
A methodological approach for algorithmic
composition systems' parameter spaces aesthetic

exploration

Iván Paz, Àngela Nebot, Enrique Romero, Francisco Mugica and Alfredo Vellido
Soft Computing Research Group
Computer Science Department

Universitat Politècnica de Catalunya - Barcelona Tech
C. Jordi Girona 1-3, 08034 Barcelona, Spain

{ivanpaz, angela, eromero, fmugica, avellido}@cs.upc.edu

Abstract—Algorithmic composition is the process of
creating musical material by means of formal methods. As a
consequence of its design, algorithmic composition systems are
(explicitly or implicitly) described in terms of parameters.
Thus, parameter space exploration plays a key role in learning
the system's capabilities. However, this task has surprisingly
received little attention. Two main problems appear when
working on exploring parameter spaces. First, depending on
the system, the dimension of the output space maybe very
large. And second, the produced changes on the human
perception of the outputs, as a response to changes on the
parameters, could be highly non-linear. The present work
describes a methodology for the human perceptual (or
aesthetic) exploration of generative systems' parameter spaces.
As the systems' outputs are intended to produce an aesthetic
experience on humans, audition plays a central role in the
process. The methodology starts from a set of parameter
combinations which are perceptually evaluated by the user.
The sampling process of such combinations depends on the
system under study and possible on heuristic considerations.
The evaluated set is processed by a compaction algorithm able
to generate linguistic rules describing the distinct perceptions
(classes) of the user evaluation. The semantic level of the
extracted rules allows for interpretability, while showing great
potential in describing high and low-level musical entities.
Previous work and the experiments that lead to the current
methodology and algorithm are described in detail. As the
resulting rules represent discrete points in the parameter
space, further possible extensions for interpolation between
points are also discussed. Finally, some practical
implementations are presented together with paths of current
and further research.

Keywords—Algorithmic composition, rule extraction,
parameter spaces exploration, fuzzy inductive reasoning.

I. INTRODUCTION

Algorithmic composition is the process of creating musical
structures by using formal methods (e.g., formal grammars,
statistical models, cellular automata, or mixed ad hoc
combinations). The algorithms can be used to generate
either the complete composition or some parts, and at

different hierarchical levels. For a more detailed review on
algorithmic composition the reader is referred to [1] and [2].
The algorithmic systems utilize parameters controlling the
generation and manipulation of the musical data. These can
be implicitly or explicitly established in the system. The
parametric structure is a consequence of the sound and
music parameterizations used within the semantic of the
algorithms, or (at least) in the mapping of the produced data
into the sonic (wave form) or symbolic outputs (midi) of the
system (see, for example, [3]). Therefore, the exploration of
different combinations of parameters is a key aspect in
learning the system's capabilities. However, despite its
relevance, little research has been carried out in parameter
spaces’ exploration. This is mainly due to the difficulties
that arise when working with parameter spaces from a
perceptual perspective. These are: (1) Depending on the
algorithms, the dimension of the output space could be of
intractable size [4, 5]; (2) as the outputs of the systems are
intended to produce an aesthetic impression in the listener,
human audition takes a central role in the data acquisition
process, being in many cases the system's bottleneck; (3) the
changes on human perception of the outputs produced as a
response to changes on the parameters could be highly non-
linear. Therefore, it is difficult to use interpolation
techniques to infer the quality among known points in the
parameter space to extend the system to unheard cases.
The present work describes a methodology for the human
perceptual exploration of generative systems' parameter
spaces. It is intended for the modeling of low and high-level
musical entities. The methodology is based on a rule-
extraction algorithm that starts from a pattern of
input/output relationships and performs an iterative
compaction process to obtain interpretable and flexible
rules. The compaction methodology avoids the problem of
variability of human perception of the outputs as it is
restricted (in its basic process) to compact the information
received.

The problem of finding sets of parameters that successfully
describe low and high-level perceptual entities when used in
an algorithmic composition system has been addressed by

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. DOI 10.1109/CEC.2016.7743940

Dahlstedt in [5] and Collins in [4, 6]. Both applied
interactive evolution [7], which uses human evaluation as
the fitness function of a genetic algorithm, for system
parameter optimization. In the first case, this technique was
applied to sound synthesis and pattern generation
algorithms; in the second case, for searching successful sets
of arguments controlling algorithmic routines for audio cut
procedures. Our methodology is built upon these
foundations, i.e. on the possibility of finding sets of
parameters for algorithmic systems that create effective
aural results for a listener.
In our methodology, each successful combination of
parameters represents a point in the space of possible
combinations. After user classification, it can be seen as an
input/output relation, in the sense that this combination of
parameters is associated with a particular output label
representing a perceptual property. Such relations can be
compacted to get interpretable rules describing the
knowledge contained in the instances by means of
compaction algorithms such as Linguistic Rules in Fuzzy
Inductive Reasoning methodology (LR-FIR) [8, 12]. Our
particular interest in working with linguistic rules lays on its
interpretability. Linguistic rules, in contrast with
subsymbolic approaches (like neural net classifiers), are
human-readable information, which makes them especially
attractive for applications in the context of computer music.
The rest of the paper is structured as follows: Section 2
carefully describes the algorithm and the motivation of its
functionalities. Section 3 presents a practical rule extraction
example. Section 4 discusses the algorithm limitations.
Finally, Section 5 presents the conclusions and possibilities
for future work.

II. THE PARAMETER SPACE PERCEPTUAL EXPLORATION
ALGORITHM

The general structure of the algorithm is shown in Figure 1.
The methodology starts with an interactive sampling
process (1) from which the different combinations of
parameters are taken one at a time. As previously
mentioned, the parameter combinations are valid
configurations of the algorithmic system under study. Each
set of parameters (instance) is presented to the user for its
perceptual evaluation (2). The evaluation looks for a high-
level musical characteristic, and classifies each example in
one particular class depending on the perceived presence of
such characteristic. For our purposes, high-level musical
features (or characteristics) are those that are derived from
the combination of the lower level information provided in
the input data. In this case, from parameter combinations.
After the human evaluation process, the set of instances
(evaluated instances (3) in Figure 1) are passed to the
compaction algorithm (4). The module “strict compaction-
all permutations” performs the compaction process
(described below) in every permutation of the input data.
This is the module that compresses the information
contained in the instances by finding the parameters that do

not determine the class of the system's output as long as we
have particular values in the other parameters. The
functionalities of this module are described below.

Fig. 1.Schematic representation of the parameter space perceptual
exploration algorithm

Finally, the module “bag of rules, remove redundant rules”
(5) grabs all the created rules from the previous process, and
removes those that are redundant (rules that are contained in
another -more general- rule). The results are presented to the
user (6) through an interface that allows to select the
different rules and use them directly in live performance.

A. Strict compaction-all permutations

1) Strict compaction

The strict compaction all permutations module takes the set
of evaluated instances as input. Then, it performs an
iterative process searching (in the given order) for each
parameter (Pi), sets of instances containing all the possible
values of that parameter, and sharing the same values in the
rest of the parameters and in the evaluation. In that case, we
can consider that the parameter Pi does not determine the
class of the evaluation, given that, as long as all the other
parameters have those specific values, the output will be the
same. Then, the set of instances is compacted into one rule
having a "-1" in the place of Pi, indicating that this
parameter was compressed (or dismissed). A simple
example of this process is shown in Tables 1 and 2.
Parameters P1 and P2 can take {2} and {3} discrete values,
respectively, and each set is evaluated in one of two classes
{2}, which are considered the output of the system. In this

case, let us suppose that all instances were evaluated as 1.
Throughout this paper the sets of parameters that do not
contain "-1" are called instances, and those that contain "-
1s" are referred to as rules.

TABLE 1. SIMPLE EXAMPLE OF THE COMPACTION PROCESS. FOR
SIMPLICITY WE ARE ASSUMING THAT ALL SETS OF PARAMETERS

(INSTANCES) WERE CLASSIFIED OR EVALUATED AS CLASS 1

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 2 1 1

3 1 2 1

4 1 3 1

Considering P1, instances 1 and 2 form a set containing all
possible values of P1, and sharing the same values in P2 and
in the evaluation. Then, the set is compacted into rule -1 1 1.
After that, it is not possible to compact any other set of
instances considering the P1 parameter.
The set of rules and instances is now written as:

TABLE 2. SET OF RULES AND INSTANCES AFTER THE COMPACTION PROCESS
OVER THE FIRST PREMISE

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-2 -1 1 1

3 1 2 1

4 1 3 1

When we consider P2 in the resulting set, we can see that
instances 3 and 4 share values in P1 and the evaluation,
however, rule 1-2 does not share the same value in P1. Then,
although all the possible values of P2 are present in the set,
this parameter cannot be compacted.

For compacting a parameter, all variables must be equal,
including the -1; otherwise, unheard cases are included in
the rules. To illustrate this, let us consider the following: If
we assumed that the -1, as it contains all the values of the
parameter, can be used for compacting the instances into
one rule. Under the only condition that the set of all possible
values described by the rule does not create contradictions
with the original set of instances. Considering contradictions
those cases for which two instances have the same values in
the parameters and different evaluation. In this case, if we
compact the second premise we end with the rule -1 -1 1.
That describes (or can generate) the cases listed in Table 3:

TABLE 3. SET OF ALL POSSIBLE CONFIGURATIONS THAT CAN BE CREATED
WITH THE RULE -1 -1 1

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 2 1 1

3 1 2 1

4 2 2 1

5 1 3 1

6 2 3 1

None of these instances creates contradictions with the
original data (showed in Table 1). However, if we follow
this criterion we will include the unheard cases 2 2 1 and 2 3
1, i.e., we will be assuming that the combinations 2 2 and 2
3 will produce outputs evaluated as "1". However, when
working within a sonic context, as discussed below, it is
common for these cases to be perceived as another class
(e.g., as class 2) reducing the precision of the rules.
Therefore, we only allow the algorithm to compact two
rules or instances if all the values in the parameters,
including the "-1s", are equal. We call this condition "strict
compaction".

2) All permutations

As pointed out before, it should be noted that the resulting
set depends on the placing order of the parameters. For
example, if we interchange the order of the parameters (P1

and P2) in the training set (Table 4).

TABLE 4. ORIGINAL SET OF INSTANCES INTERCHANGING THE ORDER OF P1

AND P2

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1 1 1 1

2 1 2 1

3 2 1 1

4 3 1 1

The resulting set applying the basic strict compaction is
(Table 5):

TABLE 5. SET OF RULES AND INSTANCES SHOWED IN TABLE IV AFTER
APPLYING STRICT COMPACTION

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-3-4 -1 1 1

2 1 2 1

The process of interchanging parameters is equivalent to
change the order in which we consider the parameters to
perform the search of possible sets for compaction (see
Tables 2 and 5). To refer to the different sets of rules
obtained in each case, we will name the different orders of
parameters by its permutation number, or explicitly by
writing the permutation. In a formal way, we can say that,
with our original data, we have two compaction orders
(name [1,2] and [2,1]) depending on which parameter we
consider first for searching the possible sets for compaction.
Then, compacting first in order [1,2] and then in order [2,1],
our example results in the following sets:

TABLE 6. SET OF RULES AND INSTANCES AFTER THE STRICT COMPACTION
PROCESS FOLLOWING THE COMPACTION ORDER OF THE PERMUTATION [1,2]

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-2 -1 1 1

3 1 2 1

4 1 3 1

TABLE 7. SET OF RULES AND INSTANCES AFTER THE STRICT COMPACTION
PROCESS FOLLOWING THE COMPACTION ORDER OF THE PERMUTATION [2,1]

Num. Instance P1 {2} P2 {3} EVALUATION {2}

1-3-4 1 -1 1

2 2 1 1

We are assuming that parameter combinations represent
discrete points in the parameter space. Then, what is
important for the aesthetic impression is the value of the
parameters and not the order in which they are enumerated.
So, P1 = 2 and P2 = 1 will be aesthetically perceived the
same as P2 = 1 and P1 = 2, given that this is only a way to
enumerate the values of the parameter setting in the
algorithmic system. Then, we are saying that, as long as the
composition system has the same values in the parameters,
it will produce the same aural impression on the listener. It
is important to note that the order in which the sets of
parameters are presented to the listener could change the
evaluation of each set, given that our ear and brain use past
experience, or references, to "classify" the material.
Therefore, the order in which the instances are auditioned
should be taken into account during the sampling process.
If we look at the rules of Tables 6 and 7, it can be seen that
the rules describe the same data (the information contained
in Table 1) in different ways. While for some applications
we can consider any set as the result presented to the user
(sometimes the small set is preferred), for our purposes we
wanted to keep all the sets as valid descriptions of the
original information, and later decide how to use the
different sets of rules. There are many reasons to do that.

For example, if we classify each instance assigning the part
of the piece in which the setting can be used as output class,
e.g. part A, part B, part C, we can see the -1 as free
parameters, i.e. parameters that can be changed to play or
add variability to the part without stepping out of the desired
part. In other words, we want to have the greatest palette of
possibilities first, and later take decisions on this set. For
that reason, the algorithm starts creating all the possible
permutations in the input data, and it then applies strict
compaction to each set. Therefore, the module is called
“strict compaction-all permutations” and returns all rule sets
of the different permutations compacted under the strict
compaction condition.
We implemented this module in the SuperCollider
programming language [11], which allows exploring and
playing with the obtained set of rules. This implementation
is available from the GitHub repository [13].
It is worth stressing that this approach works for algorithmic
systems that, for the same parameter combination, exhibit
consistent aural results, excluding, for example, systems that
include complete random processes in the generation of the
data in such a way that it is not possible to establish an aural
correlation among the outputs and the parameter setting.

B. Bag of rules and removing redundant rules

From the different possible compactions resulting from
the strict compaction–all permutations a “Bag of rules” is
chosen. It consists in selecting all the rules, i.e. all the
instances in which at least one parameter is a free parameter
(having a -1), of each permutation. Then, these rules are
analyzed and the redundant rules are eliminated. Redundant
rules are those that are contained in a rule with greater
number of free parameters. In the following section, a step-
by-step example of the methodology is presented.

III. EXAMPLE: PARAMETER EXPLORATION OF A 16-STEPS
GARAGE BEAT GENERATOR

As an example of the methodology, we present a quick
parameter exploration of an algorithmic system intended to
produce 16-steps beat patterns in the context of garage
music. It is a simplified version of an algorithm presented in
[10]. The implementation of the algorithm, together with a
graphical user interface performing the evaluation and rule
extraction processes, can be found in [14].

The algorithmic composer produces 16-steps beat sequences
in the context of garage music for three instruments, i.e. kick,
snare, and hi-hat, represented in the algorithm with values 1,
2, and 3 respectively. The silence is represented by the
number 4. The algorithm determines which instrument plays
at each one of the 16 places in order to produce a consistent
style with some variability. The sequences have 11
unchanged variables, which define their constant part, and 5
changing parameters, which produce the different possible
patterns. These parameters can also take different values, i.e.
P1{1,4}, P2{1,4}, P3{1,2,3,4}, P4{2,4} and P5{1,2,3,4}. This
information is detailed and described in [10]. Then, the

algorithmic system is able to produce different pattern
variations of the musical style.

A. Sampling process and evaluation

The sampling process of the implementation has two
modalities: random and manual. The random mode creates a
random pattern out of all the possible patterns in the space.
The manual mode allows the user to manually select the
value for each parameter. In the experiments, we found that
the random mode is useful when the space of parameters is
small. For higher-dimensional spaces it is better to start from
a seed in the manual mode and explore the space in the
different directions, performing gradual changes in the
parameters and returning to the original seed after exploring
each parameter. For each parameters combination, the user
perceptual evaluation is saved. The system allows having as
much output classes as desired. Each classification
corresponds to a specific aural property of the outputs
selected by the user. Figure 2 shows the user graphic
interface developed.

Fig. 2.Image of the graphical user interface developed for the sampling
and rule extraction processes. The SuperCollider code is available at

[14]

1) Data

For a quick and open exploration 28 different parameter
combinations were selected by using the manual mode; they
are listed in Table 8. The exploration started from a seed,
chosen by using heuristic information of the algorithmic
system. It is identified by the legend “original seed” in Table
8.

TABLE 8. PARAMETER COMBINATION OBTAINED USING THE MANUAL MODE
OF THE GRAPHICAL USER INTERFACE

Num. P1 P2 P3 P4 P5 EVALUA

Instance TION

1 1 1 1 2 1 1 ORIGINAL SEED

2 4 1 1 2 1 1

3 1 4 1 2 1 1

4 1 1 1 4 1 1

5 1 1 1 4 4 1

6 1 1 1 4 2 1

7 1 1 1 4 3 1

8 1 1 1 4 2 1

9 1 1 2 4 2 2

10 1 1 2 2 2 2

11 1 1 3 2 2 2

12 1 1 4 2 2 2

13 1 1 1 2 2 2

14 4 4 1 2 1 2

15 4 4 1 4 1 2

16 1 4 1 4 1 1

17 4 4 1 4 1 2

18 4 1 1 4 1 1

19 4 1 2 4 1 2

20 4 1 3 4 1 2

21 4 1 4 4 1 2

22 4 4 2 4 1 2

23 4 4 2 2 1 2

24 4 4 2 4 1 2

25 4 4 2 2 2 2

26 4 4 2 2 3 2

27 4 4 2 2 4 2

28 4 4 2 2 1 2

B. Strict compaction-all permutations

After the data acquisition process, the compaction
module creates the rules obtained with the strict compaction
for the permutations in the 5 variables (120 permutations).
From all these sets, the ones that are unique, i.e., the ones
that are not repeated, are selected. In this case, there are 41
different sets of rules. They are listed in the example
described in [14].

C. Bag of rules and removal of redundant rules

With the 41 sets of rules obtained after the strict
compaction-all permutations process, the bag of rules is
built. Then, the redundant rules are eliminated. The resulting
set is shown in Table 9.

TABLE 9. BAG OF RULES AFTER REMOVING REDUNDANT RULES

Num. Instance P1 P2 P3 P4 P5 EVALUATION

1 -1 1 1 -1 1 1

2 1 1 1 4 -1 1

3 1 -1 1 -1 1 1

4 4 -1 2 4 1 2

5 1 1 -1 2 2 2

6 1 1 2 -1 2 2

7 4 4 2 -1 1 2

8 4 4 1 -1 1 2

9 4 4 2 2 -1 2

There are free parameters for four out of the five possible
parameters in the rules describing the “class 1”, the same
goes for class 2. Notice that this number (the number of free
parameters in the bag of rules) is always greater or equal
that the number of free parameters of the independent rule
sets. It is clear that, given that as we are considering all the
possible compactions, this number has to be greater than or
equal to the number of free parameters of each of the
permutations. In other words, the bag of rules is the set with
the greatest number of free parameters. Also, as a
consequence of its construction, it contains the more general
rules. Then, it is the smallest representation of the most
general description.
The bag of rules can also be analyzed to infer or derive
knowledge about how the user is correlating the input
parameters with the perceptual space. In Table 9, for
example, it can be seen that all rules describing class 1, have
“1” at P3. In contrast, only 2 out of the six rules describing
class 2 have a “1” at P3. While this is not conclusive
information, because it is clearly related with the value of
the other parameters, it can be used to create further
extensions for the algorithm, and to guide the rest of the
space exploration.
Within the analysis of the rules, different levels of musical
information can be extracted. For this particular case,
patterns for a specific part of a piece, with highly
"rhythmic" content, were chosen. Class 1 describes the
patterns that can be used in that part, and class 2 those that
cannot. In the rules reported in Table 9 the presence of
different instruments in the different classes can be seen. For
example, there is only one "4" in the rules describing class
1, and eight in rules describing the class 2. This information
can be used to build a system's heuristic. For example, we
can perform a new exploration beginning from a new seed
using this information. We can also see that P4 parameter is
the increased presence of "-1". Following this, the rules can
also be analyzed at a higher level to derive new sets of more
general or directed rules.

It can be seen that the rules describe the information present
in the original set of instances (Table 8) and that they cannot
generate any instance out of it. In that sense, the rules
represent a close system representing the original
information (close system refers to the fact that no

“instance” out of the instances in the training set can be
generated with the rules.). Given such property, the
precision of the rules is 100%. We looked for this, to be able
to place, in two separate processes, the strict description of
space (from which we can analyze the relations among the
parameters and the perception) and the methods for going
into the unexplored space. The rules were tested into live
performance, giving the expected results. Also, the
perceived contrast between the class separations respects the
user's selection of the input data.

IV. ALGORITHM LIMITATIONS

Recapitulating, the current limitations of the algorithm
are the following:

1) Consistent input/output relation
As previously mentioned, the application of the method

is restricted to algorithmic systems showing consistent aural
results for the same parameter combination, therefore
excluding systems in which it is not possible to establish an
aural correlation among the outputs and the parameter
setting. In such cases, although the numeric construction of
the rules is possible, when these are used, the results will not
be perceived as the evaluation.

2) Permutations
The second limitation is related to the computational cost

of perform all possible permutations. Depending on the
machine and the amount of data, the running time of the
algorithm varies. For practical live performance applications
the system has been tested with a maximum of 8 parameters.

3) Human bottleneck
As previously stated, audition plays a central role in the

methodology as the outputs produced by the algorithmic
composition systems are intended to produce an aesthetic
experience. The audition process is clearly a “human
bottleneck”, and a system limitation, in the sense that is it not
possible to cover huge parameter spaces, or to have big
training sets. Also, the evaluation has to be consistent
(otherwise, the rules could be perceived as chaotic).

4) “No surprises”
As the constructed rules represent a close system

capturing the knowledge contained in the input data, no new
patterns (out of the training set) are obtained. The system
only allows us to organize the information of the explored
space, representing it in a compact set of rules the regions of
space that we had labeled. However, the shape of the rules
allows us to establish new relations and to analyze how the
labels of the space depend on the combinations of the
parameters.
In further extensions, we will develop a module capable of
suggesting new valid patterns.

V. CONCLUSIONS AND FURTHER WORK

The obtained rules are able to represent low- and high-level
musical entities . Also, the approach of seeing the
compressed parameters as free parameters, thus using them
for traveling within our perceptual predefined spaces, allows

the generation of variability in the outputs without stepping
out of the described classes. This approach leads to good
results in a live performance context.
However, given that the rules form a close representation of
the data in the sense that they do not create new patterns, the
methodology has some restrictions. Nevertheless, it works
out to explore the parameter space of the algorithmic system
creating subspaces that can be accessed later throughout the
rules. But again, these rules are restricted to the explored
places.
When working in computer music, we want the
methodologies to help to extend the composer capacities.
From this perspective, the system helps to create new
relations among the parameters and the aural perception, but
the inclusion of a module for extending the rules and to
explore new places in the space appears necessary. Here is
where the interpretability of the rules becomes important.
As mentioned, the information extracted from the analysis
of the rules can be used to guide the exploration of space
helping the user to find new places close to those described
by the rules. On the other hand, thinking differently, we can
also use this information to analyze, for example, “distant
spots” away from the ones described by the rules. Again, the
obtained information is only the starting point to avoid a
blind exploration of space.

Considering the discussion presented above, several lines
for further work are proposed:
The current interface provides two scanning modes, random
and manual. While the random model is quite inefficient (it
requires many points), the manual mode requires heuristic
considerations and some degree of expertise in the
algorithm used. For that reason, we are currently working in
a module that takes the user through an efficient way to
explore the space.
The second line for future work includes an algorithm for
analyzing the rules contained in the bag, allowing the
extraction of more general rules from this point and to guide
a further exploration of the space.

REFERENCES

[1] G. Nierhaus. 2009. “Algorithmic Composition. Paradigms of
Automated Music Generation.” Springer Wien, New York.

[2] J. Fernández, and F. Vico. (2013) “AI Methods in Algorithmic
Composition: A Comprehensive Survey.” Journal of Artificial
Intelligence Research 48 (2013) 513-582.

[3] H. Taube. 2013. Notes form the Metalevel: An Introduction to
Computer Composition. Hoboken: Taylor and Francis.

[4] N. Collins, 2002. "Interactive Evolution of Breakbeat Cut
Sequences". Proceedings of Cybersonica, Institute of Contemporary
Arts, London, June 5-7, 2002.

[5] P. Dahlstedt. 2001 “Creating and exploring huge parameter spaces:
interactive evolution as a tool for sound generation”. Proceedings of
the International Computer Music Conference, Habana, Cuba.

[6] N. Collons 2002 "Experiments With a New Customisable Interactive
Evolution Framework", Organised Sound 7(3): pp 263-273.
Copyright © Cambridge University Press.

[7] R. Dawkins, 1986. The Blind Watchmaker, Essex: Longman
Scientific and Technical.

[8] F. Castro, À. Nebot, and F. Mugica, 2011. “On the extraction of
decision support rules from fuzzy predictive models”. Applied Soft
Computing, 11 (4), 3463-3475.

[9] F. Mugica, I. Paz, À. Nebot, E. Romero. 2015. “A Fuzzy Inductive
Approach for Rule-Based Modelling of High Level Structures in
Algorithmic Composition Systems”. In proceedings of IEEE
international conference on fuzzy systems.

[10] N. Collins, 2003 “Algorithmic Composition Methods for Breakbeat
Science” ARiADA No.3 May 2003

[11] SuperCollider programming language http://supercollider.github.io/

[12] A. Nebot and F. Mugica. (2012). “Fuzzy Inductive Reasoning: a
consolidated approach to data-driven construction of complex
dynamical systems,” International Journal of General Systems, vol.
41(7), pp. 645-665.

[13] Github repo of the “strict compaction -all permutations SuperCollider
implementation https://github.com/musikinformatik/exploring-
parameters

[14] Graphical user interface repository https://github.com/ivan-
paz/exploring-parameters-simple-garage-beat-generator

https://github.com/ivan-paz/exploring-parameters-simple-garage-beat-generator
https://github.com/ivan-paz/exploring-parameters-simple-garage-beat-generator
https://github.com/musikinformatik/exploring-parameters
https://github.com/musikinformatik/exploring-parameters
http://supercollider.github.io/

	I. Introduction
	II. The parameter space perceptual exploration algorithm
	A. Strict compaction-all permutations
	1) Strict compaction
	2) All permutations

	B. Bag of rules and removing redundant rules

	III. Example: parameter exploration of a 16-steps garage beat generator
	A. Sampling process and evaluation
	1) Data

	B. Strict compaction-all permutations
	C. Bag of rules and removal of redundant rules

	IV. Algorithm limitations
	1) Consistent input/output relation
	2) Permutations
	3) Human bottleneck
	4) “No surprises”

	V. Conclusions and further work

