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Abstract—Mutation testing is a method used to assess and
improve the fault detection capability of a test suite by cre-
ating faulty versions, called mutants, of the system under test.
Evolutionary Mutation Testing (EMT), like selective mutation or
mutant sampling, was proposed to reduce the computational cost,
which is a major concern when applying mutation testing. This
technique implements an evolutionary algorithm to produce a
reduced subset of mutants but with a high proportion of mutants
that can help the tester derive new test cases (strong mutants).
In this paper, we go a step further in estimating the ability of
this technique to induce the generation of test cases. Instead of
measuring the percentage of strong mutants within the subset
of generated mutants, we compute how much the test suite is
actually improved thanks to those mutants. In our experiments,
we have compared the extent to which EMT and the random
selection of mutants help to find missing test cases in C++ object-
oriented systems. We can conclude from our results that the
percentage of mutants generated with EMT is lower than with
the random strategy to obtain a test suite of the same size and
that the technique scales better for complex programs.

Index Terms—Mutation testing, evolutionary computation,
object-oriented programming, C++.

I. INTRODUCTION

Mutation testing is a suitable technique to determine the
quality of test suites for a particular program [1], [2], [3].
It is based on the generation of mutants, that is, versions of
the original program with an intentionally introduced fault in
the source code. These faults are actually subtle modifications
in the syntax of the system under test (SUT) and they are
inserted using predefined mutation operators. The underlying
idea in mutation testing is that the injected mutations represent
plausible coding errors when developing a system with a
certain programming language. Then, the test suite designed
for the SUT is evaluated by measuring its ability to detect a
change in the behaviour of the mutants when they are executed
on the same test suite as the original program.

Mutation testing is effective at finding test deficiencies, but
it is also a costly testing technique because of the large number
of mutants that can be generated. Several methods have been
proposed to reduce the computational cost of mutation testing,
mainly discarding a subset of the mutants [4].

This paper aims at analysing Evolutionary Mutation Testing
(EMT) [5] as a tool to reduce the number of mutants generated
and, as a result, improve the quality of test suites. This tech-
nique uses an evolutionary algorithm to favour the generation
of strong mutants, which can guide the tester on the creation of
new test cases. Potentially equivalent mutants, which are not
detected by the initial test suite, and difficult to kill mutants,
which are detected by one test case which only detects this
mutant and no other, are both considered as strong mutants.

The experiments conducted regarding EMT so far [5], [6]
have evaluated how useful EMT is in finding strong mutants
and have shown that EMT outperforms random selection.
However, EMT aims at improving the test suite with the set of
generated mutants ultimately. In this line, some strong mutants
may be later found to be equivalent mutants (i.e., mutants
with the same functionality as the original SUT despite their
mutation). Being aware of this fact, finding a subset of strong
mutants does not ensure that the test suite is proportionally
augmented with new test cases. As a result, previous work
was not able to clarify the extent to which using EMT leads
to the generation of missing or incomplete test cases when
compared to a random strategy.

In this paper we go beyond previous experiments by intro-
ducing a new methodology to assess test suites improvement
when applying EMT. The experiments underlying our method-
ology simulate a real process in which the generated mutants
are reviewed and new test cases are added to detect surviving
mutants (i.e., the mutations modelled by these mutants are not
identified by the current test suite). This simulation is possible
thanks to a previous execution of all the mutants and a process
of test suite improvement to obtain an adequate test suite,
that is, a test suite detecting all non-equivalent mutants. In
order to evaluate the usefulness of our methodology, in this
paper we evaluate EMT with respect to a set of class mutation
operators [7] (related to the object-oriented paradigm) and to
real open-source C++ programs, together with the test suite
distributed with each of them. The results show that mutation
testing can benefit from EMT because it is possible to generate
a reduced subset of mutants, leading to a further test suite
refinement, in comparison with random selection of the same
number of mutants. This is especially important for those



SUTs that produce a large set of mutants.
Sections II and III describe mutation testing and EMT,

respectively, with a focus on C++ object-oriented systems.
Section IV explains the empirical evaluation in this paper
to asses the test suite improvement when applying EMT,
whereas Section V shows the results of the experimental
procedure and discusses them. Related work is presented in
Section VI. Finally, Section VII presents our conclusions and
future research lines.

II. MUTATION TESTING

Mutation testing is a fault-based testing technique in which
a set of mutation operators generates mutated versions of the
subject program. Mutation operators are mainly derived from
the analysis of the most common mistakes in the development
of applications in a certain language. For instance, we can
consider that the programmers are likely to make mistakes
with arithmetic operators when coding a certain program P.
Then, a mutation operator replacing arithmetic operators can
be applied. Let us consider that after analysing a fragment
of code in this program, four different mutants (M1, M2, M3
and M4) can be produced. The next table shows the original
program and the mutants.

(P) int add (int a, int b) {return a + b;}
(M1) int add (int a, int b) {return a - b;}
(M2) int add (int a, int b) {return a * b;}
(M3) int add (int a, int b) {return a / b;}
(M4) int add (int a, int b) {return a % b;}

These four mutants are executed on the same test suite as
P. The test suite should be able to detect these mutations
in the code when comparing the output of the original and
the mutated programs. That is, for certain inputs the mutant
and the original program should produce different outputs. In
that case, the mutants are killed. On the contrary, a mutant
that remains alive reveals a potential test deficiency.1 That
means that, in the instance that the code contained that fault,
the current test suite would not be able to identify it. For
example, a test case exercising the function “add” with the
values a = 2 and b = 2 kills the mutants M1, M3 and M4.
However, this test case is not able to kill M2 because this
function returns the same value (4) when both P and M2 are
executed. Therefore, this technique is effective in assessing
and improving test suites. However, because of the number of
mutants that can be generated and the time that their execution
can take, it is considered to be computationally expensive.

Several faults, like the example above, are common in many
general purpose languages, but the set of mutation operators
should be specifically designed according to the features of
each language. Thus, there are many different approaches
to define operators for a great range of languages [3]. The
similarity of the operators for several languages has also been
explored [8]. The language C++, used for our experiments

1This is not the case if the mutant is equivalent to the original program,
that is, the mutation does not produce any semantic change in the program.

in this paper, has not been tackled in mutation testing un-
til recently [7]. According to the different levels at which
mutation testing can be applied [3], the mutation operators
defined for C++ [7] can be categorised as class-level operators
because they deal with object-oriented features. This set of
mutation operators has been implemented in the mutation
system MuCPP [9].

III. EVOLUTIONARY MUTATION TESTING WITH GIGAN

In this section we present how EMT is implemented in the
GiGAn system. First, we present a general overview of EMT
and then we explain the main characteristics of GiGAn.

A. Evolutionary Mutation Testing

EMT aims at generating a reduced set of mutants by means
of an evolutionary algorithm. The algorithm is guided towards
the generation of those mutants that may provide the tester
with the possibility of adding new test cases to the test
suite. These special mutants are called strong mutants. Two
types of mutants are considered as strong mutants: potentially
equivalent, which are not detected by the test suite under
evaluation, and difficult to kill mutants, detected by one test
case only killing that mutant. In the case of potentially
equivalent mutants, either they can turn out to be equivalent
once they are reviewed or they can induce the generation of
new test cases. This happens when a mutation is not exercised
by the current test cases or they are not able to uncover
the mutation. Checking equivalence is undecidable but recent
work provides a good methodology to automatically detect a
subset of equivalent mutants [10].

Any EMT approach needs to apply the following steps:
1) Produce (randomly) a subset of mutants in a first gen-

eration.
2) Execute the subset of mutants against the test cases in

the supposedly non-adequate test suite.
3) Compute the fitness of each of the mutants in the

generation.
4) Apply the evolutionary algorithm to produce a new

generation of mutants based on the calculated mutants
fitness. A percentage of the mutants in each generation
is generated ramdomly.

5) Stop the algorithm if the stopping condition is met.
Otherwise, repeat the process from step 2.

An important concept in any EMT is the notion of fitness
function. This function measures the quality of a solution and
therefore is devised for each particular problem.

F(I) = M × T −
T∑

j=1

(
mIj ×

M∑
i=1

mij

)
(1)

Where:
• M is the number of mutants and T is the number

of test cases.
• mij is 1 when mutant i is detected by test case

j, and 0 otherwise.



The fitness function of a mutant I in EMT (see Equation 1)
assigns the best value to strong mutants (potentially equivalent
mutants: M × T ; difficult to kill mutants: M × T − 1) so
that they are selected for reproduction with high probability.
Roughly speaking, the fitness of the rest of the mutants (weak
mutants) decreases as the number of test cases detecting the
mutant increases and the number of mutants detected by those
test cases increases.

In order to calculate the fitness function, each mutant needs
to be run against each of the test cases in the test suite.
This process produces a result which is stored in an execution
matrix. The rows in the execution matrix represent the mutants
while the columns represent the test cases. The format of a
general execution matrix is shown in Figure 1. The execution
matrix allows the tester to quickly compute the number of test
cases killing a certain mutant and the number of mutants being
killed by those test cases. This execution matrix is, therefore,
useful for the calculation of the fitness of the mutants. We will
also generate execution matrices later on for the experiments.


test1 test2 . . . testm

mutant1 v1,1 v1,2 . . . v1,m
mutant2 v2,1 v2,2 . . . v2,m
. . . . . . . . . . . . . . .
mutantn vn,1 vn,2 . . . vn,m


where vi,j is the result (0: alive, 1: killed, 2: invalid) of the
application of test j to mutant i.

Figure 1. Matrix execution format

A mutant is invalid when it cannot be executed because
it does not comply with the syntax of the language. Invalid
mutants neither are assigned a fitness nor affect the fitness
computation of the rest of valid mutants, as they are removed
from the execution matrix. We should note that the fitness
function:
• Penalises groups of mutants killed by the same test

cases. Even if few mutants from one of those groups are
produced in a generation and they are selected to breed
a new generation, it is likely that several mutants from
that group are created and the fitness of the mutants in
that group drops.

• Similarly, when those mutants are derived from the same
mutation operator, the algorithm will penalise this oper-
ator focusing on others in successive generations.

The GiGAn system

In this paper we use GiGAn[6], a system implementing
EMT for object-oriented programs written in C++. GiGAn
connects the genetic algorithm implemented in GAmera [11]
with the mutation system MuCPP [9], where a set of class
mutation operators for C++ programs is implemented. The
process orchestrated by GiGAn is as follows:

1) MuCPP analyses the C++ source code of the project.
This generates a report with a list of the mutants that
each mutation operator can produce in the code. The

genetic algorithm uses the report to know which mutants
(individuals) can be generated.

2) The genetic algorithm produces a generation of individ-
uals selecting as many mutants as previously set in the
configuration.

3) A converter transforms the individuals into usable mu-
tant identifiers for MuCPP.

4) MuCPP executes the mutants against the test suite, re-
sulting in an execution matrix that is used by the genetic
algorithm to compute the fitness of each individual.

5) Steps 2 to 5 are repeated until the stopping condition
is satisfied, for instance, when reaching a percentage of
the full set of mutants or a number of generations.

The encoding scheme of an individual is a pair (operator,
location), where the field operator is an integer indicating
the mutation operator that generates the mutant, and the field
location is an integer representing the order in the code of
the mutants generated by an operator. We should note that the
genetic algorithm automated in GAmera also contemplates a
third field called attribute (variant inserted into a location),
but that field has been disabled in GiGAn because all class
mutation operators in MuCPP present attribute = 1. Re-
garding Step 3, the conversion is required because the genetic
algorithm uses a normalised version of the field location to
avoid selecting invalid representations of mutants (the mutant
that results after applying a reproductive operator can always
be generated), and also because MuCPP uses a different format
for mutant identifiers.

The genetic algorithm used by GiGAn maximises the sum
of the fitness of the individuals in each generation to evolve
toward better solutions (finding strong mutants). The algorithm
assumes that nearby individuals are likely to be similar to those
that induced their generation. As usual, our genetic algorithm
depends on two kind of operators: selection and reproductive
operators. Our genetic algorithm applies the roulette wheel
method [12] as selection operator. The quick convergence of
this selection method of mutants is convenient in the case of
EMT because we are interested in obtaining the set of strong
mutants with a reduced set of mutants. As for reproductive
operators, the genetic algorithm can apply mutation operators2

and crossover operators:
• Mutation operators. They modify the information of

one of the selected individuals to generate a new in-
dividual. As such, one of the two fields to identify
an individual (operator or location) is mutated, pro-
ducing either the individual (operator′, location) or
(operator, location′).

• Crossover operators. They combine the information of
two individuals (parents) to generate two new individuals
(children), which inherit information from both parents.
To that end, a crossover point related to the encoding
scheme is selected. As it is shown in Figure 3, the
operator of both parents is swapped.

2Do not confuse these mutation operators with the mutation operators
applied in mutation testing.



Figure 2. Mutation operators

Figure 3. Mutant crossover

Finally, we should note that the algorithm does not only
rely on the fitness function of the mutants in a generation to
detect groups of similar individuals but also on all the mutants
generated so far (the mutants in a generation learn from the
previous generations). These mutants are saved in a second
population, which is the output of the algorithm at the end of
its execution.

IV. METHODOLOGY

The main goal of our research consists in producing a
good subset of mutants and then use the information of their
execution against a test suite to design new test cases. In this
section we describe the two sequential phases conforming our
methodology. In the next section we show how these two
phases are applied to four case studies.

First phase

The purpose of this phase is to obtain adequate test suites
for the SUTs. These adequate test suites will be used for the
simulation of the test suite improvement in the next phase.
The process is as follows:

1) Execute all the mutants against the current non-adequate
test suite (TNA).

2) Inspect the surviving mutants to distinguish between
equivalent and non-equivalent mutants.

3) Design new test cases to kill all the surviving non-
equivalent mutants, thereby reaching an adequate test
suite (TA).

4) Execute all the mutants against all the test cases in TA,
obtaining the final execution matrix associated with TA

(EM ).
5) Minimise TA using the information in EM . The result

is a minimal and adequate test suite (TMA).
A test suite is labelled as minimal when it contains the

minimum number of test cases needed to kill the set of non-
equivalent mutants. In this study, using minimal test suites is
fundamental to avoid that redundant test cases skew results (a
test case is redundant with respect to a set of mutants if the
same mutants are still killed when that test case is removed).

At the end of this phase, we have an adequate test suite
for the set of mutants and information in an execution matrix
about which mutants can induce the generation of which test
cases in that test suite.

Second phase

In this phase we use the information in EM to know how
many mutants need to be generated by the genetic algorithm
in order to reach the stopping condition: the algorithm stops
when reaching a given percentage (P ) of the number of test
cases in the minimal and adequate test suite (|TMA|) with the
subset of mutants generated. For this simulation, we have the
following components:
• The current test suite (TNA) for the execution of EMT.
• The future test suite (TA) after being refined.
• The result of the execution of the mutants against the ad-

equate test suite in the future producing a new execution
matrix (EM ).

The idea is to resemble a real process of test suite improve-
ment; we stop the algorithm when it has generated enough
mutants to improve the test suite in a certain percentage with
respect to TA. By extracting from EM the information of
the execution of the mutants generated by the algorithm, we
can estimate how many test cases would be induced by those
mutants. This estimation is based on the comparison between
the size of the current test suite and the size of the improved
test suite (through the mutants selected) when both test suites
are minimised.

We run EMT and the genetic algorithm follows the follow-
ing steps:

1) Let i = 1.
2) Select the set of mutants, as explained in Section III, to

be added in generation i (Mi).
3) Select the rows of EM corresponding to the mutants in

the set of generations M0, . . . ,Mi. We produce EMi, a
new execution matrix associated with generation i and
using the information in EM of the mutants generated
so far by the algorithm.

4) Minimise TA using the information in EMi. This step
leads to a minimal and adequate test suite for the mutants
selected by the algorithm so far (TMAi

).
5) If the stopping condition |TMAi

| ≥ |TMA| × P is
satisfied then we stop; otherwise, we increase i and go
to Step 2.

In the experiments reported in the next section we used
two stopping conditions (that is, two values for P ): reaching,
respectively, 75% and 90% of the minimal and adequate test
suite (TMA). We executed the second phase 30 times with
different seeds. The same process is followed for the random
algorithm (Random from now on), where only one mutant is
randomly selected in step 2.

V. EXPERIMENTS, RESULTS AND DISCUSSION

In this section we present how our methodology is put into
practice. We apply it to generate test suites for four different



Table I
METRICS ABOUT THE SUTS USED IN THE EXPERIMENTS

TCL DPH TXM DOM

Mutants

Total 137 219 614 1,146
Valid 135 208 433 681
Strong 45 103 159 348
% Strong mutants 33.3% 49.5% 36.7% 51.1%

Test suite

|Original T | 17 61 57 46
|Adequate T | 24(3) 70(5) 62(3) 56(4)
|Minimal T | 15 22 15 25

real C++ programs. In addition, we show the goodness of the
test suites by comparing them with the ones generated by a
random algorithm to select mutants. We will see that we are
able to augment the test suite while generating fewer mutants.

A. First phase: test suite improvement

The first part of this experiment requires that adequate test
suites are obtained for each of the SUTs used in this study.
We make use of the same case studies as in the previous
experiments conducted to find different percentages of strong
mutants [6]. These programs are briefly described below:

• Matrix TCL Pro (TCL) [13]: a library to perform matrix
algebra calculations.

• Dolphin (DPH) [14]: the default navigational file man-
ager in KDE desktop applications.

• Tinyxml2 (TXM) [15]: a lightweight and efficient XML
parser that can be integrated into C++ applications.

• QtDom (DOM) [16]: a module of the known Qt frame-
work that provides a C++ implementation of the DOM
standard.

Table I shows different metrics related to these programs.
These quantities are divided in two main groups:

• Distribution of mutants. We provide the amount of to-
tal, valid and strong mutants (the percentage of strong
mutants with respect to the set of valid mutants is also
shown).

• Size of the test suites. We provide the number of test
cases in the original test suite (the suite distributed
with the program), in the adequate test suite (the one
produced after adding new test cases to kill surviving
mutants) and in the minimal test suite (the one derived
from the application of an exact algorithm for test suite
minimisation using the execution matrix EM ). In the
information corresponding to the adequate test suite, we
have also shown, between parentheses, the number of
test cases additionally modified. We modify a test case,
instead of inserting new ones, when the assertion needed
to kill a mutant is closely related to the logic of that test
case.

Let us remark that the percentage of strong mutants created
by MuCPP is not the same for different applications (it also
depends on the test suite distributed with each application).

B. Second phase: simulation results

Table II shows the results of the second phase. Different
statistics have been computed (mean, median, minimum, max-
imum and standard deviation). The values shown in the table
represent the percentage of mutants that have been generated
to reach the stopping conditions both by EMT and Random.
Thus, the lower the values in this table the better the result.

Before interpreting these results, we should note that the
evaluation is impacted by the test suite itself. For instance,
not in all the SUTs the current non-adequate suite (TNA)
is at the same distance of the adequate test suite (TA): the
difference between the size of the minimised current test suite
and the size of the minimal and adequate test suite is not
the same for all the programs. The size of the test suite may
also affect the search and the results of the genetic algorithm.
Moreover, each test suite presents a different nature and is
comprised of general and specific test cases. We consider a
test case to be general when several invocations are needed
before testing a particular functionality and some other test
cases cover a subset of related functionalities instead of a
single functionality (as in a specific test case). This fact has an
impact on the power of the test suite in killing mutants, that
is, whether mutants are killed by few or many of its test cases
overall. As a result, we can observe that, on average, EMT
needs to generate 49.75% of mutants to reach 75% of TMA

in DPH, whereas it only needs to generate 13.33% in DOM
for the same end. As such, we should not directly compare
the results among applications.

The results for EMT are better than the results for Random
in DPH, TXM and DOM, but worse in TCL. We can infer that
the results scale with the size of the program, given that the
best result is obtained in DOM, followed by TXM and DPH
(in descending order of the number of mutants). If we focus on
the 75% stopping condition, the difference between EMT and
Random increases from about 5% in DPH to 10% in DOM. We
can also note that the outcome is better for the most demanding
condition (90%). Again, the difference between EMT and
Random increases from about 5% in DPH to 28% in DOM.
When comparing the results for both stopping conditions, we
can highlight the gap between EMT and Random in the case
of TXM and DOM:
• P = 75%: approximately 6% and 10% respectively.
• P = 90%: approximately 15% and 28% respectively.



Table II
PERCENTAGE OF MUTANTS GENERATED WITH THE EVOLUTIONARY AND THE RANDOM STRATEGY TO REACH THE STOPPING CONDITIONS (75% AND

90% OF THE MINIMAL AND ADEQUATE TEST SUITE) IN THE SUTS

P 75% 90%

Program Statistic EMT Random EMT Random

TCL

Mean 37.24 32.45 49.24 47.85
Med. 38.32 33.57 50.36 50.36
Min. 18.97 14.59 25.54 25.54
Max. 54.74 52.55 75.91 68.61
SD 10.77 9.09 13.41 12.78

DPH

Mean 49.75 54.10 66.33 71.08
Med. 48.63 52.05 65.29 69.63
Min. 36.52 30.13 52.51 40.63
Max. 74.42 84.01 84.93 88.58
SD 8.51 9.95 8.61 10.45

TXM

Mean 19.26 25.75 31.93 46.79
Med. 18.48 24.34 32.25 43.24
Min. 10.58 11.88 20.52 24.75
Max. 27.36 53.09 46.09 86.80
SD 4.38 8.98 7.13 15.21

DOM

Mean 13.33 23.74 21.41 49.04
Med. 13.00 21.90 21.16 46.68
Min. 7.85 11.16 11.95 26.96
Max. 23.29 49.04 35.86 81.15
SD 3.35 7.99 5.00 12.85

It is also interesting to observe the standard deviation, which
is lower in EMT than in Random for DPH, TXM and DOM
and both stopping conditions (it is especially low for EMT
in comparison with Random in TXM and DOM). However,
we should note that the difference between both techniques
may be impacted by the number of invalid mutants, which is
higher in TXM and DOM than in TCL and DPH. Still, this fact
also means that EMT has the ability to avoid the generation
of invalid mutants, especially when they are generated by a
subset of the operators (as it was commented in Section III,
the algorithm tends to focus on operators providing a high
fitness).

Regarding TCL, where the performance of Random was
better, we suspect that these results are due to the test suite
originally associated with this application. The test cases in
this test suite can be labelled as general and, as mentioned
before, these test cases do not usually lead to mutants killed
by few test cases. On the contrary, given that these test cases
cover a great part of the code, they tend to kill several mutants.
Thus, some of the new or modified test cases (those that were
manually designed) are likely to appear in this experiment
without generating the mutants that led to the design of
those test cases. In summary, it is possible to reach 75% and
90% of the minimal and adequate test suite with different
combinations of mutants. This fact can be disadvantageous for
EMT because this strategy is guided by the fitness function
to find a specific subset of mutants, which also includes
equivalent mutants that do not contribute to the refinement
of the test suite.

In order to confirm this assumption, we repeated the exper-

Table III
AVERAGE PERCENTAGE OF MUTANTS GENERATED WITH THE

EVOLUTIONARY AND THE RANDOM STRATEGY TO FIND THE WHOLE
MINIMAL AND ADEQUATE TEST SUITE IN THE SUTS

Program EMT Random

TCL 75.79 80.05
DPH 88.24 91.63
TXM 49.30 75.92
DOM 34.69 80.51

iments to construct the whole minimal and adequate test suite
using as stopping condition P = 100%. We expect that EMT
will benefit from the fitness function to find the most specific
test cases quicker than the random strategy. The average results
for all the applications are shown in Table III, which confirms
that EMT is more effective than Random in finding the whole
adequate and minimal test suite for TCL. Again, this situation
shows that this evaluation depends on the test suite. Finally, we
should remark that the results are again more positive for larger
programs in terms of mutants generated, where the difference
between EMT and Random is around 26% and 45% in TXM
and DOM respectively.

C. Threats to Validity

These experiments have been conducted on C++ programs
using mutation operators at the class level. New experiments
should be carried out to ensure that the same results hold
in other contexts, such as using a different programming
language or a different set of mutation operators. Also, the



genetic algorithm in these experiments was configured with
the optimal combination of values for the parameters found
by Domínguez-Jiménez et al. [5], but the results may vary
with other configurations.

The modified and new test cases have been designed with
the utmost care. Nevertheless, this is a challenging and error-
prone task as we are dealing with third-party libraries and test
suites developed by different testers. Therefore, the improve-
ment of this test suite should be considered as an estimation.
Being the identification of equivalent mutants a manual task
(as we have already said, this is an undecidable problem),
the results may be inaccurate. As aforementioned, the varying
nature of the test suite accompanying the analysed subjects
also impacts this evaluation and supposes a threat to the
validity of the results. We should also remark that, in our
experiments, selecting a mutant can change the minimal and
adequate test suite in a generation (TMAi ). However, that does
not mean that the selected mutant has the potential to help the
tester to create missing test cases, especially when the test
suite is comprised of general test cases.

VI. RELATED WORK

Many studies on mutation testing have sought to reduce
its computational cost by selecting a subset of mutants, such
as mutant sampling [17], selective mutation [18] or higher
order mutation (HOM) [19]. Search-based techniques have
also been used in software testing [20] in order to reduce
the cost, especially using genetic algorithms to this purpose.
Nevertheless, most of the studies applying genetic algorithms
in mutation testing were limited to test case generation [21]
and only a few, as raised by Domínguez-Jiménez et al. [5], to
mutant generation.

Mutation testing has been applied in conjunction with
evolutionary algorithms to generate test cases also for object-
oriented software [22], [23]. Bashir and Nadeem [23] used the
term Evolutionary Mutation Testing but in order to propose a
fitness function to find effective test cases for object-oriented
programs. Adamopoulos et al. [24] used a genetic algorithm
for the co-evolution of mutant and test suite population, where
difficult to kill mutants are favoured and equivalent mutants
are penalised. Banzi et al. [25] also applied a genetic algorithm
but at the mutation operator level for selective mutation. They
used a multi-objective approach to select mutation operators
that maximise the adequacy of the test suite and minimise the
number of mutants generated.

However, there is an increasing body of research in the last
years applying genetic programming to select a reduced set
of mutants. Silva et al. [26] collected the studies applying
search-based techniques in the context of mutation testing for
mutant generation. Oliveira et al. [27] studied the evolution
in parallel of the population of mutants and test cases, as
done by Adamopoulos et al. [24]. However, they used a
new representation with new genetic operators: Effective Son
crossover and Muta Genes mutation (instead of the crossover
and mutation operators used by Adamopoulos et al.). Schwarz
et al. [28] used a genetic algorithm to find mutations not

detected by the test suite, which have a high impact and are
also spread throughout the tested code.

The studies in the context of mutant generation have
mainly focused on genetic programming to generate interest-
ing HOMs [19], [29]. Jia and Harman [19] defined the concept
of subsuming HOM as a HOM which is hard to kill when
compared to the difficulty of killing the First Order Mutants
(FOMs) from which it is constructed. The authors applied
several search-based techniques in order to find subsuming
HOMs, concluding that the genetic algorithm yielded the best
results of all them. However, Omar et al. [29], who have
also explored the performance of search-based techniques
(including genetic programming), found that guided local
search obtained the best results in general when finding subtle
HOMs for Java and AspectJ programs.

As for EMT, Domínguez-Jiménez et al. [5] analysed its
performance when finding strong mutants with three WS-
BPEL compositions and Delgado-Pérez et al. [6] replicated
their experience with the same four C++ programs used in the
experiments in this paper. In the latter study, EMT was better
than Random in all the SUTs, but the differences in TXM and
DOM were not so relevant as reported here. In fact, the shortest
difference of all the SUTs in that study was obtained in DOM,
so the results did not scale with the size of the program as
they do in this paper.

VII. CONCLUSIONS AND FUTURE WORK

Evaluating the performance of cost reduction methods for
mutation testing is a necessary task for the success of this
testing technique. Evolutionary Mutation Testing, a search-
based technique to select a reduced set of mutants with
the focus on test suites improvement, had reported good
results regarding its capability to find those mutants with
the potential to induce the creation of new test cases (strong
mutants). However, finding strong mutants is not the ultimate
goal in practice, but the augmentation of the test suite. The
experiments in this paper do give evidence that using EMT can
lead to a further refinement of the test suite when generating
only a subset of mutants. Overall, the application of EMT
together with class mutation operators for C++ produced a
subset of selected mutants that were able to generate/modify
a greater number of test cases when compared to the same
percentage of mutants randomly selected. In addition, EMT
scaled better for large programs (those that derived a higher
number of mutants).

Further research on this cost reduction technique is still
required, as well as applying EMT to other domains and im-
plementing new refinements in the mutant selection method for
a better performance of the genetic algorithm (e.g., integrating
techniques to reduce the selection of equivalent mutants).
In future experiments, performing statistical comparisons be-
tween the genetic and the random algorithm and studying how
much of the difference between these algorithms is due to the
different nature of the test suites or to the existence of invalid
mutants would also be interesting. Finally, a study of the best-
valued operators following the quality metric by Estero-Botaro



et al. [30] for test suite refinement could help us to further
reduce the cost by applying selective mutation.
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