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An Analytic Expression of Relative Approximation
Error for a Class of Evolutionary Algorithms

Jun He

Abstract—An important question in evolutionary computation generation. The approximation ratio of théh generation

is how good solutions evolutionary algorithms can produceThis  gplution is Fy/ fopt- The approximation ratio of the optimal

paper aims to provide an analytic analysis of solution quaty in g4 ,tion js 1. The relative approximation error is
terms of the relative approximation error, which is defined by the

error between 1 and the approximation ratio of the solution bund F;

by an evolutionary algorithm. Since evolutionary algorithms are By =1~ Font (1)
iterative methods, the relative approximation error is a function opt

of generations. With the help of matrix analysis, it is posdile In [6], F; is called the performance ratio. In order to avoid

to obtain an exact expression of such a function. In this pape confusion with the approximation ratio, it is renamed the
an analytic expression for calculating the relative approimation  q|ative approximation error. The relative approximateror

error is presented for a class of evolutionary algorithms, hat is, £, is a function oft. Our main research question is to find an
(1+1) strictly elitist evolution algorithms. Furthermore, analytic e uncti - Ou ! question | !

expressions of the fitness value and the average convergemage  UPPEr bounds(t) on th? errOfEt-_ _ _
in each generation are also derived for this class of evoluthary The perfect answer is to obtain a functigf¥) in a closed

algorithms. The approach is promising, and it can be extend® form such thatf;, = 3(t). For (1+1) strictly elitist EAs, such
to non-elitist or population-based algorithms too. an analytic expression has been constructed in this pajygy us
matrix analysis. To the best of our knowledge, this is thé firs
result of expressing the relative approximation errorqdhe
fitness value and the average convergence rate) in a closed
Evolutionary algorithms (EAs) have been widely used tform for a class of EAs.
find good solutions to hard optimization problems. Many The paper is arranged as follows: Sectigh Il reviews the
experimental results claim that EAs can obtain good qualifyiks to related work. Section Il defines the relative appro
solutions quickly. Nevertheless, from the viewpoint of thémation error. Section§ IV anf@ VIl conduct a case study.
N P-hard theory, no efficient algorithm exists for solving NPSection[V introduces Markov modelling. Sectibn] VI makes
hard combinatorial optimization problems at the presemt aa theoretical analysis. Sectibn]IX summarizes the paper.
possibly for ever. Therefore it is unlikely that EAs are aéfitt
in solving hard combinatorial optimization problems too. Il. LINKS TO RELATED WORK
Instead of searching for the exact solution to hard optitiona . L
o The relative approximation error belongs to the convergenc
problems, it is more reasonable to expect that EAs are able 10 . -
. . . - rate study of EAs, which can be traced back to 1990s([7]-[9].
find some good approximate solutions efficiently. . . ! . o
: . . This paper only investigates EAs for discrete optimisation
It is necessary to answer the question of how good solution . .
although the converegnce rate of EAs for continuous opti-

EAs can produce to hard optimization problems in termrﬁization [10]-[12] is also important. EAs belong to itevati

of the _apprommgﬂon ratio. Cu_rrent work focuses on t.h ethods. A fundamental question in iterative methods is the
approximation ratio of the solution found by an EA within

s . convergence rate, which can be formalised as folldw [9]c&in
polynomial time. The research has attracted a lot of intsre

; ¢ Vari binatorial optimizati ; the tth generation solution is a random variable, we pet
In recent years. various combinatorial optimization p be a vector representing its probability distribution otee
have been investigated, including the minimum vertex cov

&Larch spacer a vector such that(S,,) = 1 for the optimal

7 . opt p
p:gg:gms[ﬂi [t‘h]e m%'ﬁaﬁ“?a%eﬁrgb;\rz'n[3]t’retze rsoet;[kacgv[?;r olution setS,pt andm(Syon) = 0 for the non-optimal solution

P = inimu panning P el etS,on. The convergence rate problem asks the question how

and many others. . .
: : N . fastp, converges ter. The goal is to obtain a bour{t) such
This paper studies the approximation ratio of EAs from ﬁ’ﬁat|| pi— ||< B(t), where]| - || is a norm. There are various

_diffe_rent viewpoint. It aims to (_estimate the relative appro ays to assign the norm. For example, if thite generation
imation error of the best solution found by an EA in _eacﬁlolution is a binary string; - - - z,, and the optimal solution
generation, but without considering whether the EA is 801 | ‘the norm is set to be the Hamming distance:
approximation algorithm or not. The problem in this paper ' '
is described as follows: Given an EA for maximizing a fitness lp:— = Z |1 — . (2
function f(z), let fopx be the optimal fitness and; the i

. approximation errof| p; — 7 ||= 1 — Fy/ fopt.
This work was supported by EPSRC under Grant No. EP/1009809/ According to T13]. there are two approaches to analvse the
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approach is based on the eigenvalues of the transition subrg; then given theith generation populatio®;, generate a
trix associated with an EA. Suzukil[7] derived a lower boundew population®,; in a probabilistic way. This procedure
of convergence rate for simple genetic algorithms through repeated until an optimal solution is found. This paper
analysing eigenvalues of the transition matrix. Schmittl aninvestigates a class of (1+1) elitist EAs which are describe
Rothlauf [14] found that the convergence rate is determin@u Algorithm [I. This kind of EAs is very popular in the
by the second largest eigenvalue of the transition matfire Ttheoretical analysis of EAs.

approach used in the current paper is the same as that in [7],

[14]. All are based on analysing the powers and eigenvalugfgorithm 1 A (1+1) Strictly Elitist EA

of the transition matrix. The other approach is based on: sett « 0;

Doeblin’s condition[[9], [15]. Using the minorisation catidn  2: &, <- choose a solution fron$ = {0,1,---,L};

in Markov chain theory, He and KanQ![9] proved that for thes: while ®, is not an optimal solutiomo

EAs with time-invariant genetic operators, the convergencs: ¥, + mutated,;

rate can be upper-bounded bywheree € (0, 1). 5. if f(Uy) > f(®P,) then
The research in this paper is also linked to fixed budges: ®;, 1 + selectly;

analysis. Jansen and Zarges![16],/[17] proposed fixed budget else

analysis. It aims to find lower and upper bounflg,,(b) 8: D, 11 + selectdy;

and B, (b) such thatf,.,(b) < fi < Bup(b) usually for a o end if
fixed budgeb. They investigated two algorithms: random locaho: ¢ «+ ¢ + 1;
search and thél+1) EA and obtained such bounds on several1: end while
pseudo-Boolean optimization problems.

_ The convergence rate study can implement the same task agpe expressio®; = = means theth generation individual
fixed budget analysis does. Provided that f,/ fopt < 8(b), ¢, at statex where ®, is a random variable and: its

it is trivial to derive f, > fopi(1 — 4(b)). Nevertheless, there ya|ye taken froms. The fitness of®, is denoted byf(®,).
are significant differences between the convergence WStSincef((IJt) is a random variable, we consider its expectation

and fixed budget analysis. ] ] F; d:EfE[f(@t)]. The approximation ratio of th&h generation
« The convergence rate study has existed in EAs for MO&jividual is F, / f,,:. The approximation ratio of the optimal
than two decades [7[H[9]. Fixed budget analysis wag)|ytion is1.
recently proposed by Jansen and Zarges [17]. Definition 1: The relative approximation error of thih
« The convergence rate study focuses on estimating T@@neration individual is defined by
error | p; — = ||, where the nornj| - || can be chosen
as the absolute errgf,,, — F;, relative errorl — Fy/ fopt E,=1- I ) ©)
or Hamming distance. Fixed budget analysis aims at fopt
boundingf; for a fixed budget (that is a fixed number  There is a link between the relative approximation error
of generations) [17]. and the fitness value. From the definition of the relative
« In the convergence rate study, the upper boutd) approximation error, we know that the fithess value in the
on || ps — m | usually is an exponential function or¢th generation equals to
combination of linear functions of [9]. In fixed budget
analysis, the bound(b) on f, may not be an exponential Fy = fopt(1 — Ey). 4

function of b [17]. There is a link between the relative approximation error
« In the convergence rate, the bound jop; — || holds  anq 4verage convergence rétel [18]. From the definition of the

for all . But in fixed budget analysis, the bound 0 (geometric) average of the convergence rate of an EAZ for
often is estimated for a fixed budge{17]. generations, we get

« Matrix analysis is widely used in the convergence rate

study [7], [14], but it is not used in fixed budget analysis. R el ( fopt — Ft )l/t 1 (Q) Lt 5)
! Jopt — fo Ey .
I1l. RELATIVE APPROXIMATION ERROR, FITNESS VALUE
AND AVERAGE CONVERGENCE RATE IV. EXAMPLE
Consider a maximization problem, that isax{f(z);z € Given F;, E; and R;, which is the best option to measure
S} whereS is a finite set, andf,p; > f(z) > 0. For the the performance of an EA? We use a simple experiment to
sake of analysis, le§ = {0,1,---,L} denote the set of all show their advantage and disadvantage. Consider the pnoble
solutions. We assume that of maximizing a pseudo-Boolean functiof{x) wherez =
x1---x, IS @ binary string. Three test functions are used in
fmax = f(0) > f(1) = - = f(L) = fmin. the experiment.
S is split into two subsets: the optimal solution &}, = {0} OneMax functionfyne(z) = |z|,

and the set of non-optimal solutiod., = {1,---, L}.
An EA for solving the above problem is regarded as an o .
iterative procedure: initially construct a population ofigions logorithmic function fiog () = In(|z| + 1),

square functionfsqu(z) = |z|?,



where|z| = 1 + -+ + x,. A (1+1) EA is used for solving e« R; = 0.25 on f,,.. The EA converges as fast as an

the optimisation problem. This EA is also called randomised exponential decayk; = 0.75! Ey.

local search. o R, converges t00.25 on f.. but its value is larger
Onebit Mutation. Given a binary string, chose one bit at  than0.25 . The EA converges faster than the exponential
random and then flip it. decay:F; < 0.75"Ey.
Elitist Selection. Choose the best from the parent and child » R: converges t00.25 on fi,s but its value is smaller
as the next parent. than0.25 . The EA converges slower than the exponential
Onebit mutation is chosen for the sake of demonstrating 9€cay:E; > 0.75'Ej.

that the average convergence r&emay equal to a constant,

according to the theory of the average convergence [rafe [18] —— fone

The three functions are the easiest to the (1+1) EA among 0.4 | | = faqu

all pseudo-Boolean functions whose optimum is unique at —0 flog

1---1 according to the theory of the easiest and hardest .

functions [19]. 0.2
In the experiment, we set = 4. This small value is chosen

for the sake of displaying matrices in Sectibn VIl in one

column. The initial solution is set t6000. We run the EA ‘ ‘ ‘ ‘

10® times. The EA stops after 35 generations for each run. 0 0 10 20 30

Fig. [I demonstrates the fitness valfig which is averaged ¢

over 108 runs. The figure shows that, converges tot on

fone, 16 ON foqu @andInb on fioe. But it is not clear howF; Fig. 3. Average convergence raf.

is close tof,ps, and how fastF;, converges tof,pe.

151 | __:ﬁ:j V. MARKOV CHAIN MODELLING FOR (1+1)STRICTLY
ol 1 =0 fiog | o ELITIST EAS | |
i This section introduces Markov chain modelling for (1+1)
strictly elitist EAs. It follows the Markov chain framework
o l described in[[18],[[20].
Genetic operators in EAs can be either time-invariant or
U | | L time-variant[[9], [21]. This paper only considers time-aniant
0 10 20 30 operators. Such an EA can be modelled by a homogeneous
t Markov chain with transition probabilities
Fig. 1. Fitness valugFy. Ti,j dZEfPI"(‘I)t+1 =i|®=j), i,j€ES.

_ _ o _ According to the strictly elitist selection, transitionga-
Fig.[2 presents the relative approximation erfgr which pijities satisfy

converges to 0. From the figure, we observe that fortary;

on fiog is smaller than that offi,.., then smaller than that on >0, if f(i) > f(4),
thu- 2J ;
=0, otherwise
L 1 —® fone Let R denote the transition submatrix which represents
—— fsqu transition probabilities among non-optimal stafds--- , L}.
—— flog It is a L x L matrix, given as follows:
N05 1 ) 1,1 T2 T3 o Ti,L—1 T1,L
0 7o2 723 -+ ToL-1 T2L
R=| 0 0 ra3 - maro1 7L |, (7)
L w w Bl SRR N
0 10 20 30 0 0 0 ... 0 rLL
; ;

Letp:(i) = Pr(®; = i) denote the probability o, at state
Fig. 2. Relative approximation errdt;. 7 and the vector

def T
= (pe(1),pe(2), -+, pe(L))T.
Fig. 3 illustrates the average convergence rdtgswhich a = (1), pe(2) pdL))
converges td).25. From the figure, we see the difference oHere notationv is a column vector ang” the row with the
the average convergence rate on the three functions. transpose operation.



For anyt > 1, the probabilityp; (i) (wherei € S,,n) equals
to

Pr(®; =i)= Y Pr(® =i|® =j)Pr(® 1 =)
J€Snon
= Z pe—1(i)ri ;-
1€ Shon

It can be represented by matrix iteration

a: = Rq:—1 = R'qo. 8

Let e(i) = fopt — f(i) denote the fitness error between th
optimal solution and each non-optimal solution and thearect

e € (e(1),e(2), - e(L)).

Then the relative approximation erré can be represented
by

e’q, _ e’Riqo

fopt fopt (9)

From formula[(®), we see thdt; is determined by the initial
distributionq, matrix powerR/, fitness erroe” and optimal
fitness valuef,p.. Only R! is a function oft, so it plays the
most important role in determining the relative approxiiorat
error.

B =

VI. AN ANALYTIC EXPRESSION OF RELATIVE

APPROXIMATION ERROR

This section gives an analytic expression of the relative

approximation error for (1+1) strictly elitist EAs. The dysis
is based on an existing result in matrix analysis [22]] [23].

From [9), we see that calculating; becomes a mathe-
matical problem of expressing the matrix povief once the
initial probability distributionq, and the fitness erras” are
known. For (1+1) strictly elitist EAs, the matriR is an
upper triangular, and then it is feasible to express magix
explicitly in terms of its entries in a closed form 22].

For the sake of simplicity, matriR is assumed to satisfy
the following condition:

« Unique condition: transition probabilities; ; # r; ; if

i .

If transition probabilities-; ; = r; ; for somei # j, a similar

Lemma 1 (Lemma 1.2 in[22])Let R = [r; ;] be a non-
singular upper triangular matrix with unique diagonal esr
Denote the entries of the matrix pow®&"* by [r; ;,]. For

anyt > 1, if rije = S Pk ()L, thenr; jjip1 =
Z'k i Pijk (rk k)

Proof: SinceR/*!* = R'- R, r;;, = 0 if [ < (because
R' is upper triangular) and; ; = 0 if [ > j (becauseR' is
upper triangular), we have

j
= Z"’i,”trl,j'

=i

T 3lt+1 (14)

e

From the assumption:; ;i = Zf;:ipi,jyk(rkﬂk)tfl, and
noting thatp, ; , = 0 if k¥ > [, we have

J l
f§ : t—1
T glt+1 Tl,5 E piz,k(Tk,k)
=1

=i
J

J
Z Tk,k) Z T1,5Di,l k- (15)
—i 1=k
Notice that
J Jj—1
Z T1,iPilk = Z T1,iDilk + T5,5Di,5,k- (16)
1=k 1=k

Then substituting the sum ib {{L6) by {12) in Definitioh 2, we
have

Z T1iDigk = Pijk (Tl — 75.5) + 75,5 Pijk
1=k
= Dij,kTkk- a7)
Finally (I) is simplified as; jj;11 = b Pijk(Ti)".
This is the required conclusion. [ ]
Lemma 2 (Theorem 1.3 in_[22])Let R = [r; ;] be a non-

singular upper triangular matrix with unique diagonal &rstr
For anyt > 0,

E p”krkk E ngkrkk

Proof: According to [10), [(II1) and_(13) in Definitidd 2,
we see that[(18) is true far= 1. Then by induction,[(18) is
true for all > 1 from Lemme[l. [

T4 j)t+1 = (18)

discussion can be conducted but will be given in a separatelhe above lemma gives an analytic expression of the matrix

paper.
Definition 2: The power factors ofR, [p;;x] (where

1,5,k =1,---, L), are recursively defined as follows:
Di.g.g =T5.4> (20)
Di gk =0, k<iork>j, (12)
T
Tk — TM
j—1
Pijj =Tij = O Pigils i<j  (13)
=1

Lemmad]l an@]2 show how to calculate the matrix power
R!. For the sake of completeness, their probfs [22] are given

here.

powerR?. Given aL x L matrix R, the time complexity of
calculatingR? is 2(“1?) + L(t — 3) in terms of the number
of multiplication and divisions[[22].

For the sake of notatior,() is denoted by; andgy(i) by
g;. Define coefficients

def Zz 1 Z; =i Zpukqa
,fopt
wherecy, is independent of.
Theorem 1:If R = [r; ;] is a non-singular upper triangular

matrix with unique diagonal entries, then for ahy 1, the
relative approximation erroE, is expressed by

L
§ : t—1
Et = CkAk N
k=1

k=1, (19)

(20)



where ), = ry ;, are eigenvalues of matriR..
Proof: From [9), we know

Each subsesf; is regarded as a staie
Transition probabilities,; ; = Pr(®, € S; | ;-1 € S;) are
given by

TRt TRt ]
Et:e R'qo _ e R'qo 1) I, ifj=i+1,
fopt fopt Ti,j = 1 — %, |f j = i, (28)
Using [18), we get 0, otherwise
L L j Matrix R is
'Rlag =3 > > ewijulren) g (22) 0.750 0.500 0.000 0.000
_ Tk _ 0.000 0.500 0.750 0.000
According to Def|n|t|orf12pi,j7k =0if k<iork>jand 0.000 0.000 0.250 1.000 (29)
pijk =01if i > j, then 0.000 0.000 0.000 0.000
L L L . . . .
The fitness erroe; = ¢ for i = 1,--- ,4. The fitness error
e Rlap =) > > eimijr(rir)a; vector is
=1 j=1 k=1
L L L el =(1,2,3,4).
— t—1 ). .
- ;(T’“’k) 21 Z epiikdi- (23 cpoose the initial probability distribution in the non-opal
_ _ - B set to be
Using ¢, (21) is rewritten as .
L q0:(0701071) .
E, = ch(rk.,k)til- (24) Using Definition[2, we calculate matrifp; ;] which is
k=1 given by
The conclusion then is proven. [ | 0.750  1.500 92.950 3.000
This theorem shows the relative approximation error is 0.000 —1.000 —3.000 —6.000
represented as a linear combination of exponential funstio [P1,5.k] = 0.000  0.000 0.750 3.000 |’
) > ) ) ) )
(A)" (wherek =1, , L). 0.000  0.000  0.000  0.000
From the relationship betwedr and E; and that between
R, and E;, we get the following corollaries. 0.000 0.000 0.000 0.000
Corollary 1: The fitness valug; equals to 0'000 0'500 1'500 3'000
L " P236l =1 0.000 0.000 —0.750 —3.000 |
Fy = fopr(1= 3 ex(M)' ™). (25) 0.000 0.000 0.000  0.000
k=1
Corollary 2: The average convergence rdtg equals to 0.000 0.000 0.000 0.000
1/t 0.000 0.000 0.000 0.000
- t—1__Jopt P35kl = 10000 0.000 0.250 1.000 |
fe=1- ch(m Jopt — [ ' (26) 0.000 0.000 0.000 0.000
1 opt 0 . . . .
In practice, the relative approximation error is calculads
follows: 0000 000D 0.000 0000
1: given an initial probability distributiomp,, the fitness error [Paj k] = 0'000 0'000 0'000 0'000
e and matrixR; ' ' ' '
2: calculate power factorfp; ;x| whereid,j k = 1,---,L 0-000°0.000-0.000 0000
using Definition2; Using [19), we calculate coefficients, (where k =
3: calculate coefficientsc] (wherek = 1,---,L) using 1,---,4), given by
@9);
4: calculate the relative approximation errby using Theo- (0.750,0.000,0.000, 0.000).
rem[d. Recall transition probabilities, , (wherek =1,--- ,4) are
VIl. EXAMPLE (CONTINUED) (0.750,0.500, 0.250, 0.000).

This section applies Theorel 1 to the example in Sedsing [20), we calculate the relative approximation ety
tion [Vl The example is chosen for the sake of illustratiorgiven by
Nevertheless Theorehi 1 covers @ll+ 1) strictly elitist EAs
on any function under the unique condition.

We consider the OneMax functiofyn.(z) first. The set
{0,1}* is split into 5 subsets

Si = {z; |2 = i},

E, =0.75%. (30)

Furthermore, using Corollary]l 1, we calculate the fitness
value F}, given by

i=0,1,--,4. (27) Fy = 4(1 - 0.75"). (32)



And using Corollary 2, we calculate the average convergence | o | e fone
rate R;, given by 04|

R, =1—(0.759)Y* = 0.25. (32)

This means thaF; decays as fast as an exponential function: = 02}
E, = 0.75'E,.

The analysis of the quadratic functiofy,,(z) and loga-
rithmic function fi.z(x) is almost the same as that of the 0 ! ! |
OneMax function, except the fitness error veetoThe results 0 10 20 30
are summarised in Tablé I. Notice that the expressions for t
guadratic and logarithmic functions are more complex than
that for the OneMax function. Fig. 6. Average convergence rafg.

Fig. [4 demonstrates the fitness valfig Fig.[3 presents
the relative approximation errofs;. Fig. [@ illustrates the
average convergence ratfs. The theoretical predictions are  Then the relative approximation error equals to
consistent to the experimental results, labelledfby

T 512 BES
g, — & YR Udo (34)
15 B o fone fopt
== fsqu Let 7 = eTU and qo = U*qp, then the relative
10l | === fiog approximation error can be rewritten as follows,
Lﬂf = (;kne éT}T{th
5 | = s*qu E; = fi (35)
= ltag opt
ol | Since R is an upper triangular matrix, the analysis Bf

becomes the problem of expressing the matrix poRér If
R is an upper triangular matrix with unique diagonal entries,
t Theorem[l can be applied directly. If this does not hold, a
similar analysis can be conduced (but in a separate paper).
Therefore, in theory it is feasible to apply the approach to
non-elitist or population-based EAs too.

Furthermore, even if exact transition probabilities are un

Fig. 4. Fitness valuds.

1 N [ fone known, it is still possible to apply the method to bounding
== fsqu the relative approximation error. The idea is simple. We
- fiog construct an upper triangular matrg& = [s; ;] so that the
- e matrix iteration usingS is slower than that usin@. That is
N 05 | one Tt TRt i -
- e’ S'qq > e’ R'qg. For example, the simplest matri is
l*og 1—7"3'7]', |'|:_]:Z—i-17
0 | | Siyj = T‘i,i, If j = i, (36)
0, otherwise
" This issue will be discussed in a separate paper.
Fig. 5. Relative approximation errdt:. IX. CONCLUSIONS
In this paper, the solution quality of an EA is measured by
the relative approximation error, that is
VIII. EXTENSION F
: : : : Ey=1-——. (37)
This section devotes to an extension from (1+1) strictly fopt

elitist EAs to non-elitist or population-based EAs. Then an analytic expression of the relative approximatioore

Many non-elitist or population-based EAs can be modellegl js presented for any (1+1) strictly elitist EAs on any fitness
by homogeneous Markov chains but matricBs are not f,c(ion. Provided that transition probabilities; # r;; for
upper triangular. Given any matriR, according to Schur’s anyi # j, the formula is given by '

triangularisation theorem (in textbodk [24, p508]), thexkdésts

an upper triangular matriR and unitary matrixU such that L i1
R = URU*. Then the matrix iteratior [8) can be rewritten By = ch/\k ’ (38)
as follows, k=1

where A\, = i, (Wherek = 1,---,L) are eigenvalues of

Cnte  TTRITT < . )
q9: = R'qo = UR"U"qq. (33)  transition submatrisR and¢; are coefficients.



TABLE |
ANALYTIC EXPRESSIONS OFF}, E/t AND R IN THE EXAMPLE.

function | Fy
fone = |z| 4% (1-0.75 x 0.75t~1)
fsqu = |z|? 16 x (1 —1.313 x 0.75:=1 +0.375 x 0.5t~ 1)
fiog = In(|z| + 1) | In(5) x (1 —0.416 x 0.75t~1 — 0.120 x 0.5t~ — 0.033 x 0.25!71)
| Ey
fone = |55| 0.75 x 0.75t—1
fsqu = |z|? 1.313 x 0.75t~1 — 0.375 x 0.5¢1
fiog = In(|z| + 1) 0.416 x 0.75=1 +0.120 x 0.5!~! +0.033 x 0.25! !
| R
fone = |55| 0.25
fsqu = |z|? 1—(1.313 x 0.75t=1 — 0.375 x 0.5t~ 1)1/t

flog = ln(|:c| + 1)

1 — (0.416 x 0.75*~1 4 0.120 x 0.5t~ 4+ 0.033 x 0.25t—1)1/¢

The above formula is also useful to fixed budget analysig6] J. He and X. Yao, “An analysis of evolutionary algorithrfeg finding
Since the exact expression of the fithess valués

approximation solutions to hard optimisation problems,Proceedings
of IEEE 2003 Congress on Evolutionary ComputationEEE Press,

L 2003, pp. 2004-2010.
F, = fopt 1— ch(/\k)tfl ’ (39) [7] J. Suzuki, “A Markov chain analysis on simple geneticml@ms,”
IEEE Transactions on Systems, Man and Cybernetics 25, no. 4,
k=1 pp. 655-659, 1995.
a good bound orf; should be represented in the form of a[8] ——, “A further result on the markov chain model of genedigorithms

combination of exponential functions of

The work is a further development of the average conver-
gence rate[[18]. The exact expression of the average convggt J. He and L. Kang, “On the convergence rate of genetic rittgus,”
gence rateR; is

The approach is promising. Using Schur’s triangularizati

I 1/t

Ry=1—{> e(M)"

k=1

,fopt

fopt - fO (40)

theorem, it is feasible to make a similar analysis for natisel
or population-based EAs if they are modelled by homogeneous
Markov chains.
Our next work is to present a closed form for (1+1) strictly
elitist EAs whose transition matrices are upper triangblar [14]
diagonal entries are not unique.
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