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An Analytic Expression of Relative Approximation
Error for a Class of Evolutionary Algorithms

Jun He

Abstract—An important question in evolutionary computation
is how good solutions evolutionary algorithms can produce.This
paper aims to provide an analytic analysis of solution quality in
terms of the relative approximation error, which is defined by the
error between 1 and the approximation ratio of the solution found
by an evolutionary algorithm. Since evolutionary algorithms are
iterative methods, the relative approximation error is a function
of generations. With the help of matrix analysis, it is possible
to obtain an exact expression of such a function. In this paper,
an analytic expression for calculating the relative approximation
error is presented for a class of evolutionary algorithms, that is,
(1+1) strictly elitist evolution algorithms. Furthermore, analytic
expressions of the fitness value and the average convergencerate
in each generation are also derived for this class of evolutionary
algorithms. The approach is promising, and it can be extended
to non-elitist or population-based algorithms too.

I. I NTRODUCTION

Evolutionary algorithms (EAs) have been widely used to
find good solutions to hard optimization problems. Many
experimental results claim that EAs can obtain good quality
solutions quickly. Nevertheless, from the viewpoint of the
NP -hard theory, no efficient algorithm exists for solving NP-
hard combinatorial optimization problems at the present and
possibly for ever. Therefore it is unlikely that EAs are efficient
in solving hard combinatorial optimization problems too.
Instead of searching for the exact solution to hard optimization
problems, it is more reasonable to expect that EAs are able to
find some good approximate solutions efficiently.

It is necessary to answer the question of how good solutions
EAs can produce to hard optimization problems in terms
of the approximation ratio. Current work focuses on the
approximation ratio of the solution found by an EA within
polynomial time. The research has attracted a lot of interests
in recent years. Various combinatorial optimization problems
have been investigated, including the minimum vertex cover
problem [1], [2], the partition problem [3], the set cover
problems [4], the minimum label spanning tree problem [5],
and many others.

This paper studies the approximation ratio of EAs from a
different viewpoint. It aims to estimate the relative approx-
imation error of the best solution found by an EA in each
generation, but without considering whether the EA is an
approximation algorithm or not. The problem in this paper
is described as follows: Given an EA for maximizing a fitness
function f(x), let fopt be the optimal fitness andFt the
expected fitness value of the best solution found in thetth
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generation. The approximation ratio of thetth generation
solution isFt/fopt. The approximation ratio of the optimal
solution is 1. The relative approximation error is

Et = 1−
Ft

fopt
. (1)

In [6], Et is called the performance ratio. In order to avoid
confusion with the approximation ratio, it is renamed the
relative approximation error. The relative approximationerror
Et is a function oft. Our main research question is to find an
upper boundβ(t) on the errorEt.

The perfect answer is to obtain a functionβ(t) in a closed
form such thatEt = β(t). For (1+1) strictly elitist EAs, such
an analytic expression has been constructed in this paper using
matrix analysis. To the best of our knowledge, this is the first
result of expressing the relative approximation error (also the
fitness value and the average convergence rate) in a closed
form for a class of EAs.

The paper is arranged as follows: Section II reviews the
links to related work. Section III defines the relative approx-
imation error. Sections IV and VII conduct a case study.
Section V introduces Markov modelling. Section VI makes
a theoretical analysis. Section IX summarizes the paper.

II. L INKS TO RELATED WORK

The relative approximation error belongs to the convergence
rate study of EAs, which can be traced back to 1990s [7]–[9].
This paper only investigates EAs for discrete optimisation,
although the converegnce rate of EAs for continuous opti-
mization [10]–[12] is also important. EAs belong to iterative
methods. A fundamental question in iterative methods is the
convergence rate, which can be formalised as follow [9]. Since
the tth generation solution is a random variable, we letpt

be a vector representing its probability distribution overthe
search space,π a vector such thatπ(Sopt) = 1 for the optimal
solution setSopt andπ(Snon) = 0 for the non-optimal solution
setSnon. The convergence rate problem asks the question how
fastpt converges toπ. The goal is to obtain a boundβ(t) such
that‖ pt−π ‖≤ β(t), where‖ · ‖ is a norm. There are various
ways to assign the norm. For example, if thetth generation
solution is a binary stringx1 · · ·xn and the optimal solution
is 1 · · · 1, the norm is set to be the Hamming distance:

‖ pt − π ‖=
∑

i

|1− xi|. (2)

In the current paper, the norm is set to be the relative
approximation error‖ pt − π ‖= 1− Ft/fopt.

According to [13], there are two approaches to analyse the
convergence rate of EAs for discrete optimization. The first
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approach is based on the eigenvalues of the transition subma-
trix associated with an EA. Suzuki [7] derived a lower bound
of convergence rate for simple genetic algorithms through
analysing eigenvalues of the transition matrix. Schmitt and
Rothlauf [14] found that the convergence rate is determined
by the second largest eigenvalue of the transition matrix. The
approach used in the current paper is the same as that in [7],
[14]. All are based on analysing the powers and eigenvalues
of the transition matrix. The other approach is based on
Doeblin’s condition [9], [15]. Using the minorisation condition
in Markov chain theory, He and Kang [9] proved that for the
EAs with time-invariant genetic operators, the convergence
rate can be upper-bounded byǫt whereǫ ∈ (0, 1).

The research in this paper is also linked to fixed budge
analysis. Jansen and Zarges [16], [17] proposed fixed budget
analysis. It aims to find lower and upper boundsβlow(b)
and βup(b) such thatβlow(b) ≤ fb ≤ βup(b) usually for a
fixed budgetb. They investigated two algorithms: random local
search and the(1+1) EA and obtained such bounds on several
pseudo-Boolean optimization problems.

The convergence rate study can implement the same task as
fixed budget analysis does. Provided that1− fb/fopt ≤ β(b),
it is trivial to derivefb ≥ fopt(1− β(b)). Nevertheless, there
are significant differences between the convergence rate study
and fixed budget analysis.

• The convergence rate study has existed in EAs for more
than two decades [7]–[9]. Fixed budget analysis was
recently proposed by Jansen and Zarges [17].

• The convergence rate study focuses on estimating the
error ‖ pt − π ‖, where the norm‖ · ‖ can be chosen
as the absolute errorfopt−Ft, relative error1−Ft/fopt
or Hamming distance. Fixed budget analysis aims at
boundingfb for a fixed budgetb (that is a fixed number
of generations) [17].

• In the convergence rate study, the upper boundβ(t)
on ‖ pt − π ‖ usually is an exponential function or
combination of linear functions oft [9]. In fixed budget
analysis, the boundβ(b) onfb may not be an exponential
function of b [17].

• In the convergence rate, the bound on‖ pt − π ‖ holds
for all t. But in fixed budget analysis, the bound onfb
often is estimated for a fixed budgetb [17].

• Matrix analysis is widely used in the convergence rate
study [7], [14], but it is not used in fixed budget analysis.

III. R ELATIVE APPROXIMATION ERROR, FITNESS VALUE

AND AVERAGE CONVERGENCE RATE

Consider a maximization problem, that is,max{f(x);x ∈
S} whereS is a finite set, andfopt > f(x) ≥ 0. For the
sake of analysis, letS = {0, 1, · · · , L} denote the set of all
solutions. We assume that

fmax = f(0) > f(1) ≥ · · · ≥ f(L) = fmin.

S is split into two subsets: the optimal solution setSopt = {0}
and the set of non-optimal solutionsSnon = {1, · · · , L}.

An EA for solving the above problem is regarded as an
iterative procedure: initially construct a population of solutions

Φ0; then given thetth generation populationΦt, generate a
new populationΦt+1 in a probabilistic way. This procedure
is repeated until an optimal solution is found. This paper
investigates a class of (1+1) elitist EAs which are described
in Algorithm 1. This kind of EAs is very popular in the
theoretical analysis of EAs.

Algorithm 1 A (1+1) Strictly Elitist EA
1: set t← 0;
2: Φ0 ← choose a solution fromS = {0, 1, · · · , L};
3: while Φt is not an optimal solutiondo
4: Ψt ← mutateΦt;
5: if f(Ψt) > f(Φt) then
6: Φt+1 ← selectΨt;
7: else
8: Φt+1 ← selectΦt;
9: end if

10: t← t+ 1;
11: end while

The expressionΦt = x means thetth generation individual
Φt at statex where Φt is a random variable andx its
value taken fromS. The fitness ofΦt is denoted byf(Φt).
Sincef(Φt) is a random variable, we consider its expectation

Ft
def
= E[f(Φt)]. The approximation ratio of thetth generation

individual isFt/fopt. The approximation ratio of the optimal
solution is1.

Definition 1: The relative approximation error of thetth
generation individual is defined by

Et = 1−
Ft

fopt
. (3)

There is a link between the relative approximation error
and the fitness value. From the definition of the relative
approximation error, we know that the fitness value in the
tth generation equals to

Ft = fopt(1− Et). (4)

There is a link between the relative approximation error
and average convergence rate [18]. From the definition of the
(geometric) average of the convergence rate of an EA fort
generations, we get

Rt
def
= 1−

(∣

∣

∣

∣

fopt − Ft

fopt − f0

∣

∣

∣

∣

)1/t

= 1−

(

Et

E0

)1/t

. (5)

IV. EXAMPLE

GivenFt, Et andRt, which is the best option to measure
the performance of an EA? We use a simple experiment to
show their advantage and disadvantage. Consider the problem
of maximizing a pseudo-Boolean functionf(x) wherex =
x1 · · ·xn is a binary string. Three test functions are used in
the experiment.

OneMax functionfone(x) = |x|,

square functionfsqu(x) = |x|
2,

logorithmic functionflog(x) = ln(|x|+ 1),
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where |x| = x1 + · · · + xn. A (1+1) EA is used for solving
the optimisation problem. This EA is also called randomised
local search.

Onebit Mutation. Given a binary string, chose one bit at
random and then flip it.
Elitist Selection.Choose the best from the parent and child
as the next parent.
Onebit mutation is chosen for the sake of demonstrating

that the average convergence rateRt may equal to a constant,
according to the theory of the average convergence rate [18].
The three functions are the easiest to the (1+1) EA among
all pseudo-Boolean functions whose optimum is unique at
1 · · · 1 according to the theory of the easiest and hardest
functions [19].

In the experiment, we setn = 4. This small value is chosen
for the sake of displaying matrices in Section VII in one
column. The initial solution is set to0000. We run the EA
108 times. The EA stops after 35 generations for each run.
Fig. 1 demonstrates the fitness valueFt which is averaged
over 108 runs. The figure shows thatFt converges to4 on
fone, 16 on fsqu and ln 5 on flog. But it is not clear howFt

is close tofopt, and how fastFt converges tofopt.

0 10 20 30

0

5

10

15

t

F
t

fone
fsqu
flog

Fig. 1. Fitness valueFt.

Fig. 2 presents the relative approximation errorEt, which
converges to 0. From the figure, we observe that for anyt, Et

on flog is smaller than that onfone, then smaller than that on
fsqu.
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Fig. 2. Relative approximation errorEt.

Fig. 3 illustrates the average convergence ratesRt, which
converges to0.25. From the figure, we see the difference of
the average convergence rate on the three functions.

• Rt = 0.25 on fone. The EA converges as fast as an
exponential decay:Et = 0.75tE0.

• Rt converges to0.25 on fsqu but its value is larger
than0.25 . The EA converges faster than the exponential
decay:Et ≤ 0.75tE0.

• Rt converges to0.25 on flog but its value is smaller
than0.25 . The EA converges slower than the exponential
decay:Et ≥ 0.75tE0.

0 10 20 30
0

0.2

0.4

t

R
t

fone
fsqu
flog

Fig. 3. Average convergence rateRt.

V. M ARKOV CHAIN MODELLING FOR (1+1) STRICTLY

ELITIST EAS

This section introduces Markov chain modelling for (1+1)
strictly elitist EAs. It follows the Markov chain framework
described in [18], [20].

Genetic operators in EAs can be either time-invariant or
time-variant [9], [21]. This paper only considers time-invariant
operators. Such an EA can be modelled by a homogeneous
Markov chain with transition probabilities

ri,j
def
= Pr(Φt+1 = i | Φt = j), i, j ∈ S.

According to the strictly elitist selection, transition proba-
bilities satisfy

ri,j =







≥ 0, if f(i) > f(j),
≥ 0, if i = j,
= 0, otherwise.

(6)

Let R denote the transition submatrix which represents
transition probabilities among non-optimal states{1, · · · , L}.
It is a L× L matrix, given as follows:

R =















r1,1 r1,2 r1,3 · · · r1,L−1 r1,L
0 r2,2 r2,3 · · · r2,L−1 r2,L
0 0 r3,3 · · · r3,L−1 r3,L
...

...
...

...
...

0 0 0 · · · 0 rL,L















. (7)

Let pt(i) = Pr(Φt = i) denote the probability ofΦt at state
i and the vector

qt
def
= (pt(1), pt(2), · · · , pt(L))

T .

Here notationv is a column vector andvT the row with the
transpose operation.



4

For anyt ≥ 1, the probabilitypt(i) (wherei ∈ Snon) equals
to

Pr(Φt = i) =
∑

j∈Snon

Pr(Φt = i | Φt = j) Pr(Φt−1 = j)

=
∑

i∈Snon

pt−1(i)ri,j .

It can be represented by matrix iteration

qt = Rqt−1 = Rtq0. (8)

Let e(i) = fopt − f(i) denote the fitness error between the
optimal solution and each non-optimal solution and the vector

eT
def
= (e(1), e(2), · · · , e(L)).

Then the relative approximation errorEt can be represented
by

Et =
eTqt

fopt
=

eTRtq0

fopt
. (9)

From formula (9), we see thatEt is determined by the initial
distributionq0, matrix powerRt, fitness erroreT and optimal
fitness valuefopt. Only Rt is a function oft, so it plays the
most important role in determining the relative approximation
error.

VI. A N ANALYTIC EXPRESSION OF RELATIVE

APPROXIMATION ERROR

This section gives an analytic expression of the relative
approximation error for (1+1) strictly elitist EAs. The analysis
is based on an existing result in matrix analysis [22], [23].

From (9), we see that calculatingEt becomes a mathe-
matical problem of expressing the matrix powerRt once the
initial probability distributionq0 and the fitness erroreT are
known. For (1+1) strictly elitist EAs, the matrixR is an
upper triangular, and then it is feasible to express matrixRt

explicitly in terms of its entries in a closed form [22].
For the sake of simplicity, matrixR is assumed to satisfy

the following condition:
• Unique condition: transition probabilitiesri,i 6= rj,j if

i 6= j.
If transition probabilitiesri,i = rj,j for somei 6= j, a similar
discussion can be conducted but will be given in a separate
paper.

Definition 2: The power factors ofR, [pi,j,k] (where
i, j, k = 1, · · · , L), are recursively defined as follows:

pj,j,j =rj,j , (10)

pi,j,k =0, k < i or k > j, (11)

pi,j,k =

∑j−1

l=k pi,l,krl,j
rk,k − rj,j

, i ≤ k < j, (12)

pi,j,j =ri,j −

j−1
∑

l=i

pi,j,l, i < j. (13)

Lemmas 1 and 2 show how to calculate the matrix power
Rt. For the sake of completeness, their proofs [22] are given
here.

Lemma 1 (Lemma 1.2 in [22]):Let R = [ri,j ] be a non-
singular upper triangular matrix with unique diagonal entries.
Denote the entries of the matrix powerRt by [ri,j|t]. For
any t ≥ 1, if ri,j|t =

∑j
k=i pi,j,k(rk,k)

t−1, then ri,j|t+1 =
∑j

k=i pi,j,k(rk,k)
t.

Proof: SinceRt+1 = Rt ·R, ri,l|t = 0 if l < i (because
Rt is upper triangular) andrl,j = 0 if l > j (becauseRt is
upper triangular), we have

ri,j|t+1 =

j
∑

l=i

ri,l|trl,j . (14)

From the assumption:ri,j|t =
∑j

k=i pi,j,k(rk,k)
t−1, and

noting thatpi,l,k = 0 if k > l, we have

ri,j|t+1 =

j
∑

l=i

rl,j

l
∑

k=i

pi,l,k(rk,k)
t−1

=

j
∑

k=i

(rk,k)
t−1

j
∑

l=k

rl,jpi,l,k. (15)

Notice that
j
∑

l=k

rl,jpi,l,k =

j−1
∑

l=k

rl,jpi,l,k + rj,jpi,j,k. (16)

Then substituting the sum in (16) by (12) in Definition 2, we
have

j
∑

l=k

rl,jpi,l,k = pi,j,k(rk,k − rj,j) + rj,jpi,j,k

= pi,j,krk,k. (17)

Finally (15) is simplified asri,j|t+1 =
∑j

k=i pi,j,k(rk,k)
t.

This is the required conclusion.
Lemma 2 (Theorem 1.3 in [22]):Let R = [ri,j ] be a non-

singular upper triangular matrix with unique diagonal entries.
For anyt ≥ 0,

ri,j|t+1 =

j
∑

k=i

pi,j,k(rk,k)
t−1 =

j
∑

k=i

pi,j,k(rk,k)
t. (18)

Proof: According to (10), (11) and (13) in Definition 2,
we see that (18) is true fort = 1. Then by induction, (18) is
true for all t > 1 from Lemma 1.

The above lemma gives an analytic expression of the matrix
powerRt. Given aL × L matrix R, the time complexity of
calculatingRt is 2

(

L+2

3

)

+ L(t− 3) in terms of the number
of multiplication and divisions [22].

For the sake of notation,e(i) is denoted byei andq0(i) by
qi. Define coefficients

ck
def
=

∑L
i=1

∑L
j=i eipi,j,kqj

fopt
, k = 1, · · · , L, (19)

whereck is independent oft.
Theorem 1:If R = [ri,j ] is a non-singular upper triangular

matrix with unique diagonal entries, then for anyt ≥ 1, the
relative approximation errorEt is expressed by

Et =

L
∑

k=1

ckλ
t−1
k , (20)
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whereλk = rk,k are eigenvalues of matrixR.
Proof: From (9), we know

Et =
eTRtq0

fopt
=

eTRtq0

fopt
. (21)

Using (18), we get

eTRtq0 =

L
∑

i=1

L
∑

j=1

j
∑

k=i

eipi,j,k(rk,k)
t−1qj . (22)

According to Definition 2,pi,j,k = 0 if k < i or k > j and
pi,j,k = 0 if i > j, then

eTRtq0 =
L
∑

i=1

L
∑

j=1

L
∑

k=1

eipi,j,k(rk,k)
t−1qj

=

L
∑

k=1

(rk,k)
t−1

L
∑

i=1

L
∑

j=i

eipi,j,kqj . (23)

Using ck, (21) is rewritten as

Et =

L
∑

k=1

ck(rk,k)
t−1. (24)

The conclusion then is proven.
This theorem shows the relative approximation error is

represented as a linear combination of exponential functions
(λk)

t (wherek = 1, · · · , L).
From the relationship betweenFt andEt and that between

Rt andEt, we get the following corollaries.
Corollary 1: The fitness valueFt equals to

Ft = fopt(1−

L
∑

k=1

ck(λk)
t−1). (25)

Corollary 2: The average convergence rateRt equals to

Rt = 1−

(

L
∑

k=1

ck(λk)
t−1 fopt

fopt − f0

)1/t

. (26)

In practice, the relative approximation error is calculated as
follows:

1: given an initial probability distributionp0, the fitness error
e and matrixR;

2: calculate power factors[pi,j,k] where i, j, k = 1, · · · , L
using Definition 2;

3: calculate coefficients[ck] (where k = 1, · · · , L) using
(19);

4: calculate the relative approximation errorEt using Theo-
rem 1.

VII. E XAMPLE (CONTINUED)

This section applies Theorem 1 to the example in Sec-
tion IV. The example is chosen for the sake of illustration.
Nevertheless Theorem 1 covers all(1 + 1) strictly elitist EAs
on any function under the unique condition.

We consider the OneMax functionfone(x) first. The set
{0, 1}4 is split into 5 subsets

Si = {x; |x| = i}, i = 0, 1, · · · , 4. (27)

Each subsetSi is regarded as a statei.
Transition probabilitiesri,j = Pr(Φt ∈ Si | Φt−1 ∈ Sj) are

given by

ri,j =







j
4
, if j = i+ 1,

1− j
4
, if j = i,

0, otherwise.
(28)

Matrix R is








0.750 0.500 0.000 0.000
0.000 0.500 0.750 0.000
0.000 0.000 0.250 1.000
0.000 0.000 0.000 0.000









(29)

The fitness errorei = i for i = 1, · · · , 4. The fitness error
vector is

eT = (1, 2, 3, 4).

Choose the initial probability distribution in the non-optimal
set to be

q0 = (0, 0, 0, 1)T .

Using Definition 2, we calculate matrix[pi,j,k] which is
given by

[p1,j,k] =









0.750 1.500 2.250 3.000
0.000 −1.000 −3.000 −6.000
0.000 0.000 0.750 3.000
0.000 0.000 0.000 0.000









,

[p2,j,k] =









0.000 0.000 0.000 0.000
0.000 0.500 1.500 3.000
0.000 0.000 −0.750 −3.000
0.000 0.000 0.000 0.000









,

[p3,j,k] =









0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.250 1.000
0.000 0.000 0.000 0.000









,

[p4,j,k] =









0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000









.

Using (19), we calculate coefficientsck (where k =
1, · · · , 4), given by

(0.750, 0.000, 0.000, 0.000).

Recall transition probabilitiesrk,k (wherek = 1, · · · , 4) are

(0.750, 0.500, 0.250, 0.000).

Using (20), we calculate the relative approximation errorEt,
given by

Et = 0.75t. (30)

Furthermore, using Corollary 1, we calculate the fitness
valueFt, given by

Ft = 4(1− 0.75t). (31)
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And using Corollary 2, we calculate the average convergence
rateRt, given by

Rt = 1− (0.75t)1/t = 0.25. (32)

This means thatEt decays as fast as an exponential function:
Et = 0.75tE0.

The analysis of the quadratic functionfsqu(x) and loga-
rithmic function flog(x) is almost the same as that of the
OneMax function, except the fitness error vectore. The results
are summarised in Table I. Notice that the expressions for
quadratic and logarithmic functions are more complex than
that for the OneMax function.

Fig. 4 demonstrates the fitness valueFt. Fig. 5 presents
the relative approximation errorEt. Fig. 6 illustrates the
average convergence ratesRt. The theoretical predictions are
consistent to the experimental results, labelled byf∗.
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Fig. 4. Fitness valueFt.
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Fig. 5. Relative approximation errorEt.

VIII. E XTENSION

This section devotes to an extension from (1+1) strictly
elitist EAs to non-elitist or population-based EAs.

Many non-elitist or population-based EAs can be modelled
by homogeneous Markov chains but matricesR are not
upper triangular. Given any matrixR, according to Schur’s
triangularisation theorem (in textbook [24, p508]), thereexists
an upper triangular matrix̃R and unitary matrixU such that
R = UR̃U∗. Then the matrix iteration (8) can be rewritten
as follows,

qt = Rtq0 = UR̃tU∗q0. (33)

0 10 20 30
0

0.2

0.4

t

R
t

fone
fsqu
flog
f∗
one

f∗
squ

f∗
log

Fig. 6. Average convergence rateRt.

Then the relative approximation error equals to

Et =
eTUR̃tU∗q0

fopt
. (34)

Let ẽT = eTU and q̃0 = U∗q0, then the relative
approximation error can be rewritten as follows,

Et =
ẽT R̃tq̃0

fopt
. (35)

Since R̃ is an upper triangular matrix, the analysis ofEt

becomes the problem of expressing the matrix powerR̃t. If
R̃ is an upper triangular matrix with unique diagonal entries,
Theorem 1 can be applied directly. If this does not hold, a
similar analysis can be conduced (but in a separate paper).
Therefore, in theory it is feasible to apply the approach to
non-elitist or population-based EAs too.

Furthermore, even if exact transition probabilities are un-
known, it is still possible to apply the method to bounding
the relative approximation error. The idea is simple. We
construct an upper triangular matrixS = [si,j ] so that the
matrix iteration usingS is slower than that usingS. That is
eTStq0 ≥ eTRtq0. For example, the simplest matrixS is

si,j =







1− rj,j , if j = i+ 1,
ri,i, if j = i,
0, otherwise.

(36)

This issue will be discussed in a separate paper.

IX. CONCLUSIONS

In this paper, the solution quality of an EA is measured by
the relative approximation error, that is

Et = 1−
Ft

fopt
. (37)

Then an analytic expression of the relative approximation error
Et is presented for any (1+1) strictly elitist EAs on any fitness
function. Provided that transition probabilitiesri,i 6= rj,j for
any i 6= j, the formula is given by

Et =

L
∑

k=1

ckλ
t−1
k , (38)

whereλk = rk,k (wherek = 1, · · · , L) are eigenvalues of
transition submatrixR andck are coefficients.
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TABLE I
ANALYTIC EXPRESSIONS OFFt , Et AND Rt IN THE EXAMPLE.

function Ft

fone = |x| 4× (1− 0.75× 0.75t−1)
fsqu = |x|2 16 × (1 − 1.313 × 0.75t−1 + 0.375 × 0.5t−1)

flog = ln(|x|+ 1) ln(5) × (1− 0.416× 0.75t−1 − 0.120× 0.5t−1 − 0.033× 0.25t−1)

Et

fone = |x| 0.75 × 0.75t−1

fsqu = |x|2 1.313× 0.75t−1 − 0.375× 0.5t−1

flog = ln(|x|+ 1) 0.416 × 0.75t−1 + 0.120 × 0.5t−1 + 0.033 × 0.25t−1

Rt

fone = |x| 0.25
fsqu = |x|2 1− (1.313 × 0.75t−1 − 0.375× 0.5t−1)1/t

flog = ln(|x|+ 1) 1− (0.416 × 0.75t−1 + 0.120 × 0.5t−1 + 0.033× 0.25t−1)1/t

The above formula is also useful to fixed budget analysis.
Since the exact expression of the fitness valueFt is

Ft = fopt

(

1−
L
∑

k=1

ck(λk)
t−1

)

, (39)

a good bound onFt should be represented in the form of a
combination of exponential functions oft.

The work is a further development of the average conver-
gence rate [18]. The exact expression of the average conver-
gence rateRt is

Rt = 1−

(

L
∑

k=1

ck(λk)
t−1 fopt

fopt − f0

)1/t

. (40)

The approach is promising. Using Schur’s triangularization
theorem, it is feasible to make a similar analysis for non-elitist
or population-based EAs if they are modelled by homogeneous
Markov chains.

Our next work is to present a closed form for (1+1) strictly
elitist EAs whose transition matrices are upper triangularbut
diagonal entries are not unique.
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