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Abstract—Most studies of Estimation of Distribution Algo-
rithms (EDA) are restricted to low dimensional problems due
to EDA being susceptible to the curse of dimensionality. Among
methods that try to scale up EDA to high dimensional problems,
EDA-MCC was recently proposed. It controls the complexity of
the search distribution by thresholding correlation estimates as
a means to approximate the prominent dependency structure
among the search variables and discard irrelevant detail.

However, it is known that the correlation coefficient can only
determine statistical dependence when the data distribution is
Gaussian. In this paper, we develop a new variant of EDA-MCC
called EDA-MCC-MI which uses mutual information (MI) esti-
mates to determine dependencies between the search variables,
replacing linear correlation. Our method is in a better position to
determine the correct dependency structure than the EDA-MCC
can do, simply because MI is zero if and only if the variables
are independent, whereas a zero correlation does not imply
independence in general. Empirical comparison results show that
EDA-MCC-MI is never worse than EDA-MCC even when the
search distribution is Gaussian. Our implementation employs a
nonparametric MI estimator, hence it is easily extensible to any
other, non-Gaussian search distribution.

I. INTRODUCTION

Estimation of distribution algorithms (EDA) are a relatively
new variety in terms of evolutionary algorithms (EA) [1]. EDA
guides the search for optimum by creating new candidate
solutions based on the probabilistic model it builds on the
most fit individuals. In comparison with traditional EAs,
EDA generates a model which obeys a specified probability
distribution to extract and utilise the structure of the current
best individuals, rather than taking it into no account [2].

Much research into EDAs has been done in the past. Among
the earliest proposed EDAs are Population Based Incremental
Learning (PBIL) [3] and UMDAG

c [1] adopt univariate Gaus-
sians. That means, all the input variables are assumed to be
independent from each other. Due to this assumption, these
methods are not able to solve problems in which the variables
have strong dependencies, even though the algorithms are fast
and easy to implement. For better performance, other EDAs
have been proposed, such as EMNA and ENGA [1]. Both of
these use maximum likelihood estimation (MLE), to estimate a
full multivariate model in EDA. These algorithms are based on
multivariate Gaussian model, therefore they are able to find out
and make use of more dependencies among variables. Later, a
new algorithm EEDA was proposed [4]. This algorithm scales

up EMNA and ENGA by decomposing the covariance matrix
of the Gaussian model. Even though Gaussian-based EDAs
are most widely employed, EDAs based on other distributions
are also studied. For example, in [5], and references therein,
multivariate heavy tailed distributions were investigated.

A large amount of research focuses on low and moderate di-
mensional problems (such as problems of size lower than 100-
D), since EDAs are highly effective in such cases. However,
high dimensional problems often lead to poor performance.
This is because EDAs suffer from the curse of dimensionality
[6]. Since the new solutions generated by EDAs are completely
based on their probabilistic model estimation, it is inevitable
to suffer from this curse. The reason is that, in order to
obtain an accurate model, there are mainly two ways: add
constraints to the model by exploiting some prior knowledge
about the problem, or build the model with a large population
[6]. The first approach is problematic when there is no prior
knowledge, and EDA must estimate a model only based on
the input data. The second approach is often feasible in low
dimensional cases, but when it comes to high dimensional
problems, the computational cost grows dramatically. Taking
a deeper insight into this problem, when the high fitness
individuals are selected from the population, they should form
a large enough set of points in order to produce accurate esti-
mates about the global search space. Therefore, the population
has to be very large, as the problem dimension grows. In
univariate models, this is not necessarily observed, because
the problem is approached in each dimension separately,
thus if the population is large enough for one dimension,
the model may be accurately estimated. However, that is
a simplified inaccurate model with limited abilities. When
it comes to multivariate models, since the dependencies of
variables should be considered, a large population must be
involved for the accuracy of the model estimation, which
results in a high computational complexity. One can employ
randomised dimensionality reduction for a cheap and effective
way to decrease the dimension of the search space [7], [8].
Other approaches include the use of multiple populations to
overcome the above mentioned problems [9].

EDA with model complexity control (EDA-MCC) is a
recent approach [10] which models the selected high fitness
individuals by a constrained multivariate Gaussian. Because
the model complexity is constrained, it has a significantly



lower computational cost than many traditional EDAs, and it
is less likely to overfit. It has been demonstrated to give more
accurate results than most univariate models based methods
and unconstrained multivariate model based ones. It somewhat
relates to the idea of factorising the multivariate distribution
using a Gaussian network of [11] – the differences between
these approaches are explained in [10].

EDA-MCC uses the thresholded linear correlation coeffi-
cient estimates to control the model complexity. Small cor-
relations are discarded, and any search variables that only
have small correlations are treated as independent. It is known,
however, that the linear correlation coefficient is only able to
represent linear dependencies, and this is only sufficient when
the variables are Gaussian. However, in EDA, the model is
built on the selected individuals. After selection, the variables
may no longer be Gaussian in general, even if the sampling
distribution was Gaussian. Figure 1 shows an example. A zero
correlation does not imply independence unless if the variables
are Gaussian. Moreover, in some cases onr might like to use
a non-Gaussian search distribution. Then, even the sampled
new generation will not be Gaussian distributed. Our method
proposed in this paper is applicable in principle to all such
cases.

In this paper, we propose an alternative technique of deter-
mining dependencies between variables in EDA-MCC – the
mutual information (MI) based method, which replaces linear
correlation coefficient estimation with MI estimation in EDA-
MCC. We call our new method EDA-MCC-MI. The reason
is that, contrary to correlation, the MI is only zero if the
variables are independent. Experiments on five well-known
benchmark functions show that EDA-MCC-MI has the ability
to outperform the original EDA-MCC.

II. THE METHOD OF EDA-MCC

EDA-MCC [10] is composed of two main steps: 1) Identifi-
cation of Weakly Dependent variables (WI) is done by collect-
ing together all those search variables whose correlations with
other search variables are all below a pre-specified threshold.
2) All the rest of the search variables are used in the Subspace
Modelling (SM) step.

The weakly dependent variables are then modelled by uni-
variate Gaussian distributions, while the rest of the variables
are randomly grouped in equal size non-overlapping groups,
and each group is modelled by a multivariate Gaussian. This
algorithm has been demonstrated to outperform many tradi-
tional EDAs because the complexity of the model is controlled
by the decomposition of the problem into the WI and SM
steps.

Using this strategy, in comparison with EMNA, the compu-
tational cost is reduced, but the accuracy of modelling is not
heavily affected.

III. OUR APPROACH: EDA-MCC-MI

Figure 1 shows the difference between correlation and MI
for two variables A and B which have a non-linear correlation.
The linear correlation coefficient is close to zero in this case,

(a) An example function which
has optima on a circle

(b) Points near optima after selec-
tion

Fig. 1: The difference between correlation and mutual infor-
mation when the variables have a non-linear correlation.

which means that the variables are close to being uncorrelated.
But they are not independent, and indeed the MI equals
1.2386 – which shows that the variables are in fact strongly
dependent. In other words, linear correlation is unable to show
the independence between variables when the data distribution
is non-Gaussian.

A. Mutual Information in WI

1) Theoretical Definition: In information theory, mutual
information is defined as follows [12]. First, the information
entropy of a random variable A is defined as:

H(A) = E[Ic(A)], (1)

where E is the expected value operator, and Ic(A) denotes
the self-information of A. Ic(A) is defined as:

Ic(A) = − ln p(A), (2)

where p(A) is the probability density function (PDF), and
the logarithm is in base 2 (so the amount of information is
measured in bits).

For two random variables A and B, the conditional entropy
of A given B is defined as:

H(A|B) =
∑
A

∑
B

p(A,B) ln
p(B)

p(A,B)
. (3)

where the notation assumes discrete valued variables. In the
continuous case the sums become integrals.

The mutual information I(A;B) is then defined as:

I(A;B) = H(A)−H(A|B) = H(B)−H(B|A). (4)

For illustration, Figure 2 is a Venn diagram which shows
the relationships of entropy, conditional entropy and mutual
information. Intuitively, the mutual information quantifies the
amount of information (in bits) that two random variables have
about each other.

From Figure 2, it is seen that, the area contained by both
circles is the joint entropy, i.e. the intersection of H(A) and
H(B). This part shows the dependency between A and B. If
I(A;B) = 0, which means the circles are not overlapped, then
the two variables are independent. Moreover, the converse is
also true: A and B are independent only if I(A;B) = 0.



Fig. 2: Mutual information

An alternative way to write I(A;B) is:

I(A;B) =
∑
A

∑
B

p(A,B) ln
p(A,B)

p(A)p(B)
(5)

which is the Kullback-Leibler distance between the joint PDF
and the product of the two marginal PDFs.

The larger I(A;B) is, the more strongly the variables
are dependent. Theoretically, the mutual information can be
infinity for two infinite variables, because if A and B are
dependent, then the larger the population size is, the more
information they will share. However, in finite case, especially
when the population size is fixed, the value of mutual infor-
mation can be restricted in a specified range, and then the
dependency between two variables can be measured.

2) Estimation of MI: Adaptive Histogram Method: In our
approach we will use the MI estimator of [13], which is an
adaptive histogram method. We have chosen this because of its
efficiency and generality. Since it is non-parametric, it makes
our approach applicable in principle to any search distribution
in EDA.

This MI estimation algorithm divides the set of points into
a finite number of disjoint rectangular partitions, and the
probability density is estimated in each partition simply by
counting. This MI estimate is computed as follows:

Î(A;B) =

m∑
k=1

Nk

N
ln

Nk/N

(Na,k/N)(Nb,k/N)
, (6)

where N is the number of points, m is the number of
partitions, Nk is the number of points in the kth partition,
and Na,k, Nb,k are the number of points whose first / second
variable falls within the limits of partition k. This is indeed
a sample estimate of the theoretical value of the MI in the
form given in eq.(5). More analysis about this estimator may
be found in [13], and an empirical comparison in [14] found
it most efficient and accurate among other estimators tested.

Now we give a summary of the partitioning procedure. For
more details see [13], [14]. It is a recursive method, which
starts from a single partition defined as the smallest rectangle
that contains all N points. Provided that the partition contains
at least 2 points, it then attempts to split up the partition into 4
equally sized disjoint rectangles by halving both horizontally

and vertically. A χ2 goodness of fit test is applied to decide
whether to keep the split or not. If the split passes this test,
then the procedure continues recursively in each of the newly
created four partitions. The procedure terminates when no
partition can be split further.

Once the partitions are created, then the probability density
is estimated simply by counting.

B. Improved EDA-MCC: EDA-MCC-MI

Our proposed algorithm, EDA-MCC-MI, is a direct exten-
sion of EDA-MCC proposed by [10]. It consists of replacing
the computation of linear correlation coefficient estimates by
computation of mutual information estimates. Algorithm 1
gives a schematic pseudo-code of EDA-MCC-MI.

Function EDA-MCC-MI
Input: Dimension D, Population size M , Msel, mc,

threshold θ
Output: P
Initialise a population P of M individuals
while stopping criterion is not met do

Estimate fitness of all individuals
Select Msel ≤M individuals from P
X ←Ramdomly sample mc ≤Msel individuals from
Msel selected ones

WI step:
Compute the MI matrix I from X ,
Iij =MI(Xi, Xj), i, j ∈ [1, D]
W ← {Xi|Iij < θ,∀j 6= i}
for k = 1 : |W| do

Estimate univariate model of variable k for the
Msel selected individuals.

end

SM step:
S ← [1, D]−W .
Randomly divide S into d|S|/ce non-overlapping

subsets.
for k = 1 : d|S|/ce do

Estimate a multivariate model for the Msel

selected individuals.
end

P ′ ← new individuals sampled based on the two
models respectively.
P ← P ′.

end
Algorithm 1: EDA-MCC-MI

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

The goal of our experiments is to establish whether mutual
information is a viable, and potentially more advantageous
alternative to the correlation coefficient in the context of
EDA search. We conduct experiments comparatively with two
algorithms: EDA-MCC and our modified version EDA-MCC-
MI. As [10] mentioned, since EDA-MCC applies UMDAG

c [1]



in WI process and EEDA [4] in SM process, and it outperforms
both of the algorithms in many cases, UMDAG

c and EEDA are
not considered in our experiments.

We implemented our new algorithm in a combination of
multi-threaded C++ and Matlab for computational efficiency1.

1) Test Functions: Table I lists the test functions used in
our experiments. They are selected from the benchmark func-
tions used in the CEC’2005 Special Session. Definitions and
descriptions of these functions can be found in [15]. We have
chosen these five functions to cover different characteristics,
and they belong to the following three groups:

1. Separable unimodal problems: F1 and F2.
2. Separable problems with many local optima: F3 and F4.
3. Non-separable problem: F5.
2) Parameter Settings: Since the experiments are set up

to compare the 2 algorithms, the parameters are similar with
those set in [10]. Two problem sizes are tested in the moderate
to high regime: D = 100 and D = 500. Three population sizes
M ∈ {300, 1000, 2000} are utilised for the 100D problems
and M = 1000 for the 500D problems. The maximum fitness
evaluation FE is set to FE = 10000 × D. The maximum
iteration is FE/M and the algorithm terminates when the
iteration exceeds this value. For the experiments in this section,
we set mc = 100 and θ = 0.3 for WI, because they are
recommended in [10]. For SM, c = min{D/5,M/15} is
used, for reasons expained in [16]. Some experimental analysis
on the influence of θ will be given in Section V. All the
experiments in this section were ran 25 times, and the reported
results are the average values ± standard deviations of the best
fitness value found in these 25 independent repetitions. The
experiments in Section V were ran 10 times, and the same
statistics are reported.

B. Experimental Results on 100-D Functions

Figure 3 shows the results on F1–F5, when the problem
dimension is 100 and the population size is 300. We see that
EDA-MCC-MI appears to outperform EDA-MCC in all the
experiments, as it achieves lower fitness values in all min-
imisation problems tested. Table II shows the corresponding
rank sum test results comparing EDA-MCC and EDA-MCC-
MI. Any significant outperformance is shown in bold. We see
that, even though EDA-MCC-MI appears better than EDA-
MCC in all the plots in Figure 3, the statistical test detects no
statistically significant differences in the performance of these
two methods in most cases, and statistical significance is only
detected in problem F2.

Table III shows the statistical results between EDA-MCC
and EDA-MCC-MI on 100D problems, when the population
size is 1000 and 2000. It is seen that, the performance of the
two algorithms is very close, and EDA-MCC-MI only shows
significant outperformance on F1 when M = 2000. Both the
algorithms perform well on F1 and F4, and when M = 2000,
they also achieve a result close to the optimum on F2. The
algorithms fail to find the global optimum on problems F3 and

1The code is freely available at: https://github.com/qxandy/edami

F5. The reason is that, when M grows, the estimation of the
model becomes more accurate, and thus it is more likely for
the algorithm to reach the global optimum.

Hence, so far we see that MI is indeed a viable alternative,
and is never worse than correlation. One might hope for
significant outperformance, however recall that here we are
just using a Gaussian search distribution. Although MI is
able to capture non-linear and higher order dependencies from
the selected population (see e.g. Figure 1), the subsequent
modelling of these selected individuals by a Gaussian has
rather little ability to make use of the detected dependencies.
However, the fact that EDA-MCC-MI turned out no worse than
EDA-MCC even in this restricted setting, and was even slightly
better in some cases is a strong evidence of its potential to be
built in more flexible non-Gaussian search distributions for
improved EDA search in future work.

C. Results on 500-D Problems

Our results on 500D problems are presented in Figure 4. We
again see that EDA-MCC-MI achieves lower fitness values
than EDA-MCC on all the 5 problems. In Sphere function,
EDA-MCC has the average fitness value slightly lower than
1, however, EDA-MCC-MI has the value lower than 10−20,
which is very close to the global minimum of zero. In the
Ackley function, EDA-MCC has the average fitness value
slightly lower than 10−2, and EDA-MCC-MI has the value
lower than 10−12. However, again the statistical analysis finds
no significant differences in either of these two test problems.
However, the statistical test did confirm that EDA-MCC-MI
is significantly better than EDA-MCC on the remaining three
problems, namely the shifted Elliptic, the shifted Rastrigin and
the shifted Rosenbrock functions.

From the results on both 100 and 500 dimensional problems,
we find that EDA-MCC-MI performs better than EDA-MCC
in all the experiments, although the differences are not always
statistically significant. Therefore EDA-MCC-MI shows re-
markable effectiveness on both moderate and high dimensional
problems tested, and on both separable and non-separable
problems. It also performs well in both small population sizes
and large population sizes. From analysing the effect of the
threshold parameter and the proportion of weakly vs. strongly
correlated variables, presented in the next section – it appears
that the reason we find more significant outperformance in
the case of our higher dimensional experiments is not due to
detecting complicated dependencies but by contrary, due to
less variables passing the threshold for multivariate modelling
(since the estimated MI values are low when the number of
points is small), which prevents inaccurate model building
when the dimensionality grows while the population size
remains low. This is also a useful feature to have in practice.

V. INFLUENCE OF PARAMETER θ

In order to gain more insights into the working of EDA-
MCC-MI, and to uncover reasons behind our experimental
findings, we ran more experiments investigating the effect of
the threshold θ in deciding the proportion of weakly dependent



TABLE I: Benchmark functions used in our experiments

No. Name Expression

F1 Shifted Sphere
F (x) = Fsphere(z),
Fsphere(x) =

∑D

i=1
x2i

F2 Shifted Elliptic
F (x) = Felliptic(z),
Felliptic(x) =

∑D

i=1
(106)

i−1
D−1 x2i

F3 Shifted Rastrigin
F (x) = Frastrigin(z),
Frastrigin(x) =

∑D

i=1
(x2i − 10 cos(2πxi) + 10)

F4 Shifted Ackley
F (x) = Fackley(z),

Fackley(x) = −20exp(−0.2

√
1
D

∑D

i=1
x2i )− exp( 1

D

∑D

i=1
(2πxi)) + 20 + e

F5 Shifted Rosenbrock
F (x) = Frosenbrock(z),
Frosenbrock(x) =

∑D−1

i=1
100((x2i − xi+1)

2 + (xi − 1)2)

(a) F1 : Shifted Sphere (b) F2 : Shifted Elliptic (c) F3 : Shifted Rastrigin

(d) F4 : Shifted Ackley (e) F5 : Shifted Rosenbrock

Fig. 3: Evolutionary curves for performance comparison between the use of MI and correlation coefficient in EDA-MCC for
functions F1 − F5. D = 100, M = 300 and Budget size is 1× 104 ×D

vs. strongly dependent variables. In these experiments, we
varied θ ∈ [0.01, 0.09] ∪ [0.1, 1.0]. The experiments are run
on all the 5 benchmark functions, with dimension D = 100
and population size M = 1000. For each function, the results
reported are averages from 10 independent repetitions. Figures
5 – 7 show the results.

Recall that F1 − F4 are separable functions, and F5 is a
non-separable function. For separable functions, it is assumed
that independent variables can obtain a good result, therefore
we would expect that larger values of θ will work well. For the
non-separable function, in turn, more dependencies are needed
for a better result, so we expect that θ should be smaller for
this purpose. However, this hypothesis assumes an accurate
model estimation. When the population size is too small, or
due to the bias introduced by excessive model complexity

restriction, these other factors may also influence the effects of
the threshold parameter θ. For instance, if the population size
is sufficient for accurate estimation, then a few dependencies
may help better navigate the search space even if independent
variables would eventually suffice. Hence in such cases we
may find a small θ value more effective even if the problem
is separable. Conversely, if the model complexity (group size
c) is relatively large in comparison to what can be reliably
estimated from the available population of selected points,
then a large θ value has the effect of forcing more variables
into the set of weakly independent ones, thereby preventing
overfitting. In such cases we may expect better performance
with a large θ rather than a small θ value even if the problem
is non-separable.



TABLE II: Ranksum statistical test for performance comparison between the use of MI and correlation coefficient in EDA-MCC
for functions F1 − F5. D = 100, M = 300 and Budget size is 1× 104 ×D

Prob. EDA-MCC EDA-MCC-MI H P-Valuemean std mean std
F1 1.8058 5.2604 8.4511e-004 0.0042 0 0.0653
F2 3.7080e+004 7.4889e+004 8.1171e+003 1.2053e+004 1 0.0012
F3 36.5014 5.9096 34.3089 6.0433 0 0.1594
F4 0.0613 0.2281 3.1716e-004 0.0016 0 0.8380
F5 5.7014e+006 6.6216e+006 4.8068e+006 4.8672e+006 0 0.4971

TABLE III: Ranksum statistical test for performance comparison between the use of MI and correlation coefficient in EDA-MCC
for functions F1 − F5. D = 100, M ∈ {1000, 2000} and Budget size is 1× 104 ×D

Prob. Population
Size

EDA-MCC EDA-MCC-MI H P-Valuemean std mean std

F1
1000 8.2679e-023 5.9495e-024 8.0915e-023 6.0637e-024 0 0.2444
2000 7.4054e-021 7.4115e-022 7.8597e-021 8.0209e-022 1 0.0457

F2
1000 25.0259 98.5899 6.5915 31.9113 0 0.7415
2000 9.5780e-017 7.7764e-018 9.4713e-017 8.9666e-018 0 0.6004

F3
1000 15.9193 2.3510 14.9642 2.3419 0 0.0814
2000 11.2231 1.5067 11.3823 1.7490 0 0.9073

F4
1000 9.6080e-013 2.1734e-014 9.5667e-013 2.3218e-014 0 0.7628
2000 1.3716e-011 6.0775e-013 1.4040e-011 6.4380e-013 0 0.0667

F5
1000 3.4448e+005 2.2463e+005 2.6968e+005 2.0549e+005 0 0.1870
2000 1.4387e+005 1.0913e+005 1.6066e+005 1.3240e+005 0 0.7710

TABLE IV: Ranksum statistical test for performance comparison between the use of MI and correlation coefficient in EDA-
MCC for functions F1 − F5. D = 500, M = 1000 and Budget size is 1× 104 ×D

Prob. EDA-MCC EDA-MCC-MI H P-Valuemean std mean std
F1 0.0133 0.0596 7.2584e-022 1.6225e-023 0 0.5792
F2 1.0491e+004 1.8153e+004 1.8844e+003 4.1694e+003 1 7.3522e-004
F3 0.0030 0.0111 1.4536e-012 1.1452e-014 0 0.1091
F4 188.4452 12.6540 173.9188 8.2498 1 1.6501e-005
F5 6.2552e+006 3.8602e+006 3.1108e+006 2.4836e+006 1 4.2399e-005

A. Separable Problems

(a) Average fitness (b) Average number of weak vari-
ables

Fig. 5: Effects of theta on F1 (shifted Sphere). Average fitness
achieved (left) and the corresponding number of variables that
are treated as independent (i.e. in the set W), as θ is varied.
D = 100, M = 1000 and Budget size is 1× 104 ×D.

Figure 5 shows the average fitness and the corresponding
number of elements inW as θ changes, for the Shifted Sphere
function. We see that EDA-MCC-MI produces its best result
when θ = 0.03. This turned out different from our hypothesis
above. However, since shifted sphere is a quite easy problem,
we observe that the fitness values are at the magnitude of
10−23 for all choices on θ. Therefore, for the shifted sphere

function, even though θ = 0.03 has the best result, other values
are also good.

(a) Average fitness (b) Average number of weak vari-
ables

Fig. 6: Effects of theta on F2 (shifted Elliptic). Average fitness
achieved (left) and the corresponding number of variables that
are treated as independent (i.e. in the set W), as θ is varied.
D = 100, M = 1000 and Budget size is 1× 104 ×D.

Likewise, Figure 6 shows the average fitness and the cor-
responding number of elements of W , as θ changes, for the
Shifted Elliptic function. When θ ≥ 0.2, all the variables are
in W (i.e. weakly correlated), therefore the results with any
larger θ value should be almost the same. In turn, the results
slightly fluctuate, and the error bars are wide, which means



(a) F1 : Shifted Sphere (b) F1 : Shifted Sphere (c) F1 : Shifted Sphere

(d) F3 : Shifted Ackley (e) F1 : Shifted Sphere

Fig. 4: Evolutionary curves for performance comparison between the use of MI and correlation coefficient in EDA-MCC for
functions F1 and F4. D = 500, M = 1000 and Budget size is 1× 104 ×D

that, there are no statistically significant differences here. All
values of θ perform similarly.

(a) Average fitness (b) Average number of weak vari-
ables

Fig. 7: Effects of theta on F3 (Rastrigin). Average fitness
achieved (left) and the corresponding number of variables that
are treated as independent (i.e. in the set W), as θ is varied.
D = 100, M = 1000 and Budget size is 1× 104 ×D.

The results of analogous experiments on the Rastrigin
function are given in Figure 7. This result agrees with our
hypothesis. We see that when θ > 0.1, EDA-MCC-MI gener-
ally achieves good results. The Rastrigin function is indeed
separable and the best performing range of θ values does
indeed place all variables in the weakly dependent category.
However, the slight fluctuations and large error bars when
θ > 0.1, suggest that more experiments should be done on
this problem, in order to obtain statistically more conclusive
results.

(a) Average fitness (b) Average number of weak vari-
ables

Fig. 8: Effects of theta on F4 (Ackley). Average fitness
achieved (left) and the corresponding number of variables that
are treated as independent (i.e. in the set W), as θ is varied.
D = 100, M = 1000 and Budget size is 1× 104 ×D.

Figure 8 shows the average fitness and the corresponding
number of elements in W , as θ changes, for the Ackley
function. We can see that EDA-MCC-MI obtains its best result
when θ = 0.04. This is a little surprising, as very few weak
variables are used to estimate univariate models and many
strongly dependent variables are used to generate multivariate
models. It may be that modelling of dependencies helps in
the intermediate stages of the search here. However, we also
notice that the Ackley function is in fact somewhat similar to
Sphere, in terms of its overall shape, apart from having local
optima. Indeed, all the fitness values are at the magnitude of
10−13, which is very close to the global optimum of zero.



Therefore the choice of θ does not make a big difference on
this function after all.

B. Non-Separable Problem

(a) Average fitness (b) Average number of weak vari-
ables

Fig. 9: Effects of theta on F5 (Rosenbrock). Average fitness
achieved (left) and the corresponding number of variables that
are treated as independent (i.e. in the set W), as θ is varied.
D = 100, M = 1000 and Budget size is 1× 104 ×D.

Finally, Figure 9 depicts the average fitness and the corre-
sponding number of elements in W as θ changes on Rosen-
brock function. We see that when θ ≥ 0.2, EDA-MCC-MI
has better results than in the case of smaller values of θ. This
disagrees with our initial hypothesis, because we expected
that θ should be small for this problem in order to keep
more dependencies. Yet, in this case, the results turns out
better when more variables are used to estimate univariate
models and fewer variables are used to generate multivariate
models. This is somewhat surprising, and warrants further
investigations in future work. It is possible that the multivariate
models overfit, or it may be – noticing that the best fitness
found is relatively far from the global optimum – that the
suboptimal result reached is easily reachable with independent
variables. We should note however, that the differences seen
in Figure 9 were not found to be statistically significant.

C. Further remarks

Taking a look at all figures presented in this section, it may
be worth observing that the rightmost plots in all of these
figures look almost the same. This means that θ causes similar
splitting proportions in all the functions tested.

Therefore, based on the results in Figures 5-9 together, our
exploratory experiments suggest that in the case of Sphere and
Ackley our method works best when θ is 0.03 or 0.04, when
only a few variables are classified as weak variables, and in
the case of the other three functions we can achieve better
results when θ is greater than 0.1, which means that more
independent variables are beneficial. However, the large error
bars suggest that more experiments would be needed for a
definite conclusion.

VI. CONCLUSION

We proposed and investigated an extension to a recent
method for large scale EDA search. The method controls
the complexity of the search distribution by estimating the

essential dependency structure of the search variables and
discarding weak dependencies. Our proposal is to replace
linear correlation coefficient estimates by mutual information
(MI) estimates. Our method is in a better position to determine
the correct dependency structure than the EDA-MCC can do.
Although in our experiments we only used a Gaussian search
distribution, which has a very limited ability to make use of
the improved dependence structure estimates, our empirical
comparison results demonstrated that our approach, EDA-
MCC-MI is never worse than EDA-MCC and performs better
in most cases. Our implementation employs a nonparametric
MI estimator, hence the use of MI can easily be combined with
more powerful non-Gaussian search distributions in further
research.
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