Abstract:
Recent analytical studies have revealed that in spite of promising success in problem solving, the performance of evolutionary multitasking deteriorates with decreasing s...Show MoreMetadata
Abstract:
Recent analytical studies have revealed that in spite of promising success in problem solving, the performance of evolutionary multitasking deteriorates with decreasing similarity between constitutive tasks. The present day multifactorial evolutionary algorithm (MFEA) is susceptible to negative knowledge transfer between uncorrelated tasks. To alleviate this issue, we propose a linearized domain adaptation (LDA) strategy that transforms the search space of a simple task to the search space similar to its constitutive complex task. This high order representative space resembles high correlation with its constitutive task and provides a platform for efficient knowledge transfer via crossover. The proposed framework, LDA-MFEA is tested on several benchmark problems constituting of tasks with different degrees of similarities and intersecting global optima. Experimental results demonstrate competitive performances against MFEA and shows that our proposition dramatically improves the performance relative to optimizing each task independently.
Published in: 2017 IEEE Congress on Evolutionary Computation (CEC)
Date of Conference: 05-08 June 2017
Date Added to IEEE Xplore: 07 July 2017
ISBN Information: