into points of interest, where each point is
substantially different from each other.

Table [T describes the algorithm. Basically, Novelty Map
is a table with the most novel individuals according to a
novelty metric. When a new input is presented to the map, a
competition takes place where the cell with the closest weight
array wins. This winner cell is activated and can be used in



many ways depending on the application (the novelty map
population presents one way of using it). Afterwards, the table
is updated by substituting the weight array of the least novel
cell (according to the novelty measure) with the input array if
and only if the input array has higher novelty. This way the
table is always kept up to date.

TABLE 1. NOVELTY MAP ALGORITHM

Parameters:
1) M ax,,: maximum size of the map;
2) Novelty metric;

Set the size of the map n to zero

Infinite Loop:

1) When an input is presented to the novelty map do:
2) If the size of the map n is smaller than Max,,
a) Insert the input in the map
b) Increment the size of the novelty map
else
a) Evaluate the input’s novelty with the novelty metric

b) If the input’s novelty is higher than the lowest novelty
from the samples inside the map

i) Insert the input and remove the sample with the
lowest novelty from the map

3) Return the weight array of the cell which is closest to the input

This table may share some similarities with the self-
organizing map [33|] or even the neural gas [34f, but some
important differences must be highlighted:

e Independence on Input Frequency - Both neural gas
and self-organizing map (SOM) are sensitive to the
frequency of the input, forgetting previous experience
if the input starts to concentrate on a small portion
of the spectrum. The novelty map does not have
this disadvantage, always retaining even the most rare
occurrences if they are novel enough.

e  Cell’s Efficiency - By ignoring the input frequency,
fewer cells can be used to map the input space.

The novelty metric used in this article is the uniqueness.
Let S be a set of arrays. The uniqueness is defined for an
array a; in relation to the other arrays in S with the following
equation:

U=5\{ai} ey

uniqueness = ming, cu (dist(a;, ax)). (2)

In other words, uniqueness of an array is the smallest distance
to the respective array for any array present in the set,
excluding the array itself. This novelty metric was chosen
because of its simplicity and quality though any other novelty
measure could have been used instead.

2) Novelty Map Population: The Novelty Map population
is very similar to the SOM population [24], [25]. The only
difference is the exchange of the SOM dynamics to the Novelty
Map one. As before, in addition to the cell’s original weight
array, subpopulations (see Section [[IlI-A)) are present in all cells
of the Novelty Map. The original dynamics of the Novelty Map
happens when a new input is presented, i.e., the cell which is
closest to the input wins and the Novelty Map is updated.
Moreover, the winner cell and its subpopulation is used for
some algorithm specific procedure. For example, in reinforce-
ment learning problems, the winner cell’s subpopulation have
one of its individuals selected to act on the environment.

IV. NOTC’S BEHAVIOR

Before going into the details of NOTC’s behavior, it is
necessary to explain two concepts (team and hall of fame
concepts).

A. Team

Fig. 2. Novelty Map Population with the black individuals (squares) forming
a team. Once an individual from a certain cell is chosen to act in a trial,
every time that cell is activated the same individual will be chosen to act.
Suppose that all black squares are individuals which already acted in this
trial. Therefore, they compose a team that is going to stay fixed until the end
of the trial.

A reward is an evaluation of the last action and all of
the actions that helped arrive in that last action. One way of
thinking about the problem is to have a set of individuals that
are activated depending on the state, and let them receive the
reward directly after its action, as well as a percentage of the
fitness from the individual that acts in the next step. Another
way of thinking is to give the accumulated reward to all of the
individuals that acted. In fact, these two are the main reasoning
behind Michigan and Pittsburgh LCS approaches with their
pros and cons associated. However they can be joined together
if the team concept is used.

A team is a set of individuals each from a different cell
in the Novelty Map Population (see Figure [2). When the cell
is activated for the first time in the respective trial (i.e., the
period from the start until the end of a run which is also
called episode) an individual is chosen randomly. Afterwards,
the same previous individual is chosen every time this cell is
activated in the same trial. The team concepts is a consequence
from this dynamic. When a cell was not activated in a given
trial, no individual is selected to be part of the team and
therefore a don’t care symbol is stored instead.

B. Hall of Fame

Without a place to store the best teams, this information
would be lost and good combinations of individuals would be
forgotten. To prevent this, the hall of fame is created. Hall of
fame is the set of teams that received the highest accumulated
reward. Naturally, the accumulated reward is the sum of the
rewards received by each individual in the given trial. In this
article, the size of the hall of fame is fixed to half the number
of best individuals in a cell.



Environment
Input Action Reward

L []

Novelty Map Population

Fig. 3. NOTC'’s behavior.

C. Behavior

Figure |3| shows the NOTC’s behavior. This behavior is
triggered when an input is received and happens throughout
the trials. The number showed in the arrows inside the figure
correspond to a given step. In the following these steps will
be explained in detail:

1)  Novelty Map Population receives the input. Its cells
compete for the input, with the winning cell having
one of its individuals chosen to act (how one individ-
ual is chosen to act is explained in Section [[V-A)).

2)  The chosen individual and its fitness compose the
action set.

3)  The chosen individual’s neural network is activated,
outputting the action to be performed.

4)  The individual that composed the previous action set
has its fitness updated. The fitness update is done
using the Widrow-Hoff rule [35]:

F=F+y(F-F), 3)
wherq n is the learning rate, F' is the current fitness
and F' is a new fitness estimate. The fitness estimate
of cell cell and individual ¢ which were activated at

time ¢t — 1 is given by the following equation:

F(e,cell)y—y = Ry_y + W‘Ea)ﬁl{F(c’, cell)}, (@)

Current Team Fitness

w

Action Set 4 Current Team Fitness

Fitness

Yy
Discount 4)6-5
4

Previous Action Set
Fitness

Current Team

Hall of Fame
Team Fitness

where R is the reward received, ~ is the discount-
factor and ma>l(l{F(t)} is the maximum fitness of
cece

individual ¢’ inside the activated cell cell’ at the
current cycle t.

5)  Current team fitness accumulates the rewards received
until the end of the trial.

There is though a single exception to how NOTC behaves.
After the evolution, the first trials are reserved for the teams
in the hall of fame. Therefore, each of the teams in the hall
of fame have an trial where it must act and have its fitness
updated. This is important, otherwise a lucky team may stay for
quite a long time as well as influence the evolution negatively.

D. Evolution

When evolution_trigger number of trials happened, the
evolution is triggered. The following equation defines the
evolution_trigger:

evolution_trigger = Sgi.e * L, (®)]

where Sj;.. is the subpopulation size (best plus novel individ-
uals) and ¢ is a parameter.

The evolution procedure consists of the following steps:

1)  For each cell, the first half of the best individuals is
filled by the individuals present in the hall of fame
teams and the second half with the fittest individuals



according to their individual fitness. Sometimes an
individual is included multiple times, because it is
part of both the fittest individuals as well as part of
the hall of fame. When a don’t care symbol is present
in the hall of fame team, a random individual from
the cell is used.

2)  The remaining individuals are removed, resulting in
an empty group of novel individuals.

3) New novel individuals are created by using the dif-
ferential evolution genetic operator (DE operator) or
indexing with a chance of 50% each. Therefore, for
each novel individual a new individual is created with
either one of the following:

e Indexing - A random individual from the
population is copied;

e DE operator - Consider that the number of
best and novel individuals are the same. The
DE operator takes as base vector the best
individual with the same index as the current
novel individual to be created, in this way all
best individuals will be used as base vectors
of at least one novel individual. To build the
DE’s mutant vector, three random individuals
from the entire population (i.e., any individual
from any subpopulation) are selected. The
resulting trial vector is stored as the new novel
individual.

V. EXPERIMENTS’ SETTINGS

In the following, experiments comparing NEAT with
NOTC will be conducted in several variations of the mountain
car problem. All results are averaged over 30 runs and only
the best result among 100 trials is plotted.

The NEAT code used is the 1.2.1 version of the NEAT
C++ software package [36]. Notice that although with different
problem’s settings (the initial position was randomized), NEAT
was previously applied to a discrete action Mountain Car [37].
Therefore, both the settings used in that paper and the settings
present in the original package were evaluated. In the end,
the original package settings had better results, therefore the
settings used for NEAT is the one provided with the software
package (i.e. the same settings that was previously used in a
double pole balancing task with success). The parameters for
NEAT are written in Table

For NOTC, the settings are similar to the ones used in [2].

VI. EXPERIMENT 1 - CONTINUOUS ACTION MOUNTAIN
CAR

The mountain car problem [38] is shown in Figure [] It is
defined by the following equation:

pos € (—1.2,0.6)

v € (—0.07,0.07)

ac€(-1,1) 6)

Ver1 = vt + (a¢) * 0.001 4 cos(3 * pos;) * (—0.0025)

POSt41 = PoSt + V41,

where pos is the position of the car, a is the car’s action and
v is the velocity of the car. The starting velocity and position

Fig. 4. Mountain car problem. The car’s objective is to reach the flags uphill,
although its acceleration is not enough to climb the mountain.

are respectively 0.0 and —0.5. If v < 0 and pos < —1.2,
the velocity is set to zero. When the car reaches pos > 0.6
the trial is terminated and the algorithm receives 0 as reward.
In all other positions the algorithm receive —1 as a reward.
Moreover, if the algorithm’s steps exceeds 102 the trial is
terminated and the common reward of —1 is returned to the
algorithm.

NOTC takes more trials to converge, but surpasses NEAT
in performance (see Figure [5)). The reasoning behind the better
performance for NOTC lies in its ability of dividing the input
space, creating smaller problem pieces that are easier to solve.
In fact, the importance of dividing the input space is verified
by comparing with a NOTC with only two cells in the Novelty
Map (see Figure [6). This NOTC is called two cells NOTC. To
make a fair comparison, the two cells NOTC has the same
total number of individuals as the NOTC (i.e., both has the
same initial diversity). Therefore, the number of best and novel
individuals in the two cells NOTC was increased to 50.

For all experiments described in this paper, similar results
were observed for their discrete action (-1,0 and 1) versions.
Although the difference in the final performance between
NEAT and NOTC was smaller.

VII. EXPERIMENT 2 - CONTINUOUS ACTION MOUNTAIN
CAR WITH NOISE

In the real world, sensors are always affected by noise. To
reflect this, a Gaussian noise is added to both the mountain car
position and velocity every time they are read by the agent.
The added Gaussian noise is respectively 4 = 0, o = 0.06
and p = 0, o = 0.009 for the position and velocity of the car,
where p stands for the mean and o is the standard deviation.

Figure [/| shows the results. This result is very similar to
the result from experiment 1, therefore the same observations
made in experiment 1 can be made here.

VIII. EXPERIMENT 3 - CONTINUOUS ACTION MOUNTAIN

CAR WITH UNSTABLE WEATHER

When driving a car, it is common for the weather to change
from clear weather to rainy weather. In that moment, for
safety purposes, the maximum velocity decreases. To reflect
this, every 10000 trials the maximum velocity changes from
the original to the (—0.04,0.04) range and vice-versa. The
motivation behind this problem is to verify the capability of
an algorithm to adapt to changes in the environment.



TABLE III. PARAMETERS FOR NOVELTY-ORGANIZING TEAM OF CLASSIFIERS
Parameter Value
. . . CR 0.2
Differential Evolution F random € [0.0, 2.0]
Number of Cells 10
Novelty Map Novelty Metric Uniqueness
Widrow-hoff coefficient 0.1
Number of best individuals 10
Novelty-Organizing Team of Classifiers | Number of novel individuals 10
L 10
Discount factor 0.99
Initial fitness for novel individuals —1
Initial fitness for best individuals 0
Number of hidden nodes 10
o
o
-
|
.
- _]
-
o I
o _| A
il .
I .
] T 9
g g 5 j
j3) . O - S o s . 13
B S ' — NoOTC B ; — NoTC
5 ! ---- NEAT kst ! 2 cells NOTC
=] =] o '
E E 84 |
Q 5} | :
5] o H
< < :
o !
o _| ‘
¥ g “
S ;
! |
|
\
\
o o \
o _| ™ _| \
& 7 :
T
0 50000 100000 150000 200000 0 50000 100000 200000
Number of Trials Number of Trials
Fig. 5. Comparison of NOTC and NEAT in the continuous action mountain Fig. 6. Comparison of the original NOTC with a NOTC using a Novelty

TABLE IL PARAMETERS FOR NEAT
Parameter Value Parameter Value
trait_param_mut_prob 0.5 trait_mutation_power 1.0
linktrait_mut_sig 1.0 nodetrait_mut_sig 0.5
weigh_mut_power 2.5 recur_prob 0.00
disjoint_coeff 1.0 excess_coeff 1.0
mutdiff_coeff 0.4 compat_thresh 3.0
age_significance 1.0 survival_thresh 0.20
mutate_only_prob 0.25 mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1 mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.9 mutate_toggle_enable_prob 0.00
mutate_gene_reenable_prob 0.000 mutate_add_node_prob 0.03
mutate_add_link_prob 0.05 interspecies_mate_rate 0.001
mate_multipoint_prob 0.6 mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0 mate_only_prob 0.2
recur_only_prob 0.0 pop_size 100
dropoff_age 15 newlink_tries 20
print_every 5 babies_stolen 0
num_runs 1

car problem.

Map with only two cells in the continuous action mountain car problem.

abrupt curve when the problem changes.

The results shown in Figure [§] demonstrate that NOTC

achieves a better performance in both problems (reduced
velocity or not) when compared with NEAT. Moreover, NOTC
has less variation of performance when the problem changes,
which reveals that the solution found can easily change be-
tween both problems. NEAT, on the other hand, has a very

IX. NOVELTY MAP ANALYSIS

Previous sections showed the behavior of the algorithm as
a whole, but what can we say about the Novelty Map? How
fast does it self-organizes? Is it always changing?



e e pmy
o
o _|
—
I
B
[
r 8 | ‘_”\.,J.\.NW_..M.“,,,.W_‘wm,r.w.,,.‘%J‘,ﬂ,,wm-.u..w.,..y.‘A..w» NV‘, »f'""\""““‘/y!"ﬁ!vﬁm”""”"'N‘
2z 9 A 0 —— NotC
k<t / ' ---- NEAT
=] i
E ¥ '
3
9 "
O
< :
o ‘
oI
N
I '
.
{
|
|
o i
o _| I
e :
T T T T T
0 50000 100000 150000 200000
Number of Trials
Fig. 7. Results of NOTC and NEAT when run on the noisy mountain car
problem.
o
o
-
I
o
o _|
—
I
B
]
5
x o
o o
Q N
T |
F
E
=
Q
O
<
(=]
wn _|
N
|
o
o _|
™
| .
T T T T T
0 50000 100000 150000 200000
Number of Trials
Fig. 8. NOTC and NEAT are compared in the unstable weather mountain

car.

These questions can be answered by observing the number
of times the value of cells are modified (updated) inside
the Novelty Map (see Figure [0). The number of updates
decreases with the number of trials faster than exponentially.
Moreover, once the updates stop, the probability of another
update appearing is very low. In other words, the division of
the input space is fixed after some time. This fact allows for the
evolution to focus on each of the smaller problems created. The

additional time required for the Novelty Map to stop updating
also explains partially the reason why NOTC needs more trials
than NEAT. Naturally, this time also depends on the agent’s
exploration of the problem, the faster an agent explores the
environment, the faster Novelty Map stops updating.

20.00

5.00
I

Number of Updates (log scale)
0.50 1.00 2.00
|

0.05 0.10 0.20
I

[ 50000 100000 150000 200000

Number of Trials

20.00 50.00
I I I I

2.00 5.00

Number of Updates (log scale)

020 0.50

0.05
I

T T T
0 50000 100000 150000 200000

Number of Trials

Fig. 9. Number of updates (changes in the value of cells) in the Novelty Map
for the noisy mountain car (top) and unstable weather mountain car (below).
The number of updates is in log scale.

X. CONCLUSION

In this article, NOTC was described in detail. Moreover,
NOTC and NEAT were compared in a continuous action
mountain car and two variations of it, one with noise and
the other with the problem dynamics changing throughout the
experiments. The experiments revealed a trade-off between the
algorithms. NOTC achieved better performance in all of the
problems, although NEAT needed less trials to converge. That
is, despite the fact that NEAT evolves both the topology and
parameters of the neural network, allowing for more robust and
complex models, it was surpassed in performance by NOTC
using a divide and conquer approach with a fixed topology
neural network. The division of the input space was shown to
be the reason why NOTC has a better performance. NOTC,
however, takes more time to converge due to the additional
time involved in learning the division of the problem.

Thus, the verified trade-off should be to some extent
present when comparing a divide and conquer with a com-



plexification approach. Having said that, it should be noticed
that both algorithms can improve, alleviating the trade-off. In
special, the divide and conquer strategy was very far from
its full potential, since the division was done over a space
where the problem is non-separable (i.e. the input space for
the mountain car was not enough to define a state space).

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI Grant
Number 24560499.

REFERENCES

[1] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99-127, 2002.

[2] D. V. Vargas, H. Takano, and J. Murata, “Novelty-organizing team of
classifiers-a team-individual multi-objective approach to reinforcement
learning,” in SICE Annual Conference (SICE), 2014 Proceedings of the.
IEEE, 2014, pp. 1785-1792.

[3] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive
algorithms,” ACM SIGART Bulletin, no. 63, pp. 4949, 1977.

[4] J. H. Holmes, P. L. Lanzi, W. Stolzmann, and S. W. Wilson, “Learning
classifier systems: New models, successful applications,” Information
Processing Letters, vol. 82, no. 1, pp. 23-30, 2002.

[5] D. Floreano, P. Diirr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47-62,
2008.

[6] R. Urbanowicz and J. Moore, “Learning classifier systems: a complete
introduction, review, and roadmap,” Journal of Artificial Evolution and
Applications, vol. 2009, p. 1, 2009.

[71 P. Lanzi and R. Riolo, “A roadmap to the last decade of learning
classifier system research (from 1989 to 1999),” Learning Classifier
Systems, pp. 33—61, 2000.

[8] S. W. Wilson, “Classifiers that approximate functions,” Natural Com-
puting, vol. 1, no. 2-3, pp. 211-234, 2002.

[91 M. Butz, P. Lanzi, and S. Wilson, “Function approximation with XCS:
Hyperellipsoidal conditions, recursive least squares, and compaction,”
Evolutionary Computation, IEEE Transactions on, vol. 12, no. 3, pp.
355-376, 2008.

[10] H. Tran, C. Sanza, Y. Duthen, and T. Nguyen, “XCSF with computed
continuous action,” in Genetic And Evolutionary Computation Con-
ference: Proceedings of the 9 th annual conference on Genetic and
evolutionary computation, vol. 7, no. 11, 2007, pp. 1861-1869.

[11] M. Valenzuela-Renddn, “The fuzzy classifier system: A classifier system
for continuously varying variables,” in Proceedings of the Fourth
International Conference on Genetic Algorithms pp346-353, Morgan
Kaufmann I, vol. 991, 1991, pp. 223-230.

[12] L. Bull and T. O’Hara, “Accuracy-based neuro and neuro-fuzzy clas-
sifier systems,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference. Morgan Kaufmann Publishers Inc., 2002, pp.
905-911.

[13] J. Casillas, B. Carse, and L. Bull, “Fuzzy-XCS: A michigan genetic
fuzzy system,” Fuzzy Systems, IEEE Transactions on, vol. 15, no. 4,
pp. 536-550, 2007.

[14] L. Bull, “On using constructivism in neural classifier systems,” Parallel
problem solving from nature-PPSN VII, pp. 558-567, 2002.

[15] M. Igbal, W. N. Browne, and M. Zhang, “Xcsr with computed continu-
ous action,” in AI 2012: Advances in Artificial Intelligence. Springer,
2012, pp. 350-361.

[16] P. Lanzi, D. Loiacono, S. Wilson, and D. Goldberg, “XCS with
computed prediction in multistep environments,” in Proceedings of the
2005 conference on Genetic and evolutionary computation. ACM,
2005, pp. 1859-1866.

[17] K. Twardowski, “Credit Assignment for Pole Balancing with Learning
Classifier Systems,” pp. 238-245.

[18] A. Bonarini, “Evolutionary learning of fuzzy rules: competition and
cooperation,” in Fuzzy Modelling. Springer, 1996, pp. 265-283.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, “Classifier
prediction based on tile coding,” in Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ~ACM, 2006,
pp- 1497-1504.

P. Stalph and M. Butz, “Learning local linear jacobians for flexible
and adaptive robot arm control,” Genetic programming and evolvable
machines, vol. 13, no. 2, pp. 137-157, 2012.

M. V. Butz and O. Herbort, “Context-dependent predictions and cog-
nitive arm control with xcsf,” in Proceedings of the 10th annual
conference on Genetic and evolutionary computation. ~ACM, 2008,
pp. 1357-1364.

A. Bonarini, C. Bonacina, and M. Matteucci, “Fuzzy and crisp repre-
sentations of real-valued input for learning classifier systems,” Learning
Classifier Systems, pp. 107-124, 2000.

G. Howard, L. Bull, and P. Lanzi, “Towards continuous actions in
continuous space and time using self-adaptive constructivism in neural
XCSF,” in Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. ACM, 2009, pp. 1219-1226.

D. V. Vargas, H. Takano, and J. Murata, “Self organizing classifiers:
first steps in structured evolutionary machine learning,” Evolutionary
Intelligence, vol. 6, no. 2, pp. 57-72, 2013.

——, “Self organizing classifiers and niched fitness,” in Proceedings of
the fifteenth annual conference on Genetic and evolutionary computa-
tion conference. ACM, 2013, pp. 1109-1116.

——, “Continuous adaptive reinforcement learning with the evolution
of self organizing classifiers,” in Development and Learning and Epige-
netic Robotics (ICDL), 2013 IEEE Third Joint International Conference
on. 1EEE, 2013, pp. 1-2.

——, “Novelty-organizing classifiers applied to classification and re-
inforcement learning: towards flexible algorithms,” in Genetic and
Evolutionary Computation Conference, GECCO 14, Vancouver, BC,
Canada, July 12-16, 2014, Companion Material Proceedings, 2014,
pp- 81-82.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” Neural Networks,
IEEE Transactions on, vol. 5, no. 1, pp. 54-65, 1994.

Y. Kassahun and G. Sommer, “Efficient reinforcement learning through
evolutionary acquisition of neural topologies,” in In I13th European
Symposium on Artificial Neural Networks (ESANN). Citeseer, 2005.

X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” Neural Networks, IEEE Transactions on, vol. 8, no. 3,
pp. 694-713, 1997.

E. Reehuis, M. Olhofer, M. Emmerich, B. Sendhoff, and T. Bick,
“Novelty and interestingness measures for design-space exploration,”
in Proceeding of the fifteenth annual conference on Genetic and
evolutionary computation conference. ACM, 2013, pp. 1541-1548.

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary computation,
vol. 19, no. 2, pp. 189-223, 2011.

T. Kohonen, Self-organizing maps. Springer, 2001, vol. 30.

B. Fritzke et al., “A growing neural gas network learns topologies,”
Advances in neural information processing systems, vol. 7, pp. 625—
632, 1995.

B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” in 7960
IRE WESCON Convention Record, Part 4. New York: IRE, 1960, pp.
96-104. [Online]. Available: http://isl-www.stanford.edu/~{ } widrow/
papers/c1960adaptiveswitching.pdf

K. Stanley, I. Karpov, B. Erkin, and D. Thomas, “NEAT C++,” http:
//nn.cs.utexas.edu/keyword?neat-c, 2001-2011.

S. Whiteson and P. Stone, “Evolutionary function approximation for
reinforcement learning,” The Journal of Machine Learning Research,
vol. 7, pp. 877-917, 2006.

R. S. Sutton, “Generalization in reinforcement learning: Successful ex-

amples using sparse coarse coding,” in Advances in Neural Information
Processing Systems 8, 1996.


http://isl-www.stanford.edu/~{}widrow/papers/c1960adaptiveswitching.pdf
http://isl-www.stanford.edu/~{}widrow/papers/c1960adaptiveswitching.pdf
http://nn.cs.utexas.edu/keyword?neat-c
http://nn.cs.utexas.edu/keyword?neat-c

	I Introduction
	II Related Work
	III NOTC's Structure
	III-A Subpopulation
	III-B Individuals
	III-C Novelty Map and Novelty Map population
	III-C1 Novelty Map
	III-C2 Novelty Map Population


	IV NOTC's Behavior
	IV-A Team
	IV-B Hall of Fame
	IV-C Behavior
	IV-D Evolution

	V Experiments' Settings
	VI Experiment 1 - Continuous Action Mountain Car
	VII Experiment 2 - Continuous Action Mountain Car with Noise
	VIII Experiment 3 - Continuous Action Mountain Car with Unstable Weather
	IX Novelty Map Analysis
	X Conclusion
	References

