
This is a repository copy of Contribution based multi-island competitive cooperative
coevolution.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156238/

Version: Accepted Version

Proceedings Paper:
Bali, K, Chandra, R and Omidvar, MN orcid.org/0000-0003-1944-4624 (2016) Contribution
based multi-island competitive cooperative coevolution. In: 2016 IEEE Congress on
Evolutionary Computation (CEC). 2016 IEEE Congress on Evolutionary Computation
(CEC), 24-29 Jul 2016, Vancouver, BC, Canada. IEEE , pp. 1823-1830. ISBN
978-1-5090-0623-6

https://doi.org/10.1109/cec.2016.7744010

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Contribution Based Multi-Island Competitive

Cooperative Coevolution

Kavitesh Bali∗, Rohitash Chandra∗, and Mohammad N. Omidvar†

∗ School of Computing Information and Mathematical Sciences, University of the South Pacific, Suva, Fiji.

Artificial Intelligence and Cybernetics Research Group, Software Foundation, Nausori, Fiji.

http://aicrg.softwarefoundationfiji.org/, Email: {bali.kavitesh, c.rohitash}@gmail.com
† School of Computer Science, University of Birmingham,

Birmingham B15 2TT, U.K., E-mail: m.omidvar@cs.bham.ac.uk)

Abstract—Competition in Cooperative Coevolution (CC) has
demonstrated success in solving global optimization problems. In
a recent study, a multi-island competitive cooperative coevolution
(MIC3) algorithm was introduced, which featured competition
and collaboration of several different problem decomposition
strategies implemented as independent islands. It was shown that
MIC3converges to high quality solutions without the need to find
an optimal decomposition. MIC3splits the computational budget
in terms of number of function evaluations equally amongst all
the islands and evolves them in a round-robin fashion. This
overlooks the difference in contributions of the different islands
towards improving the overall objective function value. There-
fore, a considerable amount of function evaluations are wasted
on the low-contributing islands as their problem decomposition
strategies may not appeal to the problem at the given stage of the
evolutionary process. This paper proposes Contribution Based
MIC3algorithms (MIC4) that quantifies the contributions of
each island and allocates the computational budget accordingly.
Experimental analysis reveals that MIC4outperforms MIC3.

I. INTRODUCTION

Coevolutionary algorithms have gained popularity as a vital

extension to traditional population based evolutionary algo-

rithms [1, 2]. Cooperative coevolution (CC) divides a large

problem into a set of subcomponents [1] in order to simplify its

complexities and solve them through decomposition [1, 3, 4].

Applications of CC span across a wide range of areas that

include real parameter large scale global optimization [5, 6],

neuro-evolution for time series prediction, classification and

control problems [2, 4, 7, 8].

Cooperative coevolution features decomposition that is de-

fined by the number and size of subcomponents implemented

as sub-populations. A drawback of cooperative coevolution

is that it’s performance is sensitive to problem decomposi-

tion [9]. Cooperative coevolution naturally appeals to fully

separable problems; howsoever, many real-world applications

are partially separable. In order to make cooperative co-

evolution effective, it is important to form groups of inter-

acting variables in order to minimize the interdependence

between subcomponents [1, 3]. Capturing interacting variables

and accurately grouping them into separate subcomponents

has been a challenge of cooperative coevolution [10, 11].

Hence, identifying an optimal decomposition strategy is a

cumbersome task requiring extensive experimentation. In the

literature, various strategies have been utilized for problem

decomposition where variables have been grouped based on

their interactions[5, 9, 12–17].

The canonical implementations of cooperative coevolu-

tion [1] gives all the sub-populations the same local evolution

time irrespective of their contributions, which is a waste of

the computational budget. Omidvar et al. [18] introduced a

Contribution Based Cooperative Coevolution (CBCC) tech-

nique that quantifies the contribution of each subcomponent

towards improving the overall objective function value and

splits the computational budget accordingly [18]. It was shown

that CBCC saves considerable amount of resources and out-

performs the canonical CC algorithms [5, 18, 19].

Competition and collaboration features have shown to be ad-

vantageous in cooperative coevolution [20, 21]. A multi-island

competitive cooperative coevolution method (MIC3) was in-

troduced in which various problem decomposition strategies

were implemented as islands that compete and collaborate to

optimize a problem [22]. Experimental results demonstrated

that MIC3outperforms standalone traditional CC and con-

verges to high quality solutions without having the need to find

an optimal decomposition. The current MIC3algorithm splits

the computational budget equally amongst all the islands. A

scaled up analytical study of MIC3revealed that not all the

islands contribute equally towards the overall fitness; hence, a

considerable amount of function evaluations are wasted [23].

This gives motivation to divide the computational budget

more wisely according to the contribution of each of the

islands during the evolutionary process. This paper proposes

contribution based multi-island competitive cooperative co-

evolution (MIC4) algorithm to improve the performance of

MIC3by using more efficient resource management schemes.

We introduce two different techniques to quantify the contri-

butions of each of the islands in order to retain the stronger

islands and eliminate the weaker islands. In particular, the aim

of this paper is to answer the following questions:

• Is it beneficial to eliminate the weaker islands at an early

evolution stage and invest time in stronger islands in order

to converging to higher quality solutions?

• Will it be favorable to first trigger a warning to the

weaker islands at the initial stage and only eliminate if

the performance of the islands still do not improve in the

next stage?

To answer the above questions, the performance of

MIC4algorithm is evaluated on eight different benchmark

functions and compared with MIC3.

The organization of the rest of this paper is as follows. Sec-

tion II describes the preliminaries and background information.

Section III describes the proposed method and its application

to different classes of problems. Experimental results and their

analysis are provided in Section IV-B. Section V concludes the

paper with a brief discussion of future work.

II. BACKGROUND

A. Competition in Cooperative Coevolution

In nature, competition is perceived to be ubiquitous as an

agent of natural selection that structures the community of

species with given resources [24]. In evolution, individuals

compete and collaborate with each other for survival when

give limited resources [25, 26]. Competition in evolutionary

algorithms was introduced using a host-parasite model, where

two populations competed with each other and sanctioned

fitness sharing, elitism and selection [27]. Nitschke and Lan-

genhoven [28] studied the simulation of predator and prey

behaviors using artificial neural networks within a competitive

coevolution procedure [28].

Competition has also been implemented to address the prob-

lem of efficient regulation mechanism between local search

and global search in an evolution algorithm based on a cloud

model (CEBA) [25]. It also employs competition in evolu-

tion between sub-populations to ensure global convergence

and stability. Furthermore, competition has been applied in

cooperative coevolutionary algorithms to solve multi-objective

problems [29]. Enforcing competition has shown to be an ideal

approach for multi-objective optimization in dynamic environ-

ments. Competition allows an adaptive problem decomposition

technique that adapts to environmental changes while solving

multi-objective problems [29].

Scheepers and Engelbrecht [30] developed a competi-

tive coevolutionary team-based particle swarm optimization

(CCPSO) algorithm to train soccer agents (players) from zero

knowledge [30]. A FIFA based fitness function was introduced

to show that the competitive algorithm outperforms other

unbiased relative fitness functions which initially affected the

training results of the players having caused performance

outliers. Competitive coevolution has also been applied to

evolve playing strategies for the iterated prisoner’s dilemma

(IPD) [31] and the well-known game of tic-tac-toe (noughts

and crosses) [32]. For such games, various particle swarm

optimization and co-evolutionary techniques have been utilized

to train neural networks to compete well. Chellapilla and Fogel

[33] also utilized the principles of biological evolution to

train artificial neural networks to play a game of checkers.

It was shown that their algorithm could compete with most

professional human players [33].

To preserve diversity and avoid premature convergence,

various methods have been proposed that simulate distributed

evolution through distributed population algorithm for global

optimization [20, 34–36]. These distributed population algo-

rithms commonly use panmictic sub-populations that apply

the standard evolutionary algorithm within each island in

isolation [37]. The strongest individuals are migrated between

islands replacing the weaker ones. This particular fitness-

based migrant selection and insertion can be considered an

added selection pressure during collaboration [34, 37]. The

first island model for evolutionary algorithms is an example

of a distributed population model where sub-populations are

isolated during selection, breeding and evaluation [35] . In this

method, the islands pivot the evolutionary processes locally

within their sub-populations before migrating fitter individuals

to other islands after certain generations. The migrant selection

in this scenario is done randomly and not probabilistically.

B. Multi-Island Competitive Cooperative Coevolution

Competitive island cooperative coevolution (CICC) [21,

38] and multi-island competitive cooperative coevolution

(MIC3) [22, 23] were proposed for solving global optimization

problems. In CICC, two different problem decompositions are

implemented as islands that compete and collaborate to solve a

problem. MIC3is a successor to CICC, which is generalized to

deal with more than two islands and is shown in Algorithm 1.

Table I contains a short description important variables and

parameters of MIC3.

Broadly speaking, CICC and MIC3are basically canonical

CC’s working in parallel on multiple islands, where each

island uses a different problem decomposition. The essence

of the proposed method is that particular islands employ

different decompositions of the original problem, and each

of them uses a local CC that obeys that decomposition.

Best performing solutions migrate between the islands, which

requires them to be first composed from sub-populations of

the source islands and then decomposed according to the

decomposition scheme of the target island. It was shown

that competition and collaboration of different decomposition

methods exhibiting various features can yield solutions with

a quality better than individual decomposition methods used

in isolation [20, 21, 38]. Moreover, competition can ensure

Algorithm 1: (x⋆,f⋆)=MIC
3(f,n,x,x,D,µ,C,γ,Γmax)

1 Stage 1: Initialization.

2 for i ∈ {1, . . . , Imax} do

3 rand(Ii, µ, n,x,x);

4 bi = eval(Ii);

5 Γi = µ;

6 Stage 2: Evolution.

7 while
∑Imax

i=1
Γi < Γmax do

8 for i ∈ {1, . . . , Imax} do

9 for c ∈ {1, . . . , C} do

10 for j ∈ {1, . . . , |Di|} do

11 bi = optimizer(Ii,bi,Dij , γ) ;

12 Γi = Γi + µ · (γ + 1);

13 Stage 3: Competition: Compare and mark the island with the best fitness.

14 Stage 4: Collaboration: Injecting the best individual from Winner island into

all the other islands.

TABLE I
A SHORT DESCRIPTION OF THE IMPORTANT VARIABLES USED IN ALG. 1.

Variable Description

x
⋆ the best solution vector found by the algorithm.

f⋆ the objective value of x
⋆.

f the function handle of the objective function.

x vector of lower bound constrains of the decision variables.

x vector of the upper bound constrains of the decision variables.

µ the population size.

n the dimensionality of the objective function.

Γmax the maximum number of available objective function evaluations.

Γi the objective function evaluations used by the ith island.

γ
the number of times that the subcomponent optimizer optimizes each

subcomponent in a CC context.

bi

the best solution found by the ith island. This is also used as a context

vector by the optimizer to construct a complete solution for evaluation of

subcomponents.

D
A set containing a decomposition for each island. For example, Di

contains the decomposition for the ith island.

C
the number of times an island is optimized before optimizing the next

island.

that these different problem decomposition methods are given

an opportunity during the course of optimization phase, and

there is no problem in finding the right decomposition method

at a particular time according to the degree of separability [4].

CICC and MIC3alleviate the need to find an optimal decom-

position and generates high quality solutions than standalone

CC.

III. CONTRIBUTION BASED MULTI-ISLAND COMPETITIVE

COOPERATIVE COEVOLUTION

In this section, we propose two multi-island contribution

based competitive cooperative coevolution (MIC4) for opti-

mizing the performance of traditional MIC3. The contribution

of each of the islands is quantified by measuring the number

of times an island wins and loses at different stages of

optimization. A higher win count determines the superiority

of stronger islands over the weaker ones.

Bali and Chandra [23] conducted an analysis of MIC3where

they discovered that some of the islands may get stagnant and

do not contribute for several phases during the optimization

process. Moreover, they noted that there are cases in which

some of the islands may not contribute in the beginning,

but become helpful at later stages of evolution. In order

to effectively utilize the islands, we propose two different

strategies to eliminate the poor performing islands. In the first

strategy (a.k.a. the kill strategy) the islands that do not make a

significant contribution for several rounds are eliminated from

the evolutionary process. In the other strategy (a.k.a. the warn-

then-kill strategy), a warning is issued to the poor performing

island, and then eliminated if no improvement is seen.

A. The Kill Strategy

In this strategy, MIC4employs a straightforward greedy

approach and eliminates the poor performing islands. More

specifically, this strategy measures the contribution of every

island by counting the number of times it loses/wins a tour-

nament (competition among all islands). All the islands that

do not win a tournament for τk consecutive runs will be

Algorithm 2: (x⋆,f⋆)=MIC
4(f,n,x,x,D,µ,Cmax,Cpen,

γ,Γmax, τk, τw, s)

1 Stage 1: Initialization.

2 for i ∈ {1, . . . , Imax} do

3 rand(Ii, µ, n,x,x);

4 bi = eval(Ii);

5 Γi = µ;

6 Stage 2: Evolution.

7 K = {}; W = {};

8 wi = 0, ∀i ∈ {1, · · · , Imax};

9 t = 0;

10 while
∑Imax

i=1 Γi < Γmax do

11 for i ∈ {1, . . . , Imax} \ K do

12 if i ∈ W then

13 C = Cpen ;

14 else

15 C = Cmax;

16 for c ∈ {1, . . . , C} do

17 for j ∈ {1, . . . , |Di|} do

18 bi = optimizer(Ii,bi,Dij , γ) ;

19 Γi = Γi + µ · (γ + 1);

20 Stage 3: Competition: Compare and mark the island with the best fitness.

21 f⋆ = ∞;

22 for i ∈ {1, . . . , Imax} do

23 if f(bi) < f⋆ then

24 Ibest = i; x⋆ = bi; f⋆ = f(x⋆);

25 for i ∈ {1, . . . , Imax} do

26 if i = Ibest then

27 wi = wi + 1;

28 W = {};

29 for i ∈ {1, . . . , Imax} do

30 if wi < wmin and t > τk then

31 K = K ∪ i;

32 if s = “warn” then

33 if w < wmin and t > τw then

34 W = W ∪ i;

35 t = t + 1;

36 Stage 4: Collaboration: Injecting the best individual from Winner island

(Ibest) into all the other islands.

eliminated from the evolutionary process. Several consecutive

losses implies that the solution quality of an islands is poor;

hence, it is concluded that it’s contribution to the overall fitness

is minimal, and it should be terminated to save the limited

computational resources.

B. The Warn-then-Kill Strategy

The warn-then-kill strategy is more lenient one, and grants a

second chance to the poor performing islands to improve their

contribution towards the improvement of the overall objective

value before terminating them. The overall optimization pro-

cess happens in the following two phases:

1) The algorithm calculates and updates contributions of

each of the islands by measuring their win and loss

scores after each tournament. In this scenario, the islands

that have a zero win score are issued a warning and their

evolution time is reduced.

2) The algorithm rechecks the contributions of all the

islands by monitoring their win counts. If there is no

substantial improvement of the weaker islands for τw
tournaments, the algorithm terminates them.

Algorithm 2 shows the details of MIC4algorithm that in-

cludes both the kill and warn-then-kill strategies. The algo-

rithm starts by initializing all islands in a round-robin fashion.

This is labeled as the initialization stage (Alg. 2, lines 2-5).

The function rand takes the ith island (Ii) and randomly

initializes it with µ random solution within the upper (x) and

the lower (x) bound limits. The evolution stage is very similar

to the MIC3with the exception of including the required

mechanism to deal with stagnant islands. The loop on line 10

forms the main evolutionary loop. While the sum of fitness

evaluations used by all islands (Γi) is less than the maximum

available budget (Γmax), the algorithm evolves the islands

independently. The sets W and S, which are initialized on

line 7 are used to implement the kill and the warn-then-kill

strategies. The set K track the islands should be excluded from

the evolutionary process, and the set S tracks the islands that

were issued a warning.

On line 11, the algorithm iterates over all the islands

excluding the ones which are in the kill set (S). In the case

of warn-then-kill stage, the algorithm penalizes the islands to

which a warning is issued by reducing the number of cycles

that it is optimized. This is done on lines 12 to 15. The

variable C is the maximum number of times that an islands

is optimized. For the penalized islands this is initialized to

Cpen, and to Cmax for the remaining islands. It is clear that

Cmax > Cpen.

It was previously mentioned that a CC framework is used

to optimize each island. On line 17, the subcomponents of an

islands are iterated over and optimized using the optimizer

function. For the purposes of this study, we have adopted G3-

PCX [39] as the subcomponent optimizer. It should be noted

that Di contains the decomposition of the ith island, and Dij

is the jth subcomponent of the ith island. The optimizer

function evolves the jth subcomponent of the ith island for

γ iterations. The vector bi is the current best solution of

the ith island, which is also used as a context vector in the

evolutionary framework to form complete solutions. It is clear

that because the kill and the warn sets are initialized to an

empty set, all islands will be optimized at least Cmax times.

Then, in Stage 3, all islands are examined to find the best

performing island (Algorithm 2, lines 22-24). The variable wi

counts the number of times that an island wins a tournament.

Next, the kill or the warn-then-kill strategies are applied

(Alg. 2, lines 28-34). The parameter τk on line 30 is a threshold

beyond which an islands should be terminated (killed) indef-

initely if its win count (wi) is less than a predefined value

(wmin). Therefore, if the tournament index t is larger than τk
and the win count of the ith island is less than wmin, then

the ith island is added into the kill set. Alternatively, if the

active strategy is warn-then-kill, all the islands that satisfy

wi < wmin at any time when the tournament count is in

the range (τw, τk) will be placed in the warn set (W). The

parameter τw is the warning threshold and should satisfy the

following condition: τw > τk. It should be noted that as soon

as an island wins a tournament, it will be removed form the

warn set because at each tournament the warn set is initialized

to an empty set (line 28). Finally, in stage 4, the best solution

of the best performing island is injected into other islands and

the main loop is continued.

In order to give an equal chance to all the islands to win

a tournament, the parameter τk should be an integer multiple

of Imax. By the same token, the variable τw should also be

initialized to an integer multiple of Imax such that τk < τw.

In this paper, we initialized τk to Imax in the case of the kill

strategy. When the strategy is warn-then-kill, the parameter τw
is set to Imax, and τk = 2τw. A possible extension of MIC3is

to adaptively change these variables based on the overall

performance of the islands over the course of optimization.

However, a further investigation this approach is beyond the

scope of this paper. In the next section, we evaluate and

compare the performance of MIC3and MIC4on a set of well-

known benchmark functions.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed

contribution based algorithm (MIC4) on several well-known

benchmark problems of 100 dimensions. These benchmark

problems have been selected by considering their level of

difficulty and separability, and their modality (Table II). We

first benchmark the performance of the two strategies of MIC4,

and then provide further analysis about the islands that have

been most dominant during the course of evolution.

A. Parameter Settings

The generalized generation gap with parent centric

crossover (G3-PCX) evolutionary algorithm [39] was em-

ployed for optimizing the sub-populations of islands in MIC3.

In the current implementation, the G3-PCX employs a mating

pool size of 2 offspring, a family size of 2 parents, and

a generation gap model for selecting the sub-populations in

the cooperative coevolution framework, and a population for

local search. This parameter set-up has demonstrated good

performance in solving global optimization problems [39]. In

MIC4, Cmax is set to 25, and Cpen = 1
5Cmax = 5. In MIC3,

the parameter C is set to 25. The parameter γ of both MIC3and

MIC4is set to 1.

The five different uniform problem decomposition strategies

that were implemented as islands of MIC3and MIC4are shown

in Table IV. The column that marks “Error” in Table II is

the desired accuracy of solutions, which determines one of

the termination criteria before reaching the maximum number

of function evaluations (Γmax) fixed at 1.5 × 106. A run is

successful only when the algorithm halts with the minimum

error. A total of 25 independent runs were conducted with

different random initializations in all of the respective sub-

populations of the islands. In each case, the mean fitness value

(error), the corresponding function evaluations and the success

rates are been reported. The results are presented and discussed

in Section IV-B.

B. Results

In this section, we analyze the performance of MIC4in terms

of function evaluations and solution quality. Table V contains

TABLE II
PROBLEM DEFINITIONS

Fun. Name Optimum Range Unimodal Separable Error

f1 Ellipsoid 0 [-5,5] Yes Yes 1E-20

f2 Shifted Sphere -450 [-100,100] Yes Yes 1E-10

f3 Schwefel’s Problem 1.2 0 [-5,5] Yes Yes 1E-20

f4 Rosenbrock 0 [-5,5] No No 1E-20

f5 Shifted Rosenbrock 390 [-100,100] No No 1E-10

f6 Rastrigin 0 [-5,5] No Yes 1E-20

f7 Shifted Rastrigin -330 [-5,5] No Yes 1E-10

f8 Shifted Griewank -180 [-600,600] No No 1E-10

TABLE III
SUMMARY OF THE ALGORITHMS

Algorithm Description

MIC3 [22] Multi-Island Competitive Cooperative Coevolution

MIC4(Kill)
Contribution based variant of MIC3that greedily eliminates

the weaker islands at the initial stage.

MIC4(Warn-then-Kill)

Contribution based variant of MIC3that triggers a warning to

the poor performing islands at the initial stage and provides

a second chance to improve. In the next stage, the islands

are only eliminated if there is no substantial improvement in

their performance.

the experimental results for comparing the performance of the

proposed MIC4algorithm against MIC3 [22].

We first evaluate the performance of MIC4with the Kill

strategy against MIC3. According to Table V, it can be

observed that MIC4(Kill) has a better performance on 7 out

of 8 functions. It is clear that MIC4(Kill) has managed to

find better solutions using less computational resources. This

is clearly evident on all the separable and unimodal functions

(f1-f3), which shows that a considerable number of function

evaluations has been saved. On closer inspection, we can see

that MIC4(Kill) also outperformed MIC3and found better so-

lutions on both instances of the non-separable and multi-modal

functions (f4 and f5). Another observation is that MIC4(Kill)

has produced slightly better solutions than MIC3on instances

of the Rastrigin function (f6 and f7). However, MIC4(Kill)

has performed slightly worse than MIC3on the multi-modal

and non-separable f8. This suggests that this greedy early

termination mechanism may not always be feasible.

A similar trend exist when comparing MIC4(Warn-then-

Kill) with MIC3, as shown in Table V. The experimental

results reveal that while converging to high quality solutions,

MIC4(Warn-then-Kill) has managed to save more function

evaluations than the traditional MIC3on almost all of the

benchmark functions with the exception of the Rastrigin

function (f6). On functions f1-f3 and f8, it can be ob-

served that MIC4(Warn-then-Kill) has managed to shorten

TABLE IV
ISLAND IMPLEMENTATIONS OF MIC3. A DECOMPOSITION OF THE FORM

x× y HAS x COMPONENTS OF SIZE y.

Island D1 D2 D3 D4 D5

Problem Decomposition 20 × 5 50 × 2 10 × 10 4 × 25 5 × 20

TABLE V
COMPARISON OF MIC4VERSIONS WITH TRADITIONAL MIC3 [22]

Fun. Alg. FE Error Success/25

f1

MIC3 393024 1.50E-21 ± 2.96E-21 25

MIC4(Kill) 323094 3.73E-21 ± 2.43E-21 25

MIC4(Warn-then-Kill) 262026 3.58E-21 ± 2.17E-21 25

f2

MIC3 283554 -450 ± 2.28E-11 25

MIC4(Kill) 201960 -450 ± 2.01E-11 25

MIC4(Warn-then-Kill) 188826 -450 ± 3.39E-11 25

f3

MIC3 398898 2.21E-21 ± 2.64E-21 25

MIC4(Kill) 293611 2.39E-21 ± 2.79E-21 25

MIC4(Warn-then-Kill) 276582 4.32E-21 ± 4.10E-21 25

f4

MIC3 1508550 79.53 ± 8.19 0

MIC4(Kill) 1508100 76.18 ± 43.35 0

MIC4(Warn-then-Kill) 1504500 73.74 ± 46.75 0

f5

MIC3 1508550 502.78 ± 28.83 0

MIC4(Kill) 1507111 481.26 ± 65.72 0

MIC4(Warn-then-Kill) 1504718 461.45 ± 66.79 0

f6

MIC3 1508550 0.25E+01 ± 0.19E+01 0

MIC4(Kill) 1508100 9.90E-01 ± 2.60E-01 1

MIC4(Warn-then-Kill) 1514400 9.90E-01 ± 1.00E-03 1

f7

MIC3 1508550 -216.06 ± 17.74 0

MIC4(Kill) 1505172 -219.52 ± 15.99 0

MIC4(Warn-then-Kill) 1505345 -220.03 ± 15.29 0

f8

MIC3 1001250 -179.99 ± 2.25E-02 9

MIC4(Kill) 1026852 -179.99 ± 4.66E-02 9

MIC4(Warn-then-Kill) 440226 -179.99 ± 3.95E-03 19

the optimization time by a factor of approximately 30%-

60%. This suggests that a less greedy elimination strategy

can further improve the solutions quality of MIC3. Overall,

we can see that both elimination strategies of MIC4improve

the performance of MIC3, but MIC4(Warn-then-Kill) performs

better than MIC3(Kill) on 6 out of 8 benchmark functions.

In addition to benchmarking the overall performance, it is

also important to analyze the contribution of the two strategies

of MIC4during the course of evolution. We are interested in

finding why the contribution based approach improves MIC3,

and how the minor difference between the two strategies

resulted in a major difference in their performance. For the

sake of brevity, we limit our analysis to MIC4(Warn-then-

Kill) algorithm and focus on the islands that have been most

dominant during the course of optimization. Note that the

elimination in MIC4(Warn-then-Kill) happens right at the end

of the Kill phase. Figure 1 shows the performance (win count)

of each island during the two phases of MIC4(Warn-then-Kill)

algorithm just before the elimination occurs.

Due to space constraints, the analysis is done on four

functions (f1, f4, f6, and f8). However, these contain both

separable and nonseparable functions as well as unimodal

and multi-modal functions. For each of the aforementioned

functions, the average win counts over 25 runs for each

of five islands are recorded (Figure 1). The plots on the

left correspond to the warning phase and the ones on the

right correspond to the kill phase of MIC4. An important

observation is that even though few of the poor performing

islands are deprived of equal evolution time during the warn

phase, they have shown to be beneficial in the kill phase and

has shown to improve the solution quality for functions f4a

(island 4) and f8a (islands 1 and 5) Another observation is

that the stronger islands in the early stage may not necessarily

be dominant in the future stages of evolution e.g. Island

1 of f4b, and Islands 1, 4, and 5 of f6b. This indicates

that it is indeed beneficial to preserve the weaker islands to

help converge to better quality solutions in the later stages.

The results and analysis from Table V and Figure 1 justify

the superior performance of MIC4(Warn-then-Kill) over the

greedy MIC4(Kill) as well the traditional MIC3.

C. Discussion

The results in general have been very promising that shows

that a small alteration in island based algorithm can be provid-

ing significant improvements in the results. The contribution

based strategy is analogous to a class full of students where

the teachers give more emphasis to the strong students in

order to get higher class average scores. This from perspective

of education, this would be negative as the weaker students

performance is important, but in our case of evolution and the

islands, elimination saves computation time. In the analogy,

the question that teachers would find difficult to answer is

weather to eliminate the weaker students or give them amnesty

for a while where they can improve their scores.

The results also review the number of times an island wins

and loses during different phases of evolution. This sets the

basis for making decisions based on contributions, whether

to eliminate or reduce the evolution time. We are interested

to find if the weak islands contribute, or if retaining them

is helpful during the later stages of the evolutionary process.

The solutions in the weaker islands can be helpful in creating

diverse solutions at later stages or evolution. The weaker

islands have different problem decomposition strategies that

can appeal in the later stages - when the nature of the problem

changes in terms of separability. For instance, if an island

appeals to fully separable functions, then it will not be helpful

if the function is partially separable. However, what if the

function definition changes with time, i.e. if the function

becomes fully separable at the later stage of evolution, then

the fully separable island would be helpful. This seems to be

the case in the warn - then - kill strategy as it has shown to

be better than the direct kill strategy in most of the problems.

V. CONCLUSION

In this paper, we proposed two contribution based

MIC4strategies which were implemented as ’warn then kill’

and ’direct kill’ strategy to eliminate the islands that have weak

performance in MIC3. This was implemented by splitting the

evolution time according to the contributions of each of the

different islands.

The results and analysis have shown that the two con-

tribution based strategies have proven to be advantageous

during the optimization process. Furthermore, another impor-

tant observation was that the warn then kill strategy further

improves the overall optimization performance than the direct

kill strategy. The warn then kill strategy allows the weaker

islands to evolve that has shown to be beneficial in promoting

diversity at the later stages of optimization.

In future work, it would be beneficial to apply the proposed

approach to multi-objective optimization problems and com-

binatorial optimization problems.

REFERENCES

[1] M. A. Potter and K. A. De Jong, “A cooperative coevo-

lutionary approach to function optimization,” in Parallel

problem solving from naturePPSN III. Springer, 1994,

pp. 249–257.

[2] ——, “Cooperative coevolution: An architecture for

evolving coadapted subcomponents,” Evolutionary com-

putation, vol. 8, no. 1, pp. 1–29, 2000.

[3] R. Salomon, “Re-evaluating genetic algorithm perfor-

mance under coordinate rotation of benchmark functions.

a survey of some theoretical and practical aspects of

genetic algorithms,” BioSystems, vol. 39, no. 3, pp. 263–

278, 1996.

[4] R. Chandra, M. Frean, and M. Zhang, “On the issue of

separability for problem decomposition in cooperative

neuro-evolution,” Neurocomputing, vol. 87, pp. 33–40,

2012.

[5] M. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative

co-evolution with differential grouping for large scale

optimization,” Evolutionary Computation, IEEE Trans-

actions on, vol. 18, no. 3, pp. 378–393, June 2014.

[6] X. Li and X. Yao, “Cooperatively coevolving particle

swarms for large scale optimization,” Evolutionary Com-

putation, IEEE Transactions on, vol. 16, no. 2, pp. 210–

224, 2012.

[7] N. Garcı́a-Pedrajas and D. Ortiz-Boyer, “A cooperative

constructive method for neural networks for pattern

recognition,” Pattern Recognition, vol. 40, no. 1, pp. 80–

98, 2007.

[8] R. Chandra and M. Zhang, “Cooperative coevolution of

elman recurrent neural networks for chaotic time series

prediction,” Neurocomputing, vol. 86, pp. 116–123, 2012.

[9] M. N. Omidvar, Y. Mei, and X. Li, “Effective decom-

position of large-scale separable continuous functions

for cooperative co-evolutionary algorithms,” in Proc. of

IEEE Congress on Evolutionary Computation, 2014, pp.

1305–1312.

[10] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin,

“Benchmark functions for the CEC’2013 special ses-

sion and competition on large-scale global optimization,”

RMIT University, Melbourne, Australia, Tech. Rep.,

2013.

[11] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise,

“Benchmark functions for the CEC’2010 special session

and competition on large-scale global optimization,” Na-

ture Inspired Computation and Applications Laboratory,

USTC, China, Tech. Rep., 2009.

[12] Y.-j. Shi, H.-f. Teng, and Z.-q. Li, “Cooperative co-

evolutionary differential evolution for function optimiza-

✲�

✲✁
✂✄✁

✁
✂✄�

�
✂✄✥

✥
✂✄☎

☎
✂✄✆

❲
✝

✞✟

❙✠✡✡☛☞☞✌✍✎☛✏✑✒✓✡✔✠✓✎✕

P
✖

✝
✗

✘

❈
✙

✚
✛

✘
✜✢

✜✢
✙

✟
✙

✣
✘

✞
✤

✢✚
✘

✦✧
✣

✙
★✩

✜✢
✙

✟
P

✖
✝

✗
✘

✪

■✗
★✝

✟
✫

✲�
■✗

★✝
✟

✫
✲✥

■✗
★✝

✟
✫

✲☎
■✗

★✝
✟

✫
✲✆

■✗
★✝

✟
✫

✲✄

(a
)
f
1

✲�✥�✁✂✄☎✆

❑
✝✞

✞

❙✟✠✠✡☛☛☞✌✍✡✎✏✑✒✠✓✟✒✍✔

P
✕

✖
✗

✘

❈
✙

✚
✛

✘
✜✝

✜✝
✙

✢
✙

✣
✘

✤
✦

✝✚
✘

✧★
✣

✙
✞✩

✜✝
✙

✢
P

✕
✖

✗
✘

✪

■✗
✞✖

✢
✫

✲�

■✗
✞✖

✢
✫

✲✁

■✗
✞✖

✢
✫

✲✂

■✗
✞✖

✢
✫

✲✄

■✗
✞✖

✢
✫

✲☎

(b
)
f
1

✲�✥�✁✂✄☎✆

❲
✝

✞✟

❙✠✡✡☛☞☞✌✍✎☛✏✑✒✓✡✔✠✓✎✕

P
✖

✝
✗

✘

❈
✙

✚
✛

✘
✜✢

✜✢
✙

✟
✙

✣
✘

✞
✤

✢✚
✘

✦✧
✣

✙
★✩

✜✢
✙

✟
P

✖
✝

✗
✘

✪

■✗
★✝

✟
✫

✲�
■✗

★✝
✟

✫
✲✁

■✗
★✝

✟
✫

✲✂
■✗

★✝
✟

✫
✲✄

■✗
★✝

✟
✫

✲☎

(c
)
f
4

✲�✥�✁✂✄☎✆

❑
✝✞

✞

❙✟✠✠✡☛☛☞✌✍✡✎✏✑✒✠✓✟✒✍✔

P
✕

✖
✗

✘

❈
✙

✚
✛

✘
✜✝

✜✝
✙

✢
✙

✣
✘

✤
✦

✝✚
✘

✧★
✣

✙
✞✩

✜✝
✙

✢
P

✕
✖

✗
✘

✪

■✗
✞✖

✢
✫

✲�

■✗
✞✖

✢
✫

✲✁

■✗
✞✖

✢
✫

✲✂

■✗
✞✖

✢
✫

✲✄

■✗
✞✖

✢
✫

✲☎

(d
)
f
4

✲�
✁✂�

�
✁✂✥

✥
✁✂✄

✄
✁✂☎

☎
✁✂

❲
✆

✝✞

❙✟✠✠✡☛☛☞✌✍✡✎✏✑✒✠✓✟✒✍✔

P
✕

✆
✖

✗

❈
✘

✙
✚

✗
✛✜

✛✜
✘

✞
✘

✢
✗

✝
✣

✜✙
✗

✤✦
✢

✘
✧★

✛✜
✘

✞
P

✕
✆

✖
✗

✩

■✖
✧✆

✞
✪

✲✥
■✖

✧✆
✞

✪
✲✄

■✖
✧✆

✞
✪

✲☎
■✖

✧✆
✞

✪
✲✫

■✖
✧✆

✞
✪

✲✂

(e
)
f
6

✲�✥�✁✂✄☎✆

❑
✝✞

✞

❙✟✠✠✡☛☛☞✌✍✡✎✏✑✒✠✓✟✒✍✔

P
✕

✖
✗

✘

❈
✙

✚
✛

✘
✜✝

✜✝
✙

✢
✙

✣
✘

✤
✦

✝✚
✘

✧★
✣

✙
✞✩

✜✝
✙

✢
P

✕
✖

✗
✘

✪

■✗
✞✖

✢
✫

✲�

■✗
✞✖

✢
✫

✲✁

■✗
✞✖

✢
✫

✲✂

■✗
✞✖

✢
✫

✲✄

■✗
✞✖

✢
✫

✲☎

(f
)
f
6

✲�✥�✁✂✄☎✆✝

❲
✞

✟✠

❙✡☛☛☞✌✌✍✎✏☞✑✒✓✔☛✕✡✔✏✖

P
✗

✞
✘

✙

❈
✚

✛
✜

✙
✢✣

✢✣
✚

✠
✚

✤
✙

✟
✦

✣✛
✙

✧★
✤

✚
✩✪

✢✣
✚

✠
P

✗
✞

✘
✙

✫

■✘
✩✞

✠
✬

✲�
■✘

✩✞
✠

✬
✲✁

■✘
✩✞

✠
✬

✲✂
■✘

✩✞
✠

✬
✲✄

■✘
✩✞

✠
✬

✲☎

(g
)
f
8

✲�✥�✁✂✄☎✆

❑
✝✞

✞

❙✟✠✠✡☛☛☞✌✍✡✎✏✑✒✠✓✟✒✍✔

P
✕

✖
✗

✘

❈
✙

✚
✛

✘
✜✝

✜✝
✙

✢
✙

✣
✘

✤
✦

✝✚
✘

✧★
✣

✙
✞✩

✜✝
✙

✢
P

✕
✖

✗
✘

✪

■✗
✞✖

✢
✫

✲�

■✗
✞✖

✢
✫

✲✁

■✗
✞✖

✢
✫

✲✂

■✗
✞✖

✢
✫

✲✄

■✗
✞✖

✢
✫

✲☎

(h
)
f
8

F
ig

.
1
.

C
o
m

p
et

it
io

n
o
v
er

T
im

e
fo

r
th

e
su

cc
es

s
ra

te
(W

in
co

u
n
t)

o
f

d
if

fe
re

n
t

is
la

n
d
s

o
n

se
le

ct
ed

fu
n
ct

io
n
s

.
T

h
e

p
er

fo
rm

an
ce

o
f

ea
ch

o
f

th
e

Is
la

n
d
s

is
m

o
n
it

o
re

d
at

tw
o

d
if

fe
re

n
t

p
h
as

es
o
f

W
ar

n
-t

h
en

-K
il

l.
T

h
e

m
ea

n
w

in
co

u
n
ts

an
d

st
an

d
ar

d
d
ev

ia
ti

o
n

fo
r

ea
ch

is
la

n
d

o
v
er

2
5

in
d
ep

en
d
en

t
ru

n
s

ar
e

p
lo

tt
ed

.

tion,” in Advances in natural computation. Springer,

2005, pp. 1080–1088.

[13] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary

optimization using cooperative coevolution,” Information

Sciences, vol. 178, no. 15, pp. 2985–2999, 2008.

[14] ——, “Multilevel cooperative coevolution for large scale

optimization,” in IEEE Congress on Evolutionary Com-

putation, CEC 2008. IEEE, 2008, pp. 1663–1670.

[15] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative

co-evolution for large scale optimization through more

frequent random grouping,” in Evolutionary Computation

(CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1–8.

[16] M. N. Omidvar, X. Li, and X. Yao, “Cooperative

co-evolution with delta grouping for large scale non-

separable function optimization,” in Proc. of IEEE

Congress on Evolutionary Computation, 2010, pp. 1762–

1769.

[17] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A com-

petitive divide-and-conquer algorithm for unconstrained

large-scale black-box optimization,” ACM Transactions

on Mathematical Software (TOMS), 2016.

[18] M. N. Omidvar, X. Li, and X. Yao, “Smart use of

computational resources based on contribution for coop-

erative co-evolutionary algorithms,” in Proc. of Genetic

and Evolutionary Computation Conference. ACM, 2011,

pp. 1115–1122.

[19] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A

sensitivity analysis of contribution-based cooperative co-

evolutionary algorithms.”

[20] R. Chandra, “Competition and collaboration in coopera-

tive coevolution of Elman recurrent neural networks for

time-series prediction,” Neural Networks and Learning

Systems, IEEE Transactions on, p. In Press, 2015.

[21] R. Chandra and K. Bali, “Competitive two island cooper-

ative coevolution for real parameter global optimisation,”

in IEEE Congress on Evolutionary Computation, Sendai,

Japan, May 2015, pp. 93–100.

[22] K. K. Bali and R. Chandra, “Multi-island competitive

cooperative coevolution for real parameter global opti-

mization,” in Neural Information Processing. Springer,

2015, pp. 127–136.

[23] ——, “Scaling up multi-island competitive cooperative

coevolution for real parameter global optimisation,” in

AI 2015: Advances in Artificial Intelligence. Springer,

2015, pp. 34–48.

[24] W. Michiels and S.-I. Niculescu, Stability and Stabiliza-

tion of Time-Delay Systems (Advances in Design and

Control). Society for Industrial and Applied Mathe-

matics, 2007.

[25] W. Li and L. Wang, “A competitive-cooperative co-

evolutionary optimization algorithm based on cloud

model,” in Advanced Computational Intelligence

(IWACI), 2011 Fourth International Workshop on.

IEEE, 2011, pp. 662–669.

[26] M. A. Nowak, “Five rules for the evolution of coopera-

tion,” science, vol. 314, no. 5805, pp. 1560–1563, 2006.

[27] C. D. Rosin and R. K. Belew, “New methods for com-

petitive coevolution,” Evolutionary Computation, vol. 5,

no. 1, pp. 1–29, 1997.

[28] G. S. Nitschke and L. H. Langenhoven, “Neuro-evolution

for competitive co-evolution of biologically canonical

predator and prey behaviors,” in Nature and Biologi-

cally Inspired Computing (NaBIC), 2010 Second World

Congress on. IEEE, 2010, pp. 546–553.

[29] C.-K. Goh and K. Chen Tan, “A competitive-cooperative

coevolutionary paradigm for dynamic multiobjective op-

timization,” Evolutionary Computation, IEEE Transac-

tions on, vol. 13, no. 1, pp. 103–127, 2009.

[30] C. Scheepers and A. P. Engelbrecht, “Competitive co-

evolutionary training of simple soccer agents from zero

knowledge,” in Evolutionary Computation (CEC), 2014

IEEE Congress on. IEEE, 2014, pp. 1210–1217.

[31] N. Franken and A. P. Engelbrecht, “Particle swarm

optimization approaches to coevolve strategies for the

iterated prisoner’s dilemma,” Evolutionary Computation,

IEEE Transactions on, vol. 9, no. 6, pp. 562–579, 2005.

[32] ——, “Evolving intelligent game-playing agents,” South

African Computer Journal, no. 32, pp. p–44, 2004.

[33] K. Chellapilla and D. B. Fogel, “Evolving an expert

checkers playing program without using human exper-

tise,” Evolutionary Computation, IEEE Transactions on,

vol. 5, no. 4, pp. 422–428, 2001.

[34] D. Whitley, S. Rana, and R. B. Heckendorn, “Island

model genetic algorithms and linearly separable prob-

lems,” in Evolutionary computing. Springer, 1997, pp.

109–125.

[35] J. Cohoon, S. Hegde, W. Martin, and D. Richards,

“Punctuated equilibria: a parallel genetic algorithm,” in

Proceedings of the Second International Conference on

Genetic Algorithms on Genetic algorithms and their

application. L. Erlbaum Associates Inc., 1987, pp. 148–

154.

[36] E. CANTU-PAZ, “Topologies, migration rates, and

multi-population parallel genetic algorithms,” in Proc.

Genetic and Evolutionary Computation Conference

(GECCO’99), vol. 1, 1999, pp. 91–98.

[37] S. M. Gustafson, “An analysis of diversity in genetic

programming,” Ph.D. dissertation, University of Notting-

ham, 2004.

[38] K. K. Bali, R. Chandra, and M. N. Omidvar, “Compet-

itive island-based cooperative coevolution for efficient

optimization of large-scale fully-separable continuous

functions,” in Neural Information Processing. Springer,

2015, pp. 137–147.

[39] K. Deb, A. Anand, and D. Joshi, “A computationally

efficient evolutionary algorithm for real-parameter opti-

mization,” Evolutionary computation, vol. 10, no. 4, pp.

371–395, 2002.

