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Abstract—This paper investigates the evolution of two types of
simple Genotype Phenotype Mappings (GPMs): a many-to-one
mapping and a one-to-many mapping. Both GPMs are under
genetic control. For both types of mappings different Regions Of
Maximum Adaptability (ROMAs) are found. These ROMAs are
the regions - in a paramterized space of GPMs - evolution leads
to. The attraction towards these ROMAs increases as selection
pressure increases. Finally, this paper discusses the evolution of
pleiotropy and the ROMAs it leads to.

I. INTRODUCTION

The Human Genome Project (International Human Genome
Sequencing Consortium) [1] successfully determined the hu-
man DNA sequence. This project gave rise to two unexpected
findings relevant for the current paper. First, the human
genome was shorter than expected. Moreover, a large part was
neutral: it did not encode anything. This led to the conclusion
that the complexity resides in the expression of the DNA, i.e.
the Genotype Phenotype Mapping (GPM). Or, as [2] describes
the complexity of GPMs in nature:

The difficulty in mapping genotype to phenotype can
be traced to several causes, including inadequate de-
scription of phenotypes, too little data on genotypes,
and the underlying complexity of the networks that
regulate cellular functions.

Wagner and Altenberg [3] put forward the hypothesis that
GPMs are under genetic control and that evolutionary al-
gorithms (EAs) can be used to investigate this. One of the
advantages of such an approach is that experiments can be
done that are impossible in nature (e.g. because of the lack
of control over system parameters). The research proposed
here is an instantiation of their proposal in a simple artificial
coevolutionary context.

In the current paper, the Coevolutionary Genetic Algorithm
(CGA), introduced in [4], is used. This algorithm was inspired
by the seminal work of Hillis [5]. In the past, the CGA has
mainly been used as a tool for optimalisation, see e.g. [6].
Now, the dynamics of the CGA is studied. The coevolutionary
interactions in nature are often complex. The goal of this
paper consists of the design of a SIMPLE coevolutionary
application and GPMs which - despite their simplicity - still
exhibit realistic, complex dynamics.

Many techniques and models have been used to implement
GPMs, e.g.: Lindenmayer sytems [7], Cellular automata [8],
Random Boolean Networks [9], or reaction diffusion sytems

[10], amongst others. These are rather complex models, here
simple (mostly) linear equations are used to implement the
GPMs.

Another distinction between approaches that evolve GPMs
is whether the GPM is part of the genome, as in [11], or
whether the genotype and GPM coevolve as seperate popula-
tions, as in [12]. Here, the former approach is followed. The
symbiotic CGA, introduced in [13], could be used to imple-
ment the latter approach. The advantages and disadvantages
of each approach are described in [14].

At an abstract level, a parameterized space of GPMs is used
here. Each individual has an instantiation of the paramaters,
i.e. a GPM, on its genotype. The current paper investigates to
which parts of the space of GPMs evolution leads.

The current paper is a sequel to [15], [16] which introduced
the concept Region Of Maximum Adaptability (ROMA). These
ROMAs are exactly the region(s) in the space of GPMs
evolution leads to. This previous work used a one-to-one
mapping as a GPM. In the current paper, more complex GPMs
are investigated: one-to-many and many-to-one mappings. In
addition to this, two models of pleiotropy are discussed to
allow for interaction of genes in the GPM. Actually, sections
2 and 3 of the current paper originate from [16]. Just like in
the earlier reseach a Pursuer-Evader (PE) model is used. Here,
two populations live on a torus. The fitness of the individuals
of both populations is calculated through continuous sampling
of the distance between itself and the individuals belonging to
the other population. One population - the evaders - maximize
this distance, the other population - the pursuers - minimize
this distance. The PE model was chosen because it leads to
ongoing evolution.

The structure of this paper is as follows. After this introduc-
tion the CGA is described. Section three describes the pursuer-
evader (PE) sytem. Section four describes two types of GPMs
and gives experimental results on their evolution. Section five
describes the degree of pleiotropy a GPM evolves to. After
which, a discussion and a section on future research are given.
Finally, conclusions are drawn.

II. A COEVOLUTIONARY GENETIC ALGORITHM

Here, the basic CGA is described. As a first step, it
creates two populations (called pop1 and pop2). Typically,
the individuals in these initial populations are (uniformly)
randomly generated. The fitness of these individuals is then
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DO 20 TIMES
ind1 := SELECT(pop1)
ind2 := SELECT(pop2)
payoff := ENCOUNTER(ind1,ind2)

UPDATE-HISTORY-AND-FITNESS(ind1,payoff)
UPDATE-HISTORY-AND-FITNESS(ind2,-payoff)

ENDDO

p1 := SELECT(pop1) ; pop1 parent1
p2 := SELECT(pop1) ; pop1 parent2
child := MUTATE-CROSSOVER(p1,p2)
f := FITNESS(child)
INSERT(child,f,pop1)
p1 := SELECT(pop2) ; pop2 parent1
p2 := SELECT(pop2) ; pop2 parent2
child := MUTATE-CROSSOVER(p1,p2)
f := FITNESS(child)
INSERT(child,f,pop2)

calculated. This fitness depends on the particular application,
but it is the result of a number - here 10 - of ENCOUNTERS
of an individual with individuals of the other population. These
encounters result in a pay-off which is stored in the history of
the individual. The actual fitness is the average of these (10)
history elements. Because these encounters represent predator-
prey interactions, success for one individual (in an encounter)
is failure for the other one. Hence, the value of an encounter
is stored in the history of one individual involved in the
encounter. The other individual stores the negative of this
value in its history. Once all initial fitnesses are calculated,
both populations are sorted on fitness: the individual with the
highest fitness on top the least fit one at the bottom.

After the creation of the two initial populations, the main
cycle of a CGA is executed. The pseudo-code of this cycle is
given above. First, 20 encounters are executed between SE-
LECTed individuals. This selection is linearly biased towards
highly ranked individuals: similar to GENITOR (Whitley [17])
the top individual is 1.5 times more likely to be selected than
the median individual. The pay-off of this encounter - here this
is the distance bewteen both individuals - is then calculated and
stored in the history, removing the payoff of the least recent
encounter from the history. Hence, the history is implemented
as a queue. Finally, the fitness (the average of the history)
of both individuals involved in the encounter is re-calculated.
Possibly, this changes the ranking of the individual in its
population. Note that the predator prey interaction results in a
negative pay-off for the individual of the second population.

After these 20 encounters the CGA produces one offspring
for each population: it SELECTs two parents. A new individ-
ual is generated from these parents through the application of
MUTATion (probability of mutating a gene is 0.1) and (uni-
form) CROSSOVER. The fitness is calculated by executing
10 encounters between the new individual and SELECTed
members of the other population (again using the negative
payoff for individuals which belong to the second population).
In case this fitness is higher than the fitness of the bottom
individual then the new individual is placed in the population

at its appropriate rank. All individuals with a lower fitness
go one position down and the bottom individual is deleted.
This basic cycle is repeated a large number of times (e.g.
20000 cycles). The sampling process to calculate (and update)
the fitness is called lifetime fitness evaluation (LTFE). In the
current paper, all parameter settings and genetic operators are
identical to those described in [6] unless mentioned otherwise.

III. PURSUER-EVADER DYNAMICS

In this particular application, each individual consists of
two genes: real numbers in the interval [0,1]. The pay-off
of an encounter between two individuals consists of the
cartesian distance between the two pairs of genes. The first
population maximizes the distance to the individuals of the
other population. The negative payoff of the members of the
second population results in a minimization of the distance to
the individuals of the first population. This because in both
populations fitness is maximized.

Each individual can be represented as one point on the plane
[0,1] x [0,1]. Furthermore, in order to allow for an unbounded
evolution, this plane is considered to be a torus. Hence, the
distance is the minimum of the two possible distances (one
crossing (an) ”edge(s)”). Furthermore, mutation can cross the
”edges” as easy as it can move in the plane. Or, in other words,
0.95 is equally likely to be mutated into, for example, 0.085
or 0.05. Finally, a standard uniform crossover is used: new
offspring receives each gene from one of its parents randomly
and independently.

The dynamics of this application is fairly simple. The initial
(random) populations are scattered randomly over the plane.
In the first experiment described below equal population sizes
consisting of 50 individuals are used. Fairly soon (typically
in less than thousand cycles) during evolution two clusters
appear (one for each population) where one cluster chases
(pursuer) the other (evader). Figure 1 provides a snapshot of
such a chase. From time to time different behavior is observed.
Sometimes the pursuers catch up on the evaders. At this
moment the cluster of evaders breaks up. Most of the time the
evader cluster breaks up in two or four sub clusters, which are
located symmetrically with respect to the pursuers. These sub
clusters virtually immobilize the pursuers while the evader sub
clusters move radially and finally become one cluster again.
Due to sampling errors and finite population sizes, the evaders
cluster (i.e. unite) again before the sub clusters have gone all
the way. Once the evaders are clustered again, the ”standard”
pursuing of two clusters continues. Obviously, the symmetrical
case also occurs: the pursuers breaking up to immobilize the
evaders for a while, as the snapshot in figure 2 depicts.

When the two populations have different population sizes
then their respective speed changes. This is because at each
cycle both populations reproduce exactly once. Hence, the
smaller population evolves the fastest, i.e. moves faster on the
plane. In case the pursuer population is smaller, the pursuers
regularly catch up with the evaders. When this happens the
evaders split up, again immobilizing the pursuers until the
evaders form one cluster again. Then the chase resumes. In the



Fig. 1. A cluster of pursuers (black diamonds) pursuing a cluster of
evaders (grey cirles)

Fig. 2. A cluster of pursuers (black diamonds) splits up in two parts
immobilizing a cluster of evaders (grey cirles)

other case, the evader population is the smallest population.
Here, the evader population successfully keeps ahead of the
pursuer population. Occasionally, the evaders even have to
slow down in order not to get too close to the pursuers
(remember: the world consists of a torus).

IV. TWO TYPES OF GPMS

GPMs are known to be complex many-to-many mappings.
Here, these mappings are decomposed into many-to-one map-
pings and one-to-many mappings, both are decscribed in the
following two subsections. One example of each type of
mapping will be discussed.

A. A many-to-one mapping: Discretisation

In order to have a simple GPM under evolutionary control,
two real numbers in the interval [0,1] are added to the

individual. Hence, an individual consists of a quadruple (x
y r1 r2). As before, x and y are the position of the individual
on the torus. The last two parameters, r1 and r2, determine
the degree of discretisation applied to x and y, respectively.
This discretisation process maps the genotype (x and y) into
the phenotype. In the experiments described here, the number
of bins varies between 5 and 200. Hence, the code below
describes the discretisation process for x and y.

nrofbins= round(5 + 195 * r1)
x = round(x * nrofbins) / nrofbins

nrofbins= round(5 + 195 * r2)
y = round(y * nrofbins) / nrofbins

It is good to note that a small r (r1 or r2) results in few
equally sized, large bins, e.g if r is zero that results in 5 bins
of size 0.2. If, on the other hand, r is one then there are 200
bins of size 0.005.

Given the PE behavior of the CGA described before, the
question now is: To what values do r1 and r2 evolve in various
settings? This was studied by executing 100 runs (of 20000
cycles each). At the end of each run, all r’s belonging to one
population are printed on a [0,1] x [0,1] plane. Hence, these
are the values of the r’s at the end of each of the 100 runs.

In the first experiment, both populations have the same size,
i.e. 50. Each experiment is described by two numbers: the
population size of the evaders and of the pursuers. Hence,
this first experiment is described as 50-50. Figures 3 and 4
show the distribution of the r’s of the evaders and pursuers in
this experiment. Remember that small r’s correspond to small
numbers of large bins.

Fig. 3. Distribution of r’s of evaders for 50-50

In both figures, there is a clear concentration of the r’s near
the axes. Or, in other words, the axes (including the origin) are
the ROMAs for this type of GPM. Because of the symmetry
between the evaders and pursuers, the r’s of the pursuers show
a similar distribution as the r’s of the evaders, and hence, their
ROMAs are similar. These ROMAs indicate that the evaders,



Fig. 4. Distribution of r’s of pursuers for 50-50

as well as the pursuers, prefer to make relatively large steps,
during the GPM / discretisation, in at least one of the (x or y)
dimensions. It is not clear why the r’s evolve towards (at least
one of) the axes. Also studying the evolution of the r’s during
single runs did not reveal any pattern: both populations of r’s
cluster and then stay roughly at the same location or slowly
move, often along the axes.

A second experiment - 50-20 - uses different population
sizes for the two populations. Now, the population size of
pursuers (20) is smaller than the evader population size (50).
Figures 5 and 6 depict the distribution of the r’s of the evaders
and pursuers, respectively. Obviously, there are less dots in the
figure of the pursuers, because of the smaller population size.
Furthermore, a stronger pressure towards the axes can be seen
for the larger (evader) population. The density of the dots is an
indication of the strength of the pressure towards the ROMAs.
The larger population moves slower (on the x,y torus) because
at each cycle one offspring is generated for each population.
Or, in other words, the selection pressure is higer on the larger
(evader) population. Again, there is pressure towards larger
bins (almost zero r) in at least one of the two dimensions. But
now, increased selection pressure results in stronger pressure
of the r’s towards the ROMAs.

B. A one-to-many mapping: Expansion

Here, a simple one-to-many mapping is introduced. Just as
in the previous section, the map is described by the same
parameters, r1 and r2. But now, these describe the radius
along each dimension (x and y) in which a random number is
drawn to replace x and y, respectively. The code below shows
how the expansion process works. A small random value is
added or subtracted (with equal probability) to or from x and y.
The code below shows how the genotype is transformed into
phenotype by the expansion operator. The inbound function
enforces that the phenotype remains on the torus [0,1] x [0,1].

Fig. 5. Distribution of r’s of evaders for 50-20

Fig. 6. Distribution of r’s of pursuers for 50-20

The function rand generates a real valued number uniformly
drawn from the interval [0,1].

x = inbound(x +/- 0.1 * rand * r1)

y = inbound(y +/- 0.1 * rand * r2)

Again, the same experiments as in the previous section are
performed. First, both populations have an equal population
size of 50 (figures 7 and 8). Now, both r’s are pushed towards
the upper right corner. This potentially maximizes the amount
of movement from the genotype to the phenotype. Hence, in
this case, the upper right corner constitutes the ROMA and to
a lesser extend the edges r1=1 or r2= 1.

Here, as well, this attraction to the ROMAs is stronger
as the selection pressure increases, i.e. the selection on the
larger population is fiercer than the selection on the smaller



Fig. 7. Distribution of r’s of evaders for 50-50

Fig. 8. Distribution of r’s of pursuers for 50-50

population (see figures 9 and 10). Actually, the region around
the origin of the r’s of the evaders is almost empty.

The examples above illustrate that it is often hard to
understand what the ROMAs will be, even for the simple
models used here. Let alone to predict them. This will be
the case for the ROMAs in the next section as well.

V. EVOLVING PLEIOTROPY

In the section above, the GPMs did not allow for interaction
between the genes. This section describes the degree of
pleiotropy, i.e. interaction between the genes, a GPM evolves
to in the PE model. Two models are distinguished: a linear
model of interaction (as in [18]), and a non-linear one (based
on [19]).

Fig. 9. Distribution of r’s of evaders for 50-20

Fig. 10. Distribution of r’s of pursuers for 50-20

A. Linear Pleiotropy

In this model the r’s determine how much the gene values
get mixed in producing the phenotype. Now 4 r’s - r1, r2, r3,
and r4 - are evolved per individual (besides the x and y). This
leads to the following GPM:

x= (r1 * x + r2 * y) / 2

y= (r3 * y + r4 * x) / 2

In this section, only the ROMAs of the evaders of 50-20 are
given because they are the most outspoken. Furthermore, only
r1 and r2 are depicted. This because r3 and r4 lead to similar
ROMAs as r1 and r2. Figure 11 shows that the r’s evolve
towards the 4 corners of the graph. These are the extreme
cases of mixing the genes: no mixing or complete mixing. It
is not clear why the r’s group around the origin. This allows
the coordinates to be reset to zero or to a small value.



Fig. 11. Distribution of r’s of evaders for 50-20 (linear pleiotropy)

B. Non-linear Pleiotropy

A non-linear GPM is obtained by adding a continuous
sigmoid transfer function to the linear model above. Or,
in other words, the sigmoid is applied to both the linear
combinations.

Figure 12 shows that the r’s evolve towards the corners as
well, but much stronger than in the linear model Also, the
pressure towards these ROMAs is less for the pusuers, as is
shown in Figure 13. Here, only the upper right corner attractor
is present. Actually, the r’s are mainly spread out over the
entire upper right half of the graph. Again, it is hard to find
an explanation for this behavior. As was the case before, the
r’s associated with the y gene of both populations are similar
to the r’s associated with the x gene. Or, in other words, The
ROMAs associated with the x and y genes have the same
pattern.

Fig. 12. Distribution of r’s of evaders for 50-20 (non-linear pleiotropy)

Fig. 13. Distribution of r’s of pursuers for 50-20 (non-linear pleiotropy)

VI. DISCUSSION

Paredis [16] argued that the toroidal model, on which x and
y evolve, compensates for the lack of epistasis in the simple PE
model: it allows for small (mutational) changes to have large
(numerical) consequences. Actually, the expansion GPM takes
into account the toroidal nature of the model. Discretisation
does not have to take this into account because it ”shrinks”
the space. Hence, it will never get out of the bounds.

There is a second difference between the two GPMs:
discretisation and expansion. The first one is deterministic
whereas the second one (expansion) is stochastic. Actually, the
expansion is completely random in terms of size as well as
direction. Athough the former has an upperbound. Despite this
random nature, the r’s clearly evolve towards stable ROMAs .
Furthermore, in terms of dynamical systems, the discretisation
operator creates attractors, with the size of the bassin of
attraction determined by the r’s. The expansion operator, on
the other hand, is a repellor.

Given the extremely simple models used here, the following
question is certainly justified: Do the results presented carry
over to nature? The fact that the basic processes (variation,
selection, and reproduction with inheritance) are used, the
general principle discussed here - increased selection pressure
provides a push towards ROMAs - is likely to carry over
to nature. Furthermore, the results presented here correspond
with [16].

Finally, it should be stressed that the ROMAs are really
stable: the experiments above all have been repeated numerous
times. Each time, the same (ROMA) pattern appeared.

VII. FUTURE RESEARCH

A strongly related issue to the research presented here is
neutrality. Many-to-one GPMs are one source of neutrality.
It would be interesting to investigate the relation between
neutrality and the partial nature of the fitness evaluation.
Finally, the spatial structure of the neutral regions is very



simple here. In nature, the shape of these neutral pathways is
much more complex. This is a second road for future research:
the introduction of more complex (fractal?) neutral pathways.

An interesting, promissing, approach is to consider the GPM
as a dynamical system [20]. Similar to the work described
above, evolution can then move in a parameterized space
describing a class of dynamical systems. It would then be
interesting to see to which dynamical system(s) evolution
leads.

VIII. CONCLUSION

This paper studied the evolution of two types of GPMs:
many-to-one and one-to-many mappings. For both cases, the
ROMAs were determined. These ROMAs are the region(s)
in the space of mappings where evolution tends to lead to.
Furthermore, it was shown that the attraction towards these
regions increases as the selection pressure increases.

Finally, two pleiotropic models were used. From the exper-
iments, it can be seen that the system evolves to the extreme
cases of mixing: complete mixing or no mixing at all.

Even for the simple models used here, it is difficult to
explain, or predict, to which GPMs (i.e. ROMAs) evolution
leads. Despite this, the ROMAs are very stable: the same
(ROMA) pattern arises each time a series of runs is done.
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