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Abstract—In the so-called Big Data paradigm descriptive
analytics are widely conceived as techniques and models aimed at
discovering knowledge within unlabeled datasets (e.g. patterns,
similarities, etc) of utmost help for subsequent predictive and
prescriptive methods. One of these techniques is clustering, which
hinges on different multi-dimensional measures of similarity
between unsupervised data instances so as to blindly collect them
in groups of clusters. Among the myriad of clustering approaches
reported in the literature this manuscript focuses on those
relying on bio-inspired meta-heuristics, which have been lately
shown to outperform traditional clustering schemes in terms
of convergence, adaptability and parallelization. Specifically this
work presents a new clustering approach based on the processing
fundamentals of the Ant Colony Optimization (ACO) algorithm,
i.e. stigmergy via pheromone trails and progressive construction
of solutions through a graph. The novelty of the proposed
scheme beyond previous research on ACO-based clustering lies
on a significantly pruned graph that not only minimizes the
representation redundancy of the problem at hand, but also
allows for an embedded estimation of the number of clusters
within the data. However, this approach imposes a modified ant
behavior so as to account for the optimality of entire paths rather
than that of single steps within the graph. Simulation results
over conventional datasets will evince the promising performance
of our approach and motivate further research aimed at its
applicability to real scenarios.

I. INTRODUCTION

In the last few years the generation of digital data has
increased sharply in almost all knowledge and application
domains as a result of the universal digitalization of their
underlying systems and processes [1]. Unfortunately, our
ability to infer hidden information therein has not evolved
accordingly. Even though human limitations to understand
highly dimensional flows of information have traditionally
found an effective solution in advanced knowledge discovery
models, the scales, heterogeneity and generational speed of
data have coined the so-called Big Data concept. This global
paradigm, which impacts on almost all disciplines (e.g. from

Health to Telecommunications, Energy, Manufacturing, Social
Sciences and Transport), aims at the research and development
of technological tools and platforms to manage, store, retrieve,
analyze and visualize data characterized by unprecedented
scales in terms of their volume, variety, velocity or veracity
[2]. In this work we narrow the scope on the analysis of
data, around which the research community is witnessing
a real upsurge of novel methods springing from Statistics,
Mathematics, Physics and Artificial Intelligence.

Among those techniques that fall in the broad category of
Artificial Intelligence, Machine Learning emerges as one of the
most popular research areas. The goal of any given Machine
Learning model is to extract patterns or similarity-based
relationships from data. Depending on the implemented
learning mechanism, the Machine Learning research field is
divided into manifold subfields, such as Supervised Learning,
Unsupervised Learning or Reinforcement Learning [3]. The
first comprises the construction of predictive models based on
labeled training data, i.e. every instance of the training data
is tagged with its corresponding category or output, which
is in turn the variable that the model must infer for any
new unlabeled instance. Accordingly, Unsupervised Learning
techniques are applied whenever no label for the training
instances is available; in this case, the goal is to find patterns
or similarities among the input instances based on a measure
of similarity rather than on a variable to be predicted. To end
with, Reinforcement Learning refers to those algorithms that
learn from interactions with their environment by producing
actions or events and receiving a positive or negative stimulus.

This paper elaborates on Unsupervised Learning,
particularly on clustering as one of the most used family
of models for discovering hidden structures or patterns
within data. Generally speaking, a clustering problem aims at
grouping unlabeled data instances in clusters considering a
measure of similarity. The literature has been so far specially



profitable in terms of clustering models, with contributions
focused on either the similarity metric or the learning process
itself. As to mention, distance-based clustering algorithms
minimize the distortion defined as the sum of the squared
distances (e.g. Euclidean, Minkowski, Mahalanobis or any
specifically devised ad-hoc metric) between each observation
and its designated centroid. By contrast, density-based
algorithms find clusters within data based on a notion of
density-based compactness among neighboring instances.

Regarding the clustering procedure an upsurge of research
works have gravitated on the use of Computational
Intelligence, which have been shown to efficiently overcome
different shortcomings of conventional methods, such as a
strong dependence on initialization, a slow convergence speed
and/or the lack of optimality of the produced solutions. In
this context a number of clustering schemes have relied
on different population-based meta-heuristic solvers from
Evolutionary Computation, such as Genetic Algorithms (GA,
[4], [5]), Harmony Search (HS, [6], [7]) or Estimation
of Distribution Algorithms (EDA, [8], [9]), among others.
Another subset of clustering heuristics hinges on Swarm
Intelligence, which is inspired by the behavior of social
organisms and their interactions to achieve a global form
of collective intelligence. Examples of Swarm Intelligence
algorithms applied to clustering problems abound, from
Particle Swarm Optimization (PSO, [10]), or Ant Colony
Optimization (ACO, [11]), the latter grasping the algorithmic
focus of this paper. Specifically, the present work outlines the
design of a novel density-based ACO clustering scheme that
resorts to a tailored encoding of the solution space (i.e. the
graph explored by the ant colony) that embeds the number
of clusters underlying the dataset under analysis. This is a
radically new approach to the partitioning of unsupervised
datasets that outperforms previous schemes in the literature,
as argued in the following survey and subsequently proven by
simulations over illustrative datasets.

II. ACO ALGORITHMS FOR CLUSTERING PROBLEMS

ACO algorithms are based on the foraging behavior of ants,
which walk through the environment arbitrarily at random,
initially guided by their sole intuition. Once the any given
ant reaches the destination (and then, the completion of
a solution), it retraces up to the starting point placing a
certain quantity of pheromones (proportional to the quality
of the achieved solution) along the path that will guide
subsequent ants in their foraging process. In order to avoid that
non-optimal solutions attract the majority of ants, pheromones
are forced to decrease according to a evaporation rate ρ.

Different application domains have leveraged this
meta-heuristic algorithm when undertaking optimization
problems modeled by graphs, such as scheduling, planning
and routing. Indeed supervised and unsupervised learning lie
among those scenarios where ACO approaches have been
put to practice: for instance, the authors in [12] proposed a
rule-based ACO algorithm for classification tasks; in [13] a
neural network prediction model was trained by means of an

ACO scheme; and naı̈ve Bayes classifiers have been recently
hybridized with ACO algorithms in [14]. When it comes
to clustering the most popular ACO approach is the one in
[11] (coined as ACOC), where the optimization problem is
formulated as to find the mapping from instances {Xi}mi=1 to
cluster centers {Ck}gk=1 (represented as wi,k ∈ {0, 1} such
that wi,k = 1 if instance i belongs to cluster j) that:

{{w∗i,j}mi=1}
g
j=1

.
= argmin
wi,j∈{0,1}

m∑
i=1

g∑
j=1

wi,j ‖ Xi − Cj ‖, (1)

subject to
∑g
j=1 wi,j = 1 ∀i ∈ {1, . . . ,m} and

∑g
j=1 wi,j ≥

1 ∀j ∈ {1, . . . , g}. In the above expression, ‖ · ‖
denotes the Frobenius norm. From a practical perspective the
aforementioned ACOC approach maps the problem onto a
decision graph G

.
= (V, E), over which the standard ACO

heuristic is executed. The set of nodes of the graph V contains
all possible pairs 〈m, g〉. When visited by any given ant, node
N(i, j) in the graph G establishes that instance i is assigned
to cluster j.

When analyzed in depth, several drawbacks of the ACOC
are worth being mentioned: to begin with, ACOC requires
the a priori definition of the number of clusters g to be
found within the data so as to arrange the m × g decision
graph over which ants are deployed. Since every node in
the graph represents by itself the mapping from instances
to clusters, the exploratory behavior of ants simply reduces
to a probabilistically driven movement from N(i, j) to any
node within the set {N(i + 1, j)}gj=1. This movement is
influenced by both past experience and a personal judgment of
the ant symbolized by a heuristic value measuring the expected
efficiency of such a choice. For the ACOC approach, the
probability to move along the path (n1, n2) between nodes
n1

.
= N(i, j) and n2 .

= N(i+ 1, j′) for ant k and step t will
be given by

pk,tn1,n2 =
(τn1,n2(t))

α · (ηn1,n2(t))β∑g
n=1 (τn1,n(t))

α · (ηn1,n(t))β
, (2)

where τn1,n2(t) denotes the quantity of pheromones deposited
in the path (n1, n2) at iteration t; ηn1,n2(t) defines the
heuristic value of the problem; and α and β are two
exponential parameters that balance between the influence
of the pheromones and the heuristic function. This stepwise
movement policy for ants is indeed simple to implement;
the clustering solution (i.e. the path followed by ants) can
be decomposed in locally decided movements without any
loose of optimality. However, as mentioned before this
imposes that g (i.e. the number of clusters) must be known
beforehand, which can be a time consuming task (especially
if undertaken with greedy schemes or exhaustive search
procedures). Furthermore, in most cases there is no gold
standard that unveils the cardinality of the cluster space that
the algorithm should infer, fact that jeopardizes the assessment
of the clustering arrangement produced by the algorithm.

Another drawback can be found underneath the decision
graph proposed by the ACOC model: two different ants
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Fig. 1. Two different solutions of the ACOC algorithm for a dataset composed
by 4 elements that must be gathered in 3 clusters. Clustering arrangements
represented by both paths are equal to each other.

may represent the same structural arrangement in the cluster
space even though traversing different paths in the decision
graph of the algorithm. As shown in Figure 1, this noted
fact is due to the encoding redundancy of the decision
graph: both solutions plotted in this figure are absolutely
equivalent representations of the same 3-cluster arrangement:
(1,3), (2) and (4). This redundancy must be avoided for the
sake of a good convergence of the algorithm: otherwise ants
may become confused when traversing the graph by finding
two distant paths with similar fitness. In this context our
work adopts the so-called Linear Linkage Encoding (LLE,
[15]) representation that removes the encoding redundancy by
representing each cluster arrangement as a list of numerical
pointers to the very next item belonging to the same cluster
in numerical order. Furthermore, this encoding strategy allows
for the blind estimation of the number of clusters within the
data, i.e. in their exploration through the graph ants do not only
allocate instances to clusters but also estimate the cardinality
of the cluster arrangement. Unfortunately this comes along
with more complex behavioral operators for the pheromone
deposit and the ants’ movement, as described in what follows.

III. DESCRIPTION OF THE PROPOSED ACO ALGORITHM

As explained in the previous section, the clustering
algorithm proposed in this work hinges on a specially
designed solution graph over which ants are deployed to
seek a solution. This graph results from the adoption of the
so-called Linear Linkage Encoding (LLE) approach proposed
in [15] to numerically represent clustering solutions. Similarly
to conventional number encoding schemes, in LLE each
clustering solution is represented by a m-sized list of integers,
with m denoting the total amount of instances in the dataset.
In traditional number encoding the allocation of an instance
i to a cluster j is represented by the numerical index of
the given cluster (i.e. j) located at the i-th position of the
solution vector, which implicitly implies setting the number
of considered clusters beforehand. However, in LLE each
entry of the clustering vector is a link to its subsequent
neighbor within the same cluster; consequently each group
is identified by its linked member instances rather than by
a cluster identifier nominatively assigned to each instance.
Following this notation the clustering solution exemplified
in Figures 1.a and 1.b would be uniquely encoded as
(3, 2, 3, 4), whereas their number encoding representation
would be (1, 2, 1, 3) (Figure 1.a) and (2, 3, 2, 1) (Figure 1.b),
phenotypically different yet genotypically equivalent.

Generally speaking, a LLE representation must satisfy the
following requirements:

1) The integer value stored in each position of the solution
is greater than or equal to its index but less than or equal
to the number of instances m.

2) Two different indexes within a given solution can not
hold the same value, unless the value is equal to any of
both indexes (which stands for the closure of the cluster).

When adopting the above set of rules to the proposed
algorithm, its search complexity is alleviated by virtue of
a significantly pruned solution graph, which constitutes a
non-redundant phenotype of the clustering problem and
potentially makes the deployed colony of ants converge faster
to global solutions. Such a graph is initially based on a m×m
grid of states. If we denote as N k

i (t) the set of reachable
states by ant k from position i ∈ {1, . . . ,m} at iteration t,
and jkz (t) is the past state visited by this ant at previous step
z ∈ {1, . . . , i− 1} within the same iteration, it can be shown
that the above rule set gives rise to a dynamically1 pruned grid
of states defined by

N k
i (t)

.
=

{
j : i ≤ j ≤ m, j /∈

i−1⋃
z=1

jkz (t) · I
(
jkz (t) 6= i

)}
, (3)

where
⋃

denotes union of elements, and I(·) is an auxiliary
indicator function taking value 1 if the argument is true (0
otherwise). At this point it is also important to note that
the dynamically pruned solution graph embeds the estimation
of the number of cluster, as its initial layout is m × m
disregarding the specific dataset under analysis. Figures 2.a
and 2.b illustrates this pruning procedure.
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Fig. 2. (a) Initially pruned solution graph of the ACO due to the application of
the LLE encoding rules to a clustering problem with m = 5 data instances;
(b) dynamic pruning due to the partial path (3, 5) traversed by an ant. At
i = 3 the ant is allowed to visit nodes (4, 3) or (4, 4). Gray-shaded regions
of the graph are unreachable.

A. Modified ACO Operators

The pruning of the decision graph explained above does
not modify significantly the behavior of ants with respect to
its original definition in the traditional ACO algorithm: the
movement of ants are still driven probabilistically as a function
of the heuristic of the problem and the experience of deployed
ants in previous iterations. As such, an ant placed in a given

1Here, dynamically refers to the fact that the set of pruned states at position
i+ 1 depends on the visited states by the ant at {1, . . . , i}.



state at step i selects any of a list of possible destination states
at step i+1. Then it computes the heuristic value in charge of
measuring the quality or merit of moving from the current state
to any of the possible next states, and retrieves the pheromone
information from the graph in order to infer knowledge in
terms of the quality of past solutions. With this information
the ant at hand selects the state to visit at step i+1 using the
heuristic and pheromone information by using probabilities
computed as in Expression (2).

B. Modified Pheromone Computation

Despite its high-level similarity with naı̈ve ACO solvers,
there are strong underlying differences in regards to the
computation of the heuristic value and the retrieval of
pheromones that underpin the novelty of the proposed ACO
model. To begin with, in general pheromones contain localized
path-wise information about the history of past executions. The
use of LLE for representing the clustering solutions (and the
subsequent graph pruning) imposes that a pheromone in our
approach is not related to how proper an isolated movement
from step i to i + 1 proves to be, but rather indicates how
efficient a partial clustering solution is by considering the
knowledge inferred by ants until step i. This particularity
changes the way pheromones are computed in our approach,
for which the algorithm incorporates a memory or pool of
P entries, each storing a path traversed through the graph
by the deployed pheromones and its corresponding fitness
value. If ant k is assessing whether to move from node
n1 = N(i, j) to node n2 = N(i + 1, j′) (with j′ ∈ N k

i (t)),
the corresponding pheromone value ηkn1,n2(t) required for
computing the heuristic value of this transition at iteration t
should be determined by 1) the fitness of those previous ants
stored in the pool that contain this transition in their path; and
2) the similarity between the partial cluster arrangements of
ant k with respect to those previous ants that traversed the
same transition from node n1 to n2. In other words,

ηkn1,n2(t) ∝
P∑
p=1

jp,[i (t-1)=j
jp,[i+1(t-1)=j′

θ(Jki (t− 1),Jp,[i (t− 1)) · f
(
Jp,[m (t)

)
,

where Jki (t)
.
= {jkz (t)}iz=1 and Jp,[i (t)

.
= {jp,[z (t)}iz=1

stand for the partial paths traversed by ant k and pooled
ant p until position i at iteration t, respectively. In the
above expression θ(J ,J ′) is a measure of the similarity
between two data clusterings represented by J and J ′,
which can be implemented in practice by resorting to any
of the distance metrics published in the literature (e.g.
Adjusted Rand Index or Normalized Mutual Information [16]).
Finally, f(J) is the fitness of the clustering arrangement
represented by J . the design of the pheromone expression as
stated above accommodates any of the plethora of structural
clustering metrics reported to date, from the well-known
Silhouette score [17] to more elaborated counterparts such
as the Davies-Bouldin [18] or the Dunn index [19]. In

the preliminary results discussed later in this article the
so-called Calinski-Harabasz metric [20] has been selected for
its sensitiveness to small-sized clusters.

This type of pheromones and the number of different
combinations between pair of elements in any dataset
may result in a combinatorial explosion in the number
of pheromones. In order to solve this problem, we have
introduced an Oblivion Rate heuristic [21] in charge of
controlling the number of pheromones created in the system.
Specifically we have implemented this pheromone control
as a reinforcement strategy in the aforementioned pool of
past solutions. Given a new solution, if it has been already
discovered (i.e. the solution exists in the pool) the fitness
associated to this solution is increased by a factor α. The size
of the pool is kept fixed to P by removing solutions depending
on their obsolescence (i.e. the probability that a given solution
is deleted from the pool increases as the number of ants having
followed this path decreases).

C. Density-based Heuristic Value

The probability driving the movement of ants along the
solution graph is also controlled by the heuristic value
τkn1,n2(t), which should help ants converge towards solutions
maximizing the aforementioned clustering metric jointly with
the learning capability enabled by the deposit of pheromones.
We have opted for making isolated decisions related to the
state of the current node and the pertinent cluster by using
a density-based heuristic similar to the one in the DBSCAN
algorithm [22]. This metric grounds on a parameter ε that
quantifies the maximum normalized distance d(i, i′) between
nodes i and i′ belonging to the same cluster; the lower ε is,
the more compact the clusters embedded in the solution of the
algorithm will be. This heuristic value will be given by

τkn1,n2(t) =
d(i, i+ 1) · I(d(i, i+ 1) ≤ ε)∑

i′∈Nk,1
i (t)

d(i, i′) · I(d(i, i′) ≤ ε)
, (4)

where N k,1
i (t) denotes the search space of ant k at step i

and iteration t. This search space will be given by the union
of 1) the set of reachable states due to the LLE approach
utilized for encoding the problem space defined in Expression
(3); and 2) those past instances laying at a distance less than ε.
The need for exploring past instances finds its rationale in the
incremental assignment performed by ants along their paths,
which clashes with the linkage between samples imposed by
the encoding strategy. By also considering past yet sufficiently
close data instances in the search space of the heuristic the
algorithm is able to merge new data instances into existing
clusters disregarding whether they are closed by the LLE
representation. This extended search space is expressed as

N k,1
i (t)

.
= N k

i (t) ∪

 ⋃
c∈Cki (t)

argmin
l∈c

d(l, i)

 , (5)

with Cki (t) denoting the set of already existing clusters solved
by ant k at step i and iteration t. That is, the right-hand union



of sets in the above expression and the indicator functions
in Expression (4) follow the core principle of density-based
clustering by which a cluster is reachable by point i if any
instance within the cluster is ε-reachable from i. Also note
that this cluster reconsideration comes along with a side repair
procedure of the solution vector so as not to violate the
encoding rules of the LLE strategy. In addition, the selection
of the ε value is independent of the dataset used thanks to the
normalization of d(i, i′) with respect to the maximum distance
within the dataset which, as a matter of fact, can be set to any
arbitrary multidimensional measure of distance.

Summarizing, the proposed ACO algorithm features several
advantages with respect to the state of the art:

1) It does not depend on the specification of the number of
clusters to be found in the dataset.

2) The joint adoption of a density-based heuristic and
a Calinski-Harabasz measure of structural clustering
fitness allows identifying outliers within the dataset,
as opposed to recent ACO-based clustering alternatives
reported in the literature; and

3) The algorithm is flexible enough to arbitrarily tune its
parameters so as to meet clustering paradigms of very
diverse nature: the fitness function f(·), the metric of
similarity θ(J ,J ′) among partial clusters or the heuristic
τkn1,n2(t) itself. Interestingly the latter unveils a sought
independence between the heuristic approach used for
building the clustering solution and the metric adopted
for evaluating the structural quality of the complete
solution built by the deployed ants.

IV. RESULTS AND DISCUSSION

In order to shed light on the performance of the proposed
ACO-based clustering approach, several computer experiments
have been carried out over datasets with simple yet diverse
structural characteristics. This preliminary set of experiments
aim at answering the following research questions:
Q1 Is the proposed algorithm able to identify the correct

number of clusters without providing any a priori
information about this parameter?

Q2 How does the algorithm perform when the dataset
contains outliers? (i.e. points or small clusters with
structural looseness or low connectivity to other
well-defined clusters of higher cardinality)

Q3 How does the proposed clustering technique perform with
respect to the popular ACOC approach proposed in [11]?

To answer these questions from an empirical approach three
different datasets have been selected: the first one is a synthetic
dataset composed by 9 instances, each with 2 features or
characteristics. A simple visual inspection evinces that these
elements are easily grouped in 4 different clusters, one of them
composed by a single element (i.e. an outlier). This dataset
will be useful to understand whether the combination of the
density-based heuristic and the Calinski-Harabasz measure
excels at identifying not only the clear underlying cluster
structure, but also on isolating the outlier within the dataset.

The other two selected datasets are well-known in the
literature and have been extensively utilized for preliminarily
validating new clustering schemes. One of them is the Iris
flower dataset [23], which comprises 150 instances with 4
features and 50 samples. Such elements are drawn from
three different classes or categories, each representing a type
of Iris plant: Iris-setosa, Iris-versicolor and Iris-virginica.
Features correspond to the sepal length and width (in cm)
and the petal length and width (in cm). Each class contains
50 different elements within the dataset. Interestingly, one
class (Iris-setosa) is linearly separable from the other 2,
whereas the latter are not linearly separable from each other.
Therefore it is easy to differentiate between Iris-setosa and
the other two classes, but it is extremely difficult to separate
the elements belonging to Iris-versicolor and Iris-virginica
without any prior knowledge about the number of clusters.
As for clustering purposes, it is unrealistic (and controversial
as discussed in related studies) to make any proposed
algorithm discriminate among 3 clusters within this dataset;
this parameter cannot be easily inferred a priori, thus it should
be the structural measure of quality and the utilized heuristic
what should drive the algorithm on this purpose.

Finally, the third dataset is a classical problem in
spectral clustering: the Moons dataset, composed by 400
bi-dimensional elements that belongs to 2 different clusters
with structural connectivity (i.e. their shape is a half circle).
The position of the different elements of this dataset
jeopardizes the correct identification of the clusters if the
clustering algorithm uses a centroid-based metric of structural
fitness. For solving all these three datasets, we have executed
the classical ACOC algorithm [11] and the proposed algorithm
described in Section III using the same configuration for
the sake of fairness in the comparison of their results. This
configuration is shown in Table I. For the proposed algorithm,
the parameters ε and P – i.e. the maximum normalized
distance d(i, i′) between nodes i and i′ belonging to the same
cluster and the size of the pool – have been fixed to 0.2 and
5 in all the considered experiments.

Parameter Value
Colony 5

Iterations 10
α 1
β 2

Evaporation rate ρ 0.1
Repetitions 10

TABLE I
CONFIGURATION OF THE ACOC ALGORITHM AND THE PROPOSED ACO

FOR CLUSTERING THE DIFFERENT DATASETS.

Figure 3 depicts the best solutions obtained for the
different datasets: the first column (Figures 3.a, 3.c and
3.e) is comprised by plots of the best solutions achieved
by the proposed algorithm, whereas in the second column
(correspondingly, 3.b, 3.d and 3.f) the best solutions found
by the ACOC algorithm are shown. Instances belonging to
the same cluster are marked with the same symbol. In the
case of the Iris flower dataset dimensionality has been reduced



down to 2 components via Principal Component Analysis
(PCA). To begin with, Figure 3.a shows that the proposed
algorithm finds correctly the number of different clusters that
compose the dataset. In this case, our approach provides the
same solution than the ACOC algorithm (see Figure 3.b), the
difference being that no prior knowledge about the number of
clusters has been assumed for the former. Another aspect to
highlight is that the clustering algorithm proposed in this paper
is sensible to outliers: in this first dataset the outlying sample
is perfectly identified as an isolated cluster. This capability is
critical for any clustering algorithm because treating outliers as
an element inside any other cluster could degrade the solution
and mask relevant structural information for the application
at hand (as in e.g. the unsupervised detection of failures in
predictive maintenance of industrial machinery).
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Fig. 3. Best solution found by the proposed algorithm (first column) and the
well-known ACOC algorithm (second column) for the synthetic dataset (first
row), the Iris flower dataset (second row) and the Moons dataset (third row).

Regarding the Iris flower dataset, the proposed algorithm
is able to identify the Iris-setosa class, whereas the elements
belonging to Iris-versicolor and Iris-virginica are grouped in
the same cluster (Figure 3.c). This arrangement, however, must
not be conceived as a bad solution for its mismatch with
respect to the ground of truth because, as it was previously
stated, elements belonging to Iris-versicolor and Iris-virginica
are not linearly separable without any prior knowledge about
the number of classes. In the case of ACOC, if we set the
number of classes to 2 (i.e. g = 2) the best result is similar

to the one by the proposed algorithm (Figure 3.d), with small
differences in the frontier between the discerned classes.

The discussion follows by analyzing the performance
for the Moons dataset shown in Figures 3.e and 3.f: the
proposed clustering scheme groups together all elements
belonging to the same semi-circled cluster by virtue of its
density-based heuristic. By contrast, the ACOC algorithm fails
to discover this clustering structure within the dataset as a
consequence of its centroid-based search procedure (similar
to the well-known K-Means algorithm). Furthermore, once
again our algorithm is able to correctly map elements to
clusters without providing any information about the number
of clusters. This result reveals that the density-based heuristic
and the Calinski-Harabasz measure are good options for
constructing ACO-based approaches suitable to deal with
clustering paradigms of diverse structural characteristics.

V. CONCLUSION AND FUTURE RESEARCH LINES

Theoretically clusters should correspond to data patterns
that reflect a latent yet not evident structure of the data at
hand. Critical to the task of inferring such patterns is to
determine the number of clusters g to be discovered, which
is often approached via a multidimensional similarity metric
that is meant to be optimized so as to reduce the intra-cluster
distortion. Both the value of g and the similarity metric
depend on the dataset at hand and the ultimate purpose of
the clustering problem, and their proper selection is decisive
to achieve optimality. Unfortunately, in most cases g may not
be easily estimable; in fact the estimation of g is deemed
one of the most challenging paradigms in data science, which
usually ends up by resorting to computationally-expensive
enumerative strategies and a priori knowledge. Consequently,
partitioning algorithms such as K-Means, K-medoids or the
one rooted on Expectation-Maximization schemes undergo this
noted shortcoming and hence prune their search space by a
previously-specified albeit potentially unrealistic value of g.

In this context this work has elaborated on the design of a
novel Ant Colony Optimization algorithm capable of dodging
two of the most important downsides of its major predecessors:
the assumption that the discovered clusters are spherically
shaped, and the a priori knowledge of the number of clusters
to be found. In order to overcome these disadvantages, our
proposed algorithm adopts a density-based heuristic method
able of discovering clusters of arbitrary structures and shapes
by resorting to connectivity and density notions. Furthermore,
the decision graph representing the solution space of the
clustering problem is pruned as a result of the adoption
of Linear Linkage Encoding, which permits denoting the
neighboring relationships between data instances and the
number of resulting groups or clusters in a single, minimally
redundant numerical representation. The devised ACO-based
clustering method leverages the above density-based heuristic,
the LLE encoding approach and a modified pheromone update
method that hinges on a metric of partial path similarity
between paths through the graph, and an arbitrary measure
of structural quality of the clustering arrangement inferred by



past ants. The flexibility in terms of the utilized structural
clustering allows directing the convergence of ants towards
cluster arrangements with different structural sensitivity levels
(e.g. for detecting outliers).

In the experimental phase 3 different examples have been
analyzed and discussed, aimed at evincing the performance
of the proposed algorithm when facing dataset with diverse
structural shape. The first one is a synthetic dataset that
contains outliers, which has been helpful to clarify the
sensitivity of the algorithm to infer clusters at different
resolutions. Results in the remaining datasets (i.e. Iris and
Moons) have been insightful to compare the performance of
the proposed method to that of the ACOC in [11]: the proposed
algorithm is able to identify correctly the number of clusters in
the dataset as told by the utilized metric of structural clustering
quality, no matter whether the dataset is characterized by a
partitional (Iris) or spectral (Moons) separability. This good
performance across heterogeneous datasets is promising and
motivates future efforts towards extending the applicability
of the proposed algorithm to other clustering paradigms (e.g.
on-line clustering).
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