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Abstract—Algorithmic  composition  is  the  process  of 
creating musical material by means of formal methods. As a 
consequence of its design, algorithmic composition systems are 
(explicitly  or  implicitly)  described  in  terms  of  parameters. 
Thus, parameter space exploration plays a key role in learning 
the system's capabilities.  However,  this task has surprisingly 
received  little  attention.  Two  main  problems  appear  when 
working on exploring parameter spaces.  First,  depending on 
the  system,  the  dimension  of  the  output  space  maybe  very 
large.  And  second,  the  produced  changes  on  the  human 
perception  of  the  outputs,  as  a  response  to  changes  on  the 
parameters,  could  be  highly  non-linear.  The  present  work 
describes  a  methodology  for  the  human  perceptual  (or 
aesthetic) exploration of generative systems' parameter spaces. 
As the systems' outputs are intended to produce an aesthetic 
experience  on  humans,  audition  plays  a  central  role  in  the 
process.  The  methodology  starts  from  a  set  of  parameter 
combinations  which  are  perceptually  evaluated  by  the  user. 
The  sampling  process  of  such  combinations  depends  on the 
system under study and possible on heuristic considerations. 
The evaluated set is processed by a compaction algorithm able 
to generate linguistic rules describing the distinct perceptions 
(classes)  of  the  user  evaluation.  The  semantic  level  of  the 
extracted rules allows for interpretability, while showing great 
potential  in  describing  high  and  low-level  musical  entities. 
Previous work and the experiments that lead to the current 
methodology  and  algorithm  are  described  in  detail.  As  the 
resulting  rules  represent  discrete  points  in  the  parameter 
space,  further  possible  extensions  for  interpolation  between 
points  are  also  discussed.  Finally,  some  practical 
implementations are presented together with paths of current 
and further research.

Keywords—Algorithmic  composition,  rule  extraction,  
parameter spaces exploration, fuzzy inductive reasoning.

I.  INTRODUCTION

Algorithmic composition is the process of creating musical 
structures by using formal methods (e.g., formal grammars, 
statistical  models,  cellular  automata,  or  mixed  ad  hoc 
combinations).  The  algorithms  can  be  used  to  generate 
either  the  complete  composition  or  some  parts,  and  at 

different hierarchical levels. For a more detailed review on 
algorithmic composition the reader is referred to [1] and [2].
The algorithmic systems utilize parameters controlling the 
generation and manipulation of the musical data. These can 
be  implicitly  or  explicitly  established  in  the  system.  The 
parametric  structure  is  a  consequence  of  the  sound  and 
music  parameterizations  used  within  the  semantic  of  the 
algorithms, or (at least) in the mapping of the produced data 
into the sonic (wave form) or symbolic outputs (midi) of the 
system (see, for example, [3]). Therefore, the exploration of 
different  combinations  of  parameters  is  a  key  aspect  in 
learning  the  system's  capabilities.  However,  despite  its 
relevance, little research has been carried out in parameter 
spaces’ exploration.  This  is  mainly due to  the difficulties 
that  arise  when  working  with  parameter  spaces  from  a 
perceptual  perspective.  These  are:  (1)  Depending  on  the 
algorithms, the dimension of the output space could be of 
intractable size [4, 5]; (2) as the outputs of the systems are 
intended to produce an aesthetic impression in the listener, 
human audition takes a central role in the data acquisition 
process, being in many cases the system's bottleneck; (3) the 
changes on human perception of the outputs produced as a 
response to changes on the parameters could be highly non-
linear.  Therefore,  it  is  difficult  to  use  interpolation 
techniques to infer the quality among known points in the 
parameter space to extend the system to unheard cases.
The present work describes a methodology for the human 
perceptual  exploration  of  generative  systems'  parameter 
spaces. It is intended for the modeling of low and high-level 
musical  entities.  The  methodology  is  based  on  a  rule-
extraction  algorithm  that  starts  from  a  pattern  of 
input/output  relationships  and  performs  an  iterative 
compaction  process  to  obtain  interpretable  and  flexible 
rules. The compaction methodology avoids the problem of 
variability  of  human  perception  of  the  outputs  as  it  is 
restricted (in its basic process) to compact the information 
received.

The problem of finding sets of parameters that successfully 
describe low and high-level perceptual entities when used in 
an algorithmic composition system has been addressed by 
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Dahlstedt  in  [5]  and  Collins  in  [4,  6].  Both  applied 
interactive evolution [7], which uses human evaluation as 
the  fitness  function  of  a  genetic  algorithm,  for  system 
parameter optimization. In the first case, this technique was 
applied  to  sound  synthesis  and  pattern  generation 
algorithms; in the second case, for searching successful sets 
of arguments controlling algorithmic routines for audio cut 
procedures.  Our  methodology  is  built  upon  these 
foundations,  i.e.  on  the  possibility  of  finding  sets  of 
parameters  for  algorithmic  systems  that  create  effective 
aural results for a listener.
In  our  methodology,  each  successful  combination  of 
parameters  represents  a  point  in  the  space  of  possible 
combinations. After user classification, it can be seen as an 
input/output relation, in the sense that this combination of 
parameters  is  associated  with  a  particular  output  label 
representing  a  perceptual  property.  Such  relations  can  be 
compacted  to  get  interpretable  rules  describing  the 
knowledge  contained  in  the  instances  by  means  of 
compaction algorithms such as  Linguistic  Rules in  Fuzzy 
Inductive  Reasoning  methodology  (LR-FIR)  [8,  12].  Our 
particular interest in working with linguistic rules lays on its 
interpretability.  Linguistic  rules,  in  contrast  with 
subsymbolic  approaches  (like  neural  net  classifiers),  are 
human-readable information, which makes them especially 
attractive for applications in the context of computer music.
The  rest  of  the  paper  is  structured  as  follows:  Section  2 
carefully describes the algorithm and the motivation of its 
functionalities. Section 3 presents a practical rule extraction 
example.  Section  4  discusses  the  algorithm  limitations. 
Finally, Section 5 presents the conclusions and possibilities 
for future work.

II. THE PARAMETER SPACE PERCEPTUAL EXPLORATION 
ALGORITHM

The general structure of the algorithm is shown in Figure 1. 
The  methodology  starts  with  an  interactive  sampling 
process  (1)  from  which  the  different  combinations  of 
parameters  are  taken  one  at  a  time.  As  previously 
mentioned,  the  parameter  combinations  are  valid 
configurations of the algorithmic system under study. Each 
set of parameters (instance) is presented to the user for its 
perceptual evaluation (2). The evaluation looks for a high-
level musical characteristic, and classifies each example in 
one particular class depending on the perceived presence of 
such  characteristic.  For  our  purposes,  high-level  musical 
features (or characteristics) are those that are derived from 
the combination of the lower level information provided in 
the input data. In this case, from parameter combinations.
After  the  human  evaluation  process,  the  set  of  instances 
(evaluated  instances  (3)  in  Figure  1)  are  passed  to  the 
compaction algorithm (4). The module “strict compaction-
all  permutations”  performs  the  compaction  process 
(described below) in every permutation of the input  data. 
This  is  the  module  that  compresses  the  information 
contained in the instances by finding the parameters that do 

not determine the class of the system's output as long as we 
have  particular  values  in  the  other  parameters.  The 
functionalities of this module are described below.

Fig. 1.Schematic  representation  of  the  parameter  space  perceptual 
exploration algorithm

Finally, the module “bag of rules, remove redundant rules” 
(5) grabs all the created rules from the previous process, and 
removes those that are redundant (rules that are contained in 
another -more general- rule). The results are presented to the  
user  (6)  through  an  interface  that  allows  to  select  the 
different rules and use them directly in live performance.

A. Strict compaction-all permutations

1) Strict compaction

The strict compaction all permutations module takes the set 
of  evaluated  instances  as  input.  Then,  it  performs  an 
iterative  process  searching  (in  the  given  order)  for  each 
parameter (Pi), sets of instances containing all the possible 
values of that parameter, and sharing the same values in the 
rest of the parameters and in the evaluation. In that case, we 
can consider that  the parameter Pi does not determine the 
class of the evaluation, given that, as long as all the other 
parameters have those specific values, the output will be the 
same. Then, the set of instances is compacted into one rule 
having  a  "-1"  in  the  place  of  Pi,  indicating  that  this 
parameter  was  compressed  (or  dismissed).  A  simple 
example  of  this  process  is  shown  in  Tables  1  and  2. 
Parameters P1 and P2  can take {2} and {3} discrete values, 
respectively, and each set is evaluated in one of two classes 
{2}, which are considered the output of the system. In this 



case, let us suppose that all instances were evaluated as 1. 
Throughout  this  paper  the  sets  of  parameters  that  do  not 
contain "-1" are called instances, and those that contain "-
1s" are referred to as rules.

TABLE 1. SIMPLE EXAMPLE OF THE COMPACTION PROCESS. FOR 
SIMPLICITY WE ARE ASSUMING THAT ALL SETS OF PARAMETERS 

(INSTANCES) WERE CLASSIFIED OR EVALUATED AS CLASS 1

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 2 1 1

3 1 2 1

4 1 3 1

Considering P1, instances 1 and 2 form a set containing all 
possible values of P1, and sharing the same values in P2 and 
in the evaluation. Then, the set is compacted into rule -1 1 1. 
After  that,  it  is  not  possible  to  compact  any other  set  of 
instances considering the P1 parameter. 
The set of rules and instances is now written as:

TABLE 2. SET OF RULES AND INSTANCES AFTER THE COMPACTION PROCESS 
OVER THE FIRST PREMISE

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-2 -1 1 1

3 1 2 1

4 1 3 1

When we consider P2 in the resulting set, we can see that 
instances  3  and  4  share  values  in  P1 and  the  evaluation, 
however, rule 1-2 does not share the same value in P1. Then, 
although all the possible values of P2 are present in the set, 
this parameter cannot be compacted.

For  compacting a  parameter,  all  variables  must  be  equal, 
including the -1; otherwise, unheard cases are included in 
the rules. To illustrate this, let us consider the following: If 
we assumed that the -1, as it contains all the values of the 
parameter,  can  be  used for  compacting  the  instances  into 
one rule. Under the only condition that the set of all possible 
values described by the rule does not create contradictions 
with the original set of instances. Considering contradictions 
those cases for which two instances have the same values in 
the parameters and different evaluation. In this case, if we 
compact the second premise we end with the rule -1 -1 1. 
That describes (or can generate) the cases listed in Table 3:

TABLE 3. SET OF ALL POSSIBLE CONFIGURATIONS THAT CAN BE CREATED 
WITH THE RULE -1 -1 1

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 2 1 1

3 1 2 1

4 2 2 1

5 1 3 1

6 2 3 1

None  of  these  instances  creates  contradictions  with  the 
original data (showed in Table 1).  However,  if  we follow 
this criterion we will include the unheard cases 2 2 1 and 2 3 
1, i.e., we will be assuming that the combinations 2 2 and 2 
3  will  produce  outputs  evaluated  as  "1".  However,  when 
working  within a  sonic  context,  as  discussed  below, it  is 
common for  these  cases  to  be perceived  as  another  class 
(e.g.,  as  class  2)   reducing  the  precision  of  the  rules. 
Therefore,  we  only  allow  the  algorithm  to  compact  two 
rules  or  instances  if  all  the  values  in  the  parameters, 
including the "-1s", are equal. We call this condition "strict 
compaction".

2) All permutations

As pointed out before, it should be noted that the resulting 
set  depends  on  the  placing  order  of  the  parameters.  For 
example, if we interchange the order of the parameters (P1 

and P2) in the training set (Table 4). 

TABLE 4. ORIGINAL SET OF INSTANCES INTERCHANGING THE ORDER OF P1 

AND P2

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 1 2 1

3 2 1 1

4 3 1 1

The resulting set applying the basic strict compaction is 
(Table 5):

TABLE 5. SET OF RULES AND INSTANCES SHOWED IN TABLE IV AFTER 
APPLYING STRICT COMPACTION

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-3-4 -1 1 1

2 1 2 1



The  process  of  interchanging  parameters  is  equivalent  to 
change the order  in  which we consider  the parameters to 
perform  the  search  of  possible  sets  for  compaction  (see 
Tables  2  and  5).  To  refer  to  the  different  sets  of  rules 
obtained in each case, we will name the different orders of 
parameters  by  its  permutation  number,  or  explicitly  by 
writing the permutation. In a formal way, we can say that, 
with  our  original  data,  we  have  two  compaction  orders 
(name [1,2] and [2,1]) depending on which parameter  we 
consider first for searching the possible sets for compaction. 
Then, compacting first in order [1,2] and then in order [2,1], 
our example results in the following sets:

TABLE 6. SET OF RULES AND INSTANCES AFTER THE STRICT COMPACTION 
PROCESS FOLLOWING THE COMPACTION ORDER OF THE PERMUTATION [1,2]

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-2 -1 1 1

3 1 2 1

4 1 3 1

TABLE 7. SET OF RULES AND INSTANCES AFTER THE STRICT COMPACTION 
PROCESS FOLLOWING THE COMPACTION ORDER OF THE PERMUTATION [2,1]

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-3-4 1 -1 1

2 2 1 1

We  are  assuming  that  parameter  combinations  represent 
discrete  points  in  the  parameter  space.  Then,  what  is 
important  for  the aesthetic  impression is the value  of  the 
parameters and not the order in which they are enumerated. 
So, P1 = 2 and P2 = 1 will be aesthetically perceived the 
same as P2 = 1 and P1 = 2, given that this is only a way to 
enumerate  the  values  of  the  parameter  setting  in  the 
algorithmic system. Then, we are saying that, as long as the 
composition system has the same values in the parameters, 
it will produce the same aural impression on the listener. It 
is  important  to  note  that  the  order  in  which  the  sets  of 
parameters  are presented  to  the  listener  could  change the 
evaluation of each set, given that our ear and brain use past 
experience,  or  references,  to  "classify"  the  material. 
Therefore, the order in which the instances are auditioned 
should be taken into account during the sampling process.
If we look at the rules of Tables 6 and 7, it can be seen that 
the rules describe the same data (the information contained 
in Table 1) in different ways. While for some applications 
we can consider any set as the result presented to the user 
(sometimes the small set is preferred), for our purposes we 
wanted  to  keep  all  the  sets  as  valid  descriptions  of  the 
original  information,  and  later  decide  how  to  use  the 
different sets of rules. There are many reasons to do that. 

For example, if we classify each instance assigning the part 
of the piece in which the setting can be used as output class, 
e.g.  part  A,  part  B,  part  C,  we  can  see  the  -1  as  free 
parameters, i.e. parameters that can be changed to play or 
add variability to the part without stepping out of the desired 
part. In other words, we want to have the greatest palette of 
possibilities first,  and later  take decisions on this set.  For 
that  reason,  the  algorithm  starts  creating  all  the  possible 
permutations  in  the  input  data,  and  it  then  applies  strict 
compaction  to  each  set.  Therefore,  the  module  is  called 
“strict compaction-all permutations” and returns all rule sets 
of  the  different  permutations  compacted  under  the  strict 
compaction condition.
We  implemented  this  module  in  the  SuperCollider 
programming  language  [11],  which  allows  exploring  and 
playing with the obtained set of rules. This implementation 
is available from the GitHub repository [13].
It is worth stressing that this approach works for algorithmic 
systems that, for the same parameter combination, exhibit 
consistent aural results, excluding, for example, systems that 
include complete random processes in the generation of the 
data in such a way that it is not possible to establish an aural 
correlation among the outputs and the parameter setting.

B. Bag of rules and removing redundant rules

From the different possible compactions resulting from 
the strict  compaction–all  permutations a “Bag of rules” is 
chosen.  It  consists  in  selecting  all  the  rules,  i.e.  all  the 
instances in which at least one parameter is a free parameter 
(having  a  -1),  of  each  permutation.  Then,  these  rules  are 
analyzed and the redundant rules are eliminated. Redundant 
rules  are  those  that  are  contained  in  a  rule  with  greater 
number of free parameters. In the following section, a step-
by-step example of the methodology is presented.

III. EXAMPLE:  PARAMETER EXPLORATION OF A 16-STEPS 
GARAGE BEAT GENERATOR

As an example of the methodology, we present a quick 
parameter exploration of an algorithmic system intended to 
produce  16-steps  beat  patterns  in  the  context  of  garage 
music. It is a simplified version of an algorithm presented in 
[10]. The implementation of the algorithm, together with a 
graphical user interface performing the evaluation and rule 
extraction processes, can be found in [14].

The algorithmic composer produces 16-steps beat sequences 
in the context of garage music for three instruments, i.e. kick, 
snare, and hi-hat, represented in the algorithm with values 1, 
2,  and  3  respectively.  The  silence  is  represented  by  the 
number 4. The algorithm determines which instrument plays 
at each one of the 16 places in order to produce a consistent 
style  with  some  variability.  The  sequences  have  11 
unchanged variables, which define their constant part, and 5 
changing parameters,  which produce the different  possible 
patterns. These parameters can also take different values, i.e.  
P1{1,4}, P2{1,4}, P3{1,2,3,4}, P4{2,4} and P5{1,2,3,4}. This 
information  is  detailed  and  described  in  [10].  Then,  the 



algorithmic  system  is  able  to  produce  different  pattern 
variations of the musical style.

A. Sampling process and evaluation

The  sampling  process  of  the  implementation  has  two 
modalities: random and manual. The random mode creates a 
random pattern out of all the possible patterns in the space. 
The  manual  mode allows  the  user  to  manually  select  the 
value for each parameter. In the experiments, we found that 
the random mode is useful when the space of parameters is 
small. For higher-dimensional spaces it is better to start from 
a  seed  in  the  manual  mode  and  explore  the  space  in  the 
different  directions,  performing  gradual  changes  in  the 
parameters and returning to the original seed after exploring 
each parameter. For each parameters combination, the user 
perceptual evaluation is saved. The system allows having as 
much  output  classes  as  desired.  Each  classification 
corresponds  to  a  specific  aural  property  of  the  outputs 
selected  by  the  user.  Figure  2  shows  the  user  graphic 
interface developed.

Fig. 2.Image of the graphical user interface developed for the sampling 
and rule extraction processes. The SuperCollider code is available at 

[14]

1) Data

For a quick and open exploration 28 different parameter 
combinations were selected by using the manual mode; they 
are listed in Table 8.  The exploration started from a seed, 
chosen  by  using  heuristic  information  of  the  algorithmic 
system. It is identified by the legend “original seed” in Table 
8.

TABLE 8. PARAMETER COMBINATION OBTAINED USING THE MANUAL MODE 
OF THE GRAPHICAL USER INTERFACE

Num. P1 P2 P3 P4 P5 EVALUA

Instance TION

1 1 1 1 2 1 1   ORIGINAL SEED

2 4 1 1 2 1 1

3 1 4 1 2 1 1

4 1 1 1 4 1 1

5 1 1 1 4 4 1

6 1 1 1 4 2 1

7 1 1 1 4 3 1

8 1 1 1 4 2 1

9 1 1 2 4 2 2

10 1 1 2 2 2 2

11 1 1 3 2 2 2

12 1 1 4 2 2 2

13 1 1 1 2 2 2

14 4 4 1 2 1 2

15 4 4 1 4 1 2

16 1 4 1 4 1 1

17 4 4 1 4 1 2

18 4 1 1 4 1 1

19 4 1 2 4 1 2

20 4 1 3 4 1 2

21 4 1 4 4 1 2

22 4 4 2 4 1 2

23 4 4 2 2 1 2

24 4 4 2 4 1 2

25 4 4 2 2 2 2

26 4 4 2 2 3 2

27 4 4 2 2 4 2

28 4 4 2 2 1 2

B. Strict compaction-all permutations

After  the  data  acquisition  process,  the  compaction 
module creates the rules obtained with the strict compaction 
for the permutations in the 5 variables (120 permutations). 
From all these sets, the ones that are unique, i.e., the ones 
that are not repeated, are selected. In this case, there are 41 
different  sets  of  rules.  They  are  listed  in  the  example 
described in [14].

C. Bag of rules and removal of redundant rules

With  the  41  sets  of  rules  obtained  after  the  strict 
compaction-all  permutations  process,  the  bag  of  rules  is 
built. Then, the redundant rules are eliminated. The resulting 
set is shown in Table 9.

TABLE 9. BAG OF RULES AFTER REMOVING REDUNDANT RULES

Num. Instance P1 P2 P3 P4 P5 EVALUATION



1 -1 1 1 -1 1 1

2 1 1 1 4 -1 1

3 1 -1 1 -1 1 1

4 4 -1 2 4 1 2

5 1 1 -1 2 2 2

6 1 1 2 -1 2 2

7 4 4 2 -1 1 2

8 4 4 1 -1 1 2

9 4 4 2 2 -1 2

There are free parameters for four out of the five possible 
parameters in the rules describing the “class 1”,  the same 
goes for class 2. Notice that this number (the number of free 
parameters in the bag of rules) is always greater or equal 
that the number of free parameters of the independent rule 
sets. It is clear that, given that as we are considering all the 
possible compactions, this number has to be greater than or 
equal  to  the  number  of  free  parameters  of  each  of  the 
permutations. In other words, the bag of rules is the set with 
the  greatest  number  of  free  parameters.  Also,  as  a 
consequence of its construction, it contains the more general 
rules.  Then,  it  is  the  smallest  representation  of  the  most 
general description.
The bag  of  rules  can  also be  analyzed  to  infer  or  derive 
knowledge  about  how  the  user  is  correlating  the  input 
parameters  with  the  perceptual  space.  In  Table  9,  for 
example, it can be seen that all rules describing class 1, have 
“1” at P3. In contrast, only 2 out of the six rules describing 
class  2  have  a  “1”  at  P3.  While  this  is  not  conclusive 
information, because it is clearly related with the value of 
the  other  parameters,  it  can  be  used  to  create  further 
extensions for  the algorithm, and to guide the rest of  the 
space exploration.
Within the analysis of the rules, different levels of musical 
information  can  be  extracted.  For  this  particular  case, 
patterns  for  a  specific  part  of  a  piece,  with  highly 
"rhythmic"  content,  were  chosen.  Class  1  describes  the 
patterns that can be used in that part, and class 2 those that 
cannot.  In  the  rules  reported  in  Table  9  the  presence  of 
different instruments in the different classes can be seen. For 
example, there is only one "4" in the rules describing class 
1, and eight in rules describing the class 2. This information 
can be used to build a system's heuristic. For example, we 
can perform a new exploration beginning from a new seed 
using this information. We can also see that P4 parameter is 
the increased presence of "-1". Following this, the rules can 
also be analyzed at a higher level to derive new sets of more 
general or directed rules.

It can be seen that the rules describe the information present 
in the original set of instances (Table 8) and that they cannot 
generate  any  instance  out  of  it.  In  that  sense,  the  rules 
represent  a  close  system  representing  the  original 
information  (close  system  refers  to  the  fact  that  no 

“instance”  out  of  the  instances  in  the training set  can be 
generated  with  the  rules.).  Given  such  property,  the 
precision of the rules is 100%. We looked for this, to be able 
to place, in two separate processes, the strict description of 
space (from which we can analyze the relations among the 
parameters and the perception) and the methods for going 
into the unexplored space. The rules were tested into live 
performance,  giving  the  expected  results.  Also,  the 
perceived contrast between the class separations respects the 
user's selection of the input data.

IV. ALGORITHM LIMITATIONS

Recapitulating,  the current  limitations  of  the  algorithm 
are the following:

1) Consistent input/output relation
As previously mentioned, the application of the method 

is restricted to algorithmic systems showing consistent aural 
results  for  the  same  parameter  combination,   therefore 
excluding systems in which it is not possible to establish an 
aural  correlation  among  the  outputs  and  the  parameter 
setting. In such cases, although the numeric construction of 
the rules is possible, when these are used, the results will not 
be perceived as the evaluation.

2) Permutations
The second limitation is related to the computational cost 

of  perform  all  possible  permutations.  Depending  on  the 
machine  and the amount  of  data,  the running  time of  the 
algorithm varies. For practical live performance applications 
the system has been tested with a maximum of 8 parameters.

3) Human bottleneck
As previously stated, audition plays a central role in the 

methodology  as  the  outputs  produced  by  the  algorithmic 
composition  systems are intended  to  produce  an  aesthetic 
experience.  The  audition  process  is  clearly  a  “human 
bottleneck”, and a system limitation, in the sense that is it not 
possible  to  cover  huge  parameter  spaces,  or  to  have  big 
training  sets.  Also,  the  evaluation  has  to  be  consistent 
(otherwise, the rules could be perceived as chaotic).

4) “No surprises”
As  the  constructed  rules  represent  a  close  system 

capturing the knowledge contained in the input data, no new 
patterns (out of the training set)  are obtained. The system 
only allows us to organize the information of the explored 
space, representing it in a compact set of rules the regions of 
space that we had labeled. However, the shape of the rules 
allows us to establish new relations and to analyze how the 
labels  of  the  space  depend  on  the  combinations  of  the 
parameters.
In further extensions, we will develop a module capable of 
suggesting new valid patterns.

V. CONCLUSIONS AND FURTHER WORK

The obtained rules are able to represent low- and high-level 
musical  entities  .  Also,  the  approach  of  seeing  the 
compressed parameters as free parameters, thus using them 
for traveling within our perceptual predefined spaces, allows 



the generation of variability in the outputs without stepping 
out of the described classes.  This approach leads to good 
results in a live performance context.
However,  given that the rules form a close representation of 
the data in the sense that they do not create new patterns, the 
methodology has some restrictions.  Nevertheless, it  works 
out to explore the parameter space of the algorithmic system 
creating subspaces that can be accessed later throughout the 
rules.  But again, these rules are restricted to the explored 
places.
When  working  in  computer  music,  we  want  the 
methodologies  to  help to  extend the  composer  capacities. 
From  this  perspective,  the  system  helps  to  create  new 
relations among the parameters and the aural perception, but 
the  inclusion  of  a  module  for  extending  the  rules  and  to 
explore new places in the space appears necessary. Here is 
where the interpretability  of  the rules  becomes important. 
As mentioned, the information extracted from the analysis 
of the rules can be used to guide the exploration of space 
helping the user to find new places close to those described 
by the rules. On the other hand, thinking differently, we can 
also use this information to analyze, for example, “distant 
spots” away from the ones described by the rules. Again, the 
obtained information is  only the starting point  to  avoid a 
blind exploration of space. 

Considering  the  discussion  presented  above,  several  lines 
for further work are proposed:
The current interface provides two scanning modes, random 
and manual. While the random model is quite inefficient (it 
requires many points), the manual mode requires heuristic 
considerations  and  some  degree  of  expertise  in  the 
algorithm used. For that reason, we are currently working in 
a  module  that  takes  the  user  through an  efficient  way to 
explore the space. 
The second line for future work includes an algorithm for 
analyzing  the  rules  contained  in  the  bag,  allowing  the 
extraction of more general rules from this point and to guide 
a further exploration of the space.
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