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Abstract— Battery charging strategy is a key issue in battery 

management system to ensure good battery performance and 

safe operation during the charging process. In this paper, a novel 

battery optimal charging strategy is proposed by applying the 

TLBO algorithm to a LiFePO4 battery for an optimal charging 

based on a coupled thermoelectric model. A specific dual-

objective function including battery charging time and 

temperature rise (both battery interior and surface) is 

formulated first. Then a battery optimal charging strategy is 

presented in detail by using the TLBO algorithm, aiming at 

finding a suitable constant-current-constant-voltage (CCCV) 

current profile to minimize the dual-objective function. Besides, 

the effects of different weights in dual-objective function on the 

optimal charging profile are analyzed. Simulation results 

demonstrate that the presented optimal charging strategy can 

provide effective and acceptable optimal charge current profile. 

The strategy can be also easily implemented to other battery 

types to effectively balance the battery charging time and battery 

temperature rise during charging process. 

Keywords—battery optimal charging; teaching–learning-based-

optimization; coupled thermoelectric model;  

I. INTRODUCTION 

Extensive consumption of fossil fuels especially non-
renewable petroleum products worldwide has already led to 
significant environment pollutions and has huge impacts on the 
climate change. More strict legislations on emissions have 
encouraged manufacturers include automobile industry to opt 
for more renewable and clean energy sources. Electrification of 
the transport sector is one of the major initiatives launched by 
many governments worldwide to replace internal combustion 
engine (ICE) vehicles in a bid to minimize the emissions from 
the tale pipes of hundreds of millions of vehicles. Lithium-ion 
batteries have been widely used as the power supplies in 
electric vehicles due to their outstanding performance in terms 
of power densities, longevity and environmental characteristics 
[1]. The Li-ion battery has been applied in many areas and 
often needs to be charged when being idle. Therefore, a proper 
battery charging strategy is a key in battery applications as it 
has direct impact on the battery safety and behaviour. 

Conventional methods for battery charging can be grouped 
into constant current strategy, constant voltage strategy and 
constant-current-constant-voltage (CCCV) strategy. The 
constant current strategy is easy to implement but difficult to 
get a proper current rate to balance the battery capacity and the 

charging time. The constant voltage strategy is also easy to 
apply but the current would be very high at the beginning of 
the charging process, which is harmful to the battery safety and 
performance [2].  

     The constant-current-constant-voltage (CCCV) strategy is 

the most popular strategy for Li-ion battery charging [3] due to 

its convenience and effectiveness to charge batteries. But it is 

still difficult to use the true operating range of batteries 

efficiently due to the limitation of voltage boundary. Besides, if 

just using CCCV strategy to charge battery without any other 

measures, the battery temperature would exceed the acceptable 

threshold especially in some high power application cases. 

Excessive temperature has a huge negative impact on battery 

performance and safety. Therefore, it is necessary to develop 

suitable solutions for CCCV strategy implementation. 
 Over the years, a number of approaches have been 

developed to improve the battery charging performance. Some 
of the approaches involve computational intelligence 
techniques including neural networks [4], grey prediction [5], 
fuzzy control [6], and ant-colony algorithm [7]. Some other 
strategies take the battery charging behaviors as an explicit 
optimization problem which is then solved using an 
optimization technique. The dynamic programing (DP) method 
[8], and pseudo-spectral technique [9] have been applied to 
solve the battery optimization charging problem. But these 
researches do not consider the battery temperature during the 
charging process. It should be noted that the battery 
temperatures (both the surface and interior) are key factors to 
consider for battery charging because too high or low 
temperature would be harmful to battery charging safety and 
behaviour. 

 In this paper, we simultaneously consider the battery 
charging time and battery temperature (both interior and 
surface) rise as two conflicting objectives and formulate a 
novel dual-objective function based on a newly developed 
battery coupled thermoelectric model. Our target is to design a 
battery optimal charging strategy to determine a suitable 
CCCV current profile which offers a desirable trade-off 
between the two conflicting objectives while minimizes the 
dual-objective function. Our prior researches [10,11] proposed 
the battery coupled thermoelectric models where the battery 
temperature (both interior and surface) and electric behavior 
(state of charge and voltage) can be simultaneously considered. 
Some recent meta-heuristic methods, in particular here the 
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teaching-learning-based-optimization (TLBO) algorithm [12] 
will be applied to solve the nonlinear varying battery charging 
optimal target. The effects of different weight settings 
especially for charging time and temperature rise on the 
charging results are also analyzed and evaluated. 

 The paper is organized as follows. In section II, we briefly 
describe the coupled thermoelectric model and the 
corresponding parameters for a LiFePO4 battery. In section III, 
the dual-objective function which considers the battery 
charging time and temperature rise is presented. In section IV, 
the principle of TLBO and detail procedures for battery 
optimal charging strategy are described.  Section V illustrates 
the simulation result and the paper is concluded finally in 
section VI. 

II. BATTERY COUPLED THERMOELECTRIC MODEL 

A. LiFePO4 Battery Thermoelectric Model 

We consider a first-order RC model as shown in Fig. 1 to 
describe the electric behavior of the LiFePO4 battery. The first-
order RC model is composed of a battery open circuit voltage 
UOCV, a battery internal resistance R, and a battery resistance-
capacitor R1C1 network. 

 

Fig. 1. Battery first-order RC model 

The electrical potential balance for this first-order RC 
model is described by 

                             
1 OCVV V i R U= + × +                           (1) 

where V and i represent the battery terminal voltage and 
current respectively. V1 is the battery polarization voltage. R is 
the battery internal resistance and varies with the battery 
internal temperature. Neglecting the effect of temperature, the 
value of  UOCV is the function of battery SOC level 
independently. 

Battery SOC is calculated based on battery nominal 
capacity shown as follows, 

                ( ) ( ) ( )soc soc 1 1 /s nk k T i k C= − − × −            (2)     

where Cn is the battery nominal capacity and Ts represents the 
sampling time period. 

Suppose the terminal current keeps constant during the 
sampling period, the battery polarization voltage V1 can be 
calculated by, 

                  ( ) ( ) ( )1 1 1 11 1V k a V k b i k= − ×+ −×               (3) 

where ( )1 1 1exp /a T R C−∆= , ( )( )1 1 11 exp /b T R C− −∆= .        (4) 

For the battery thermal aspect, we consider a two-stage 
approximation of the radially distributed thermal model 
described as 

                        ( )2

1 1in sh inC T i R k T T× = × −×+ɺ                (5) 

               ( ) ( )2 1 2sh sh in amb shC T k T T k T T× = × − −×+ɺ          (6) 

where Tsh and Tin stand for battery surface temperature and 
internal temperature respectively. k1, k2 are two coefficients 
which stand for the heat dissipation rates. 

Assuming ( ) ( ) ( )( )1 1 / sT k T k T k T+ = + −ɺ , this two-stage 

thermal model can be finally simplified as  
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In our previous work, the battery RC model and two-stage 
thermal model have been successfully combined together 
[10][11] and finally the coupled thermoelectric model is given 
as follows, 

                   ( ) ( ) ( )
( ) ( ) ( )1

1  

V k OCV

x k A x k B k

V k R i k U

 + = × +


= + × +
                (9) 
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  ( ) ( ) ( ) ( )2

1 2 / , , ,
T

s n ambB k T i k C b i k R i k k T× × = − ×   (12) 

B. LiFePO4 Battery Thermoelectric Model Parameters 

In order to design battery optimal charging strategy, it is 
vital to identify the parameters of the thermoelectric model. 
Under the laboratory conditions, a LiFePO4 battery cell with 
10 Ah nominal capacity and 3.2V nominal operation voltage 
was tested for this study. The detailed identification process 
could be referred in our previous work [11] and will be not 
described in this paper due to space limitations.  

     Note that some variable parameters in this coupled model 
have the following distinctive features: 1) Internal resistance R 

may change depending on different battery internal 

temperature; 2) The value of battery open circuit voltage UOCV 

is a function of battery SOC level. The relationship of battery R 

and UOCV under different situations is shown in Fig. 2 and Fig. 

3 respectively. 

 



 

Fig. 2. Relation of battery OCV [V] and SOC  

 

Fig. 3. Relation of battery resistance R [ohm] and internal temperature 

After identifying these variable parameters, the other 
constant parameters for this coupled thermoelectric model can 
be identified by the least-square (LS) method. The results for 
these constant parameters are shown in Table I. According the 
validation tests for battery voltage and heat generation in our 
previous work [10], the maximum voltage error is 63mV (2.1% 
of battery nominal voltage), the maximum errors for internal 
and shell temperature are 1.41

o
C and 1.52

o
C respectively. 

These modelling errors are acceptable and have no major effect 
on designing our battery optimal charging strategy.   

TABLE I.  CONSTANT PARAMETERS FOR BATTERY COUPLED 

THERMOELECTRIC MODEL 

Constant Parameters Value 

a1 0.979 

b1 1.8e-4 

C1 264.2 

C2 31.1 

k1 1.259 

k2 0.2994 

 

III. DUAL-OBJECTIVE OPTIMAL CHARGING FORMULATION 

In this section, we present a dual-objective function based 
on our battery coupled model. This dual-objective function is 
composed of two terms including battery charging time, and 
battery temperature rises (both the surface and interior). 
Besides, some battery physical constraints are also considered 
during charging process. 

A. Dual-objective Function 

Considering the battery charging as an optimization 
problem, some indicators need to be considered to guarantee 
the battery charging performance. Battery charging time is a 
key  in charging process because minimizing charging time can 
expand the applications of battery. Besides, the temperature 
rises caused by injecting current into battery also play 
important roles in battery charging behaviour. It should be 
noted that there is a large gap between battery internal and 
surface temperature during battery charging process.  In some 
cases especially high power applications, the different for 
battery internal and surface would go up to nearly 10

o
C [11].  

Extra-high temperature especially the internal temperature will 
lead to huge damage to the battery behaviour and even cause 
serious safety problem. Therefore, the dual-objective function 
takes the battery charging time and temperature rise (both the 
interior and surface) into account. 

According to the battery coupled thermoelectric model 
given in Section II, the sub-cost function battery charging time 
(CT) can be calculated as follows: 

                                    
CT s tfJ T k= ×                                (13) 

where JCT is the sub-cost function battery charging time (CT). 
TS is the sampling time period (in seconds) and ktf  stands for 
the time when battery being charged to its final targeted 
capacity. Then TS ×ktf stands for the total battery charging time. 

For battery two-stage thermal model Eq. (7) and (8), we 
easily define two indexes for battery temperature rise 
respectively: 

( ) ( )in in amb
T k T k T= −ɶ  for internal temperature rise, and 

( ) ( )sh sh amb
T k T k T= −ɶ  for surface temperature rise. 

Substituting these two battery temperature rise indexes into 
Eq. (7) and (8), we can finally give the temperature rise 
indexes described as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
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B T k k C− +=  respectively. 

Assuming ( )0in ambT T= and ( )0
bsh am

T T= , we have ( ) 00
in

T =ɶ , 

( ) 00shT =ɶ . 

Then the sub-cost function JTR for battery internal 
temperature rise (JinR) and surface temperature rise (JshR) can be 
described as  

                               
TR TinR TshRJ J J= +                            (15) 

where ( )
0

tf

TinR s in

k

k
J T T k

=
= ∑ ɶ and ( )

0

tf

s

k

TshR s k hJ T T k
=

= ∑ ɶ  . 

The final dual-objective function Jcharge is a combination 
of these two sub-cost functions  JCT  and JTR. In other words, 



                               
charge CT TRJ J J= +                           (16) 

where the sampling time period Ts for this battery charging 
process is defined as 1 second. Terms in this dual-objective 
function can be calculated based on our battery coupled 
thermoelectric model. 

B. Constraints and CCCV optimization formulation 

 The optimization target in this study is to determine a 
proper charging current profile to charge battery while 
minimize the dual-objective function Jcharge. The physical 
constraints including battery SOC level, current and voltage 
will be also considered during optimal charging process. The 
goal for this battery optimal charging strategy can be described 
as follows. 

Minimize dual-objective function Jcharge subject to:  
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            ( ) ( ) ( ) ( ) ( )1 2 OCVV k V k V k i k R k U= + + × +        (18) 
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where s0, stf stand for the initial and final SOC states during 
battery charging process respectively. imin, imax are the 
minimum and maximum bounds for current, and Vmin, Vmax 

stand for the minimum and maximum bounds for voltage 
respectively.  

 In order to solve this optimal charging problem, we divide 
the battery charging process into two stages: a constant current 
(CC) stage and a constant voltage (CV) stage. During CC 
stage, the terminal battery voltage begins to increase until it 
reaches the upper terminal voltage bound. Then, the constant 
voltage (CV) stage is launched until the battery capacity meets 
the power requirement. We assume a point kcc which stands for 
the battery terminal voltage reaches its maximum bound Vmax 
and the charging process will change to the CV stage after time 
kcc . Keeping in mind that the battery terminal voltage needs to 
be kept constant during CV stage, so the dynamics of the CV 
stage charge current iCV(k) is not an optimal problem and 
should be defined by constant voltage Vmax  described as 
follows, 

      ( ) ( ) ( )( ) ( )1 2
/

CV max OCV
i k V V k V k U R k= − − −    (21) 

 For k=kCC, kCC+1,…,ktf  stands for the CV stage until the  
battery reaches its final capacity, the battery terminal voltage 

should be fixed at the constant value Vmax. The battery charge 
current profiles iCV(k) in CV stage should be calculated by 

Eq.(21). After that, the objective function for CV stage 
Jcharge_CV is calculated based on the current profiles iCV(k). 

As stated above, the target of the battery optimal charging 
strategy can be defined as a new equivalent optimization 
problem shown as follows, 

     Minimize 
_ _charge charge CC charge CV

J J J= +                (22) 

     ( )1

_ 0
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                         (26) 

where ( ) ( ) ( )TR in shf k T k T k= +ɶ ɶ . kCC stands for the time when 

the battery terminal voltage V(k) first reaches the constant 
voltage Vmax. ktf is the time when battery reaches its final charge 

capacity. tw  and Tw stand for the battery charging time weight 

and temperature rise weight respectively. 

This optimization problem means to get a proper charge 
current profile iCC(k) for CC stage which can minimize the 
dual-objective function Jcharge for the total battery charging 
process. It should be noted that once iCC(k) is obtained by the 
optimization algorithm, the value of kcc and ktf can be 
determined accordingly. Then other values including 
resistances R(k), voltage V1(k) and temperature rise fTR(k) 
which are used in calculating the objective functions 
Jcharge_CC and Jcharge_CV can be also obtained based on 
the battery coupled thermoelectric model. In other words, 
charging current in CC stage determines the battery charging 
time and temperature rise (both battery interior and surface), 
further to determine the battery dual-objective function 
Jcharge. The value of charge current profile iCC(k) play an 
important role in battery total charging process and is chosen 
as our decision variables in minimizing the dual-objective 
function Jcharge. 

All in all, the optimal operation for battery charging in this 
paper is formulated as a dual-objective concerning battery 
charging time and battery temperature rises (both interior and 
surface). The procedure of battery optimal charging considers 
both fitness functions Jcharge_CC for CC stage and 
Jcharge_CV for CV stage simultaneously. 

IV. BATTERY OPTIMAL CHARGING STRATEGY 

With the purpose of solving the battery optimal charging 
profile is formulated in Section III, the principle of a heuristic 
method named teaching-learning-based optimization (TLBO) 
used in this paper is introduced first in this section, followed by 



the detail procedure of applying TLBO to solve the battery 
optimal charging strategy.  

A. Teaching-learning based optimization 

The teaching-learning based optimization (TLBO) method 
mimics the nature of a typical teaching and learning process 
[12], where a teacher is first elected in each learning generation 
and share the knowledge with the students, then students learn 
from mutual interaction with counterparts to gain potential 
useful information. TLBO has been applied in solving a 
number of single or multiple objective industrial optimization 
problems [13,14]. It is easy and convenient to adopt TLBO 
algorithm for battery optimal charging strategy since none 
specific parameters for TLBO need to be adjusted by user 
during algorithm implementation. The general schematic of 
TLBO for the value optimization is shown in Fig. 4 [12]. 

 

Fig. 4. General schematic of TLBO [12] 

In this paper, instead of using analytic optimal control 
methods, TLBO is adopted to search the suitable value set of 
charge current profile i(k) in CC stage through its two phases, 
aiming at obtaining the proper charge current profile for battery 
optimal charge which can minimize the dual-objective function 
Jcharge. 

B. Implementing TLBO for battery optimal charging strategy 

In order to get the proper charge current profile i(k)for 
battery optimal charging strategy, the main procedure based on 
the TLBO algorithm are presented in detail as follows: 

Step 1: Set the values of weights wt and wT in the battery 
dual-objective function Jcharge. 

Step 2: Set the battery charging initial and target SOC 
levels S0 and Stf respectively. Set Tamb for battery ambient 
temperature. Set all physical constraints including imin , imax , 
Vmin and Vmax for the battery charging process;  

      Step 3:  Set the population size Np, generation numbers 
Gm. Initialize the particle for TLBO algorithm. 

      Step 4:  For k=1 to kmax(the maximum number of iterations)  

do 

a) For CC stage, calculate the charging objective fitness 

Jcharge_CC  in each generation until the battery terminal 

voltage goes up to Vmax, after that the battery charging process 

will enter into CV stage. 

b) For CV stage, calculate the charge current profile 
iCV(k) in each generation and then obtain the charging 

objective fitness Jcharge_CV until the battery SOC level goes 

up to Stf.  

c) Evaluate the final dual-objective function Jcharge 

based on the sub-objective fitness Jcharge_CC and 

Jcharge_CV, and then check the termination criteria. 

d) Update the charge current for CC stage iCC(k) using 

TLBO algorithm. When criteria for optimization termination 

have been satisfied, terminate the whole optimization process. 

 

       Using this procedure, the CCCV charge current profile can 

be optimized. This optimal current profile can be applied to 
charge battery from S0 to Stf with the minimal cost of dual-

objective function Jcharge. The proper current profile can be 

also applied to balance the conflicts among the battery 

charging time and temperature rises (both the interior and 

surface) during battery charging process. The results achieved 

by this optimal charging strategy are analysed in Section V. 

V. RESULTS AND DISCUSSION 

In this section, the following tests are conducted to 
investigate the performance of optimal charge current profiles 
for battery cell charging process based on the battery coupled 
thermoelectric model Eq.(9) and the battery optimal charging 
strategy described in Section IV. Two cases of tests including 
(i) verification of battery optimal charging strategy; (ii) effects 
of dual-objective function weights are analysed and discussed 
in this section.  All tests adopt the same parameters settings: 
The sampling time period Ts is 1s. The maximum iteration 
number is 3000. The battery initial SOC level S0 and final SOC 
level Stf are set to 0.1 and 0.9 respectively. Battery physical 
constraints for charge current and terminal voltage are fixed as 
follows: imin=-30A, imax=0A, Vmin=2.6V, Vmax=3.65V. The 
ambient temperature during charging process is Tamb=29

o
C. 



A. Verification of Battery Optimal Charging Strategy 

        In order to validate the effectiveness of the TLBO 

algorithm for searching the battery optimal charging strategy, 

the population size Np and generations number Gm are set to 

20 and 50 respectively in this paper for the following 

experiments. The convergence characteristic of TLBO 

algorithm for battery dual-objective function optimization is 

illustrated in Fig. 5. Graph is plotted based on the evolution of 

battery dual-objective function Jcharge against the 
generations number Gm. The weights for battery charging time 

and temperature rise in Jcharge are all set to 1 in this 

experiment. It can be observed that the value of Jcharge 

decreased rapidly within less than 10 generations and finally 

reached nearly 27261.435 after 50 generations. 

 
Fig. 5. Convergency of TLBO in battery dual-objective function 

optimization 

       Table II shows the battery charging time (JCT) and battery 

temperature rise (JTR=JTinR+JTshR) after 50 generations. The 

values are calculated when the weights wt , wE in Jcharge are 

equally set to 1. It can be seen from Table II that for this 

weights setting, the JTR is much larger than the value of JCT, 

nearly up to twenty-three fold. In order to make sure the sub-

cost functions are fairly optimized, the following weights 
setting: wt =1, wT=0.05 are initialized respectively for the 

following tests presented in this section. 

TABLE II.  VALUES OF SUB-COST FUNCTION TERMS 

Np Gm Jcharge JCT JTR 

20 10 27265.252 1115 26150.252 

20 20 27263.470 1114 26149.470 

20 50 27261.435 1113 26148.435 

 

After setting the appropriate weights for battery dual- 

objective function Jcharge, five different current profiles 

including the optimal current profile are chosen to compare and 

verify the performance of charge current optimized by our 
strategy during battery charging process. These charging 

current profiles are obtained by injecting charge current into 

battery during the CC stage until the battery terminal voltage 

goes up to its maximum value Vmax and after that the battery is 

charged at the CV stage until the battery SOC level goes up to 

Stf . The value of the optimal current profile was calculated 
based on our TLBO optimal strategy and other current profiles 

were obtained randomly based on our coupled thermoelectric 

model. Fig. 6 shows these five different current profiles during 

charging process to bring battery SOC from 0.1 to 0.9. It can 

be observed that larger current in the CC stage shortens the 
battery charging time. This behaviour is primarily due to the 

fact that large current causes rapid increase of battery SOC and 

further speeds up the increase of battery OCV. 

 

Fig. 6. Different battery charging current proflies (including the optimal 

profile) 

Table III shows the two parts of sub-cost functions with 
corresponding weight in the dual-objective function Jcharge 
for these five current profiles. It can be observed that, except 
for the optimal current profile 3, either decreasing or increasing 
the charging current for CC stage results in the increase of 
dual-objective function Jcharge. For current profiles 1-2, 
reducing charging currents in CC stage lead to the decrease of 
JTR but larger increase of JCT during charging process, further 
increase Jcharge accordingly. For current profiles 4-5 with 
larger currents in CC stage, the JCT is reduced during charging 
process but JTR increases to larger values, further causing the 
increase of Jcharge accordingly.   

TABLE III.  VALUES OF JCT, JTR WITH WEIGHTS AND JCHARGE UNDER 

DIFFERENT CHARGE CURRENT PROFILES 

Current No. wt×JCT wT×JTR Jcharge I 

1 1313 1434.726 2747.726 -22 

2 1208 1440.727 2648.727 -24 

3 1107 1516.395 2623.395 -25.791 

4 1074 1551.490 2625.490 -27 

5 998 1631.945 2629.945 -29 

 

B. Effects of Dual-objective Function Weights 

It is obvious that the weights in battery dual-objective cost 
function Jcharge play important roles in battery optimal charge 
strategy design. In this subsection, two simulation tests 
including various charging time weights test and various 
battery temperature rise weights test are conducted to 
investigate the effects of weights on the results of battery 
optimal charging strategy. 

Fig. 7 illustrates the effect results of varying battery 
charging time weights value wt from 0.2 to 6.4. These effects 
focus on the optimal charge currents and the corresponding 
variations of battery internal temperature and surface 
temperature.  The temperature rise weight wT is set to constant 
value 0.05, only the wt is varied. It has clearly demonstrated 



that increasing wt from 0.2 to 6.4, the total charging time will 
become shorter due to the larger charge current. The optimal 
charge current for CC stage is 29.436A when wt=6.4 compared 
with the value of 23.745A when wt =0.2. In other words, larger 
wt stands for putting more emphasis on the battery charging 
time and less emphasis on the temperature rise during charging 
process, and vice versa. Besides, both the battery internal 
temperature and surface temperature rises will be higher when 
wt becomes larger. 

 

 

 

Fig. 7. Effect of different charging time weights wt for charge current 

profiles, internal temperature and surface temperature.(wT=0.05) 

Another simulation is conducted to test the effect of various 
battery temperature rise weights wT on battery optimal charging 
performance as shown in Fig. 8. Here the charging time weight 

is fixed as wt =1, only the wT is varied. When wT increase from 
0.01 to 5.00 gradually, the optimized charge currents for CC 
stage will increase accordingly. Even though the battery 
internal and surface temperatures increase more rapidly with a 
larger wT, the total charging time will be shortened and hence 
the sub-cost function term JTR will decrease. A high weight wT 
means putting more emphasis on the battery temperature rising, 
leading to large currents for CC stage and provide short battery 
charging time and achieve low value for JTR during total battery 
charging process, and vice versa. 

 

 

 

Fig. 8. Effect of different temperature rise weights wT for charge current 

profiles, internal temperature and surface temperature.(wt=1) 

 



As a result, different weight values in Jcharge would lead 
to different optimal current profiles during battery charging 
process. By adjusting the weights of sub-cost function terms, 
the current profiles for battery charge with different focuses 
including charging time and temperature rise (both interior and 
surface) can be identified separately. 

VI. CONCLUSION 

Battery charging strategy is a key issue to ensure the 
reliability and safety of battery charging process. In this paper, 
a novel battery optimal charging strategy is proposed by 
applying TLBO algorithm to solve the optimal charging profile 
for a LiFePO4 battery. This is based on the development of the 
battery coupled thermoelectric model in our previous work, 
and a specific dual-objective function which is composed of 
two conflicting objectives: battery charging time and 
temperature rise (both battery interior and surface) is 
formulated firstly. Then a battery optimal charging strategy is 
presented in detail by dividing the battery charging process into 
a CC charging stage and a CV charging stage. The TLBO 
algorithm is applied for this time-varying and high nonlinear 
optimization, aiming at seeking a suitable constant-current-
constant-voltage (CCCV) current profile to minimize the dual-
objective function. Besides, the simulation tests of varying 
dual-objective function weights including battery charging 
time weight and temperature rise weight are also conducted to 
illustrate the influence of various sub-cost function weights on 
battery charging optimization result. 

Simulation results show that the presented optimal charging 
strategy can provide effective and acceptable optimal charge 
current profile for battery charging. By adjusting weights of 
sub-cost function terms in the dual-objective function, the 
optimal charge current profile can give a suitable trade-off 
among charging time and temperature rise (both interior and 
surface) during battery charging process. Although the 
optimized charge current profile in this study only fits a 
LiFePO4 battery cell, the optimal charging strategy presented 
in this paper can be easily implemented to other different 
battery types to effectively balance the battery charging time 
and battery temperature rise during charging process. 
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