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Abstract—Robotics are generally subject to stringent opera-
tional conditions that impose a high degree of criticality on the
allocation of resources and the schedule of operations in mission
planning. In this regard the so-called cost of a mission must
be considered as an additional criterion when designing optimal
task schedules within the mission at hand. Such a cost can be
conceived as the impact of the mission on the robotic resources
themselves, which range from the consumption of battery to
other negative effects such as mechanic erosion. This manuscript
focuses on this issue by presenting experimental results obtained
over realistic scenarios of two heuristic solvers (MOHS and
NSGA-II) aimed at efficiently scheduling tasks in robotic swarms
that collaborate together to accomplish a mission. The heuris-
tic techniques resort to a Random-Keys encoding strategy to
represent the allocation of robots to tasks whereas the relative
execution order of such tasks within the schedule of certain robots
is computed based on the Traveling Salesman Problem (TSP).
Experimental results in three different deployment scenarios
reveal the goodness of the proposed technique based on the
Multi-objective Harmony Search algorithm (MOHS) in terms
of Hypervolume (HV) and Coverage Rate (CR) performance
indicators.

I. INTRODUCTION

Scheduling problems arise in many different fields of
knowledge yielding from operational logistics to production
processes. The main focus of scheduling aims at allocating
jobs or tasks over time subject to mutually affecting constraints
such as the maximum commit time beyond which all works
should be completed or the limited availability of resources
needed to finish the task, among others. During last decade an
upsurge of new algorithmic techniques capable of efficiently
dealing with scheduling problems of high dimensionality have
arisen in different application domains, e.g. manufacturing [1],
[2], [3] and service industry [4], [5], [6], [7], cloud computing
[8] [9], [10], transport [11], [12], [13], [14], [15], [16].

Regarding the set of methods and techniques that have been
proposed to deal with scheduling problems, meta-heuristics
have been extensively applied as efficient solvers to seek
for near-optimal solutions within less computation time than
exact computation methods [17], [18], [19] and [20]. Indeed,
the use of meta-heuristic algorithms enables the achievement
of plausible solutions to complex optimization problems. In
this context, bio-inspired solvers, which mimic self-learning
behaviors observed in Nature when exploring solution spaces,
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have achieved a growing interest for solving job-shop schedul-
ing problems, e.g Simulated Annealing (SA) [21], Particle
Swarm Optimization (PSO) [22], Ant Colony Optimization
(ACO) [23] and Genetic (GA) algorithms ([24], [25].

In addition, scheduling problems can be seen as optimal
selection problems in which a subset of tasks or activities
must be selected from a whole list of possible tasks. By
the same way, it can also be formulated as a multi-objective
optimization problem in which more than one objective —
possibly conflicting with each other — has to be optimized.
For instance, in robotics two possible conflicting objectives
can be battery life versus commit time. Therefore, there exists
no single solution that simultaneously optimizes both objective
functions, but a set of Pareto-optimal solutions such that
any slight improvement in one of the objectives involves a
penalty in at least one of the remaining objectives. Due to
the complexity of the underlying scheduling scenario, the
generation of the Pareto optimal set can be computationally
expensive and is not often possible. Thus, different meta-
heuristic solvers that find their roots on Nature behavior have
appeared in order to cope with multi-objective scheduling
problems [26], [27]: EA’s, GA [28], [29] and PSA [30] or
more new ones as firefly [31] or bat algorithm [32]. Although
they do not guarantee the identification of optimal solution
sets, these meta-heuristic techniques attempt at obtaining a
good approximation of Pareto-optimal sets.

This proposal is focused towards task scheduling in the
case where a group of robots, along with the plant operator,
collaborate with each other to accomplish a certain inspection
and maintenance mission. In industrial missions there are
several scenarios such as the one presented herein, where a
collaboration among robots is required in order to accomplish
the monitoring and supervision of industrial plants. In this
proposal, the main idea is that, given a certain industrial
plant comprised by multiple sensors and machinery that has
to be motorized, measured and controlled, the algorithm has
to determine the optimal set of vehicles to fulfill the mission,
as well as calculate the path for each of the robots. Thus,
the solution provided will comprise not only the robots, but
also the paths to follow in order to accomplish the mission
tasks optimally in terms of time (of measuring, displacements,
among others) and cost (e.g. battery level). Nevertheless,
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restrictions such as the distance to the mission starting point,
the status of the sensors on board, the weather conditions or
even battery levels of the robots have to be taken into account
when dealing with this multi-objective problem.

In this context, recent literature focused on multi-robot
task scheduling problems can be found in [33]. Concretely,
authors in [34] present a fuzzy scheduler capable of guiding
robots dealing with real-time obstacle avoidance. Also related,
in [35] a path planning and obstacle avoidance genetic-
based algorithm for multiple robots is presented; a similar
scenario tackled with Ant Colony algorithm is proposed in
[36]. Similarly, in [37] an heuristic algorithm for solving a
multi-robot task scheduling problem is addressed. In the same
line of research, authors in [38] propose a two-phased multi-
robot approach for task allocation and scheduling aimed at
minimizing total execution time and its inoccupation (idle)
time.

Within this field of research, this proposal takes a step
beyond the state of the art by presenting the performance of
different multi-objective algorithms for optimal collaborative
task scheduling in a real time environment.

The mathematical formulation of this problem determines
the optimality as a measure of two criteria: 1) the overall cost
(accounting for different cost aspects of the schedule such as
its impact on the energy consumption of the robots) should
be minimized; 2) the minimization of total completion time
of the mission is required. This optimization is accomplished
while satisfying both mission and robot requirements as well
as ensuring the total completion of the mission. Specifically,
towards efficiently dealing with the aforementioned paradigm,
this proposal exposes the practical performance of a multi-
objective heuristic technique that utilizes a Random-Keys
encoding to optimally represent the assignment of robots to
tasks and build the final schedule. The heuristic scheduler
has been designed to operate in a real scenario deployed in
Steinkjer (Norway). Its application will highlight not only the
practical feasible to real scenarios subject to cost and total time
minimization criteria, but also the usability and advantages
gained by utilizing it in real operation of the plant. That being
so, the practical value of the proposed approach not only
focuses on minimizing cost and distance, but also providing
the operator an useful tool for task planning.

II. SYSTEM MODEL AND PROBLEM FORMULATION

According to Figure 1 we consider a robotic swarm com-
posed by N robots that are deployed over a geographical
area in order to complete M inspection tasks at geographical
coordinates { (2, Ym)}M_,. These tasks are assumed not
to be related to each other under any precedence constraint
(i.e. tasks can be completed in any order along time). Each
task imposes certain functionalities or skills on the robot
scheduled for its completion. The overall set of functionalities
available in the robotic swarm will be hereafter represented by
F ={f1, fe,..., fr}, with F = |F| denoting its cardinality.
Following this notation, the subset of functionalities featured
by robot n € {1,..., N} will be denoted as Fr(n) C F,

whereas the subset of skills required by task m € {1,..., M}
will be referred to as Fr(m) C F. It should be clear that a sine
qua non condition for robot n to be scheduled for completing
task n will be Fr(m) C Fr(m), i.e. functionalities demanded
by task n should be covered by the portfolio of functionalities
of the robot at hand. Such skills are supposed to be set prior
to the deployment of the robots and to be not transferable nor
configurable during the mission.

Fig. 1. Schematic diagram of a problem instance with N = 3 robots and
M = 17 tasks. The plotted solution to the problem {Aa, Am, A=} — €.g.
A= = {10,1,16,6,11,9} — is an ordered mapping of tasks to robots under
a Pareto-optimal trade-off between cost of the mission and completion time.

Bearing in mind the above definitions, a mission schedule
or plan consists of determining the allocation of robots to
tasks not only in regards to which robot is enforced to
accomplish each mission task, but also their sequencing along
time for each robot. To jointly represent both variables a
vector A" = {AT, A7, ..., Ay, } will represent the ordered
sequence of the M (n) < M tasks assigned to robot n, with
Ao {1,...,M} and \?, # N, if m # m’ and/or n # n'.
Therefore, any given plan devised to complete the inspection
mission can be represented by {A"}N_ ., namely, the set
of all schedules for the robotic swarm. This definition also
accommodates the particular case when a given robot is left
unscheduled due to e.g. an over-dimensioned number of robots
for completing the tasks (N > M). This case would yield
M(n) =2 and A" = {Ag, Ao} for part of the robots selected
under the criteria next defined. Finally, it is assumed that all
robots depart from a single depot, assumption reflected in the
above definitions by extending all schedules {\"})_, with an
initial task Ag with coordinates (z¢,yo) given by the position
of the depot. Likewise, all deployed robots are commanded to
return to the depot after completing all their scheduled tasks,
resulting in A™ = {A\g, AT, ..., AN (n)> X} Vne{l,...,N}

To evaluate the quality of the mission plan two performance
indicators over two different domains are defined. The first
refers to the completion time of the mission, which will be
given by the time at which all robots have finished their
corresponding task schedules. Mathematically the time taken
for robot n to complete task m, denoted as T;}L*/ [seconds],
will vary as a function of several factors (e.g. speed of the
robot, processing power, battery consumption regime, etc) that
depend roughly on the robot itself. Likewise, the completion
time of the mission will also be subject to the sequence
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of tasks and the time taken for robot m to move among
the physical locations {(xM;,yA%)}f\jg) where its allocated
tasks are to be developed. In this regard we will refer as
T™(m ~» m’) [seconds] to the time taken for robot n to travel
from coordinate (Z,,Ym) to (Tms,Ym’) subject to its speed
of travel, trajectory and ability to cope with obstacles along
its path (e.g. steep areas, pebbly areas and other obstructions
alike). Based on this notation the overall completion time of
mission {A"})_, will be given by

M(n)+1
T (N0 =max Y- (TN~ Ap) + T3 . (1)
m=1

such that 7" = 0 for m = Ali(n)+1 @s once returned to the
depot robots are not commanded to perform any task.

The second performance indicator relates to the cost asso-
ciated to the mission plan, which relates to the cost associated
to the inspection task and the use of robot n in the swarm. The
former cost concept is set by 1) the radio coverage level R,,
[%] of the geographical point over which the inspection task is
to be performed, which impacts on the available transmission
bandwidth for transmitting the information monitored on site
via camera, sensors and other sensors installed on board; and
2) the nature of data collected during the task at hand, i.e.
if mission m requires video to be transmitted to the control
center the required bandwidth will be higher than that of
sending low-rate gas measures. All in all, the combination of
the required (task) and available (location) bandwidth entails
costs whenever the information to be captured demands high-
rate wireless equipment to be installed on the robot and/or
the radio coverage level of the area is low enough to further
justify this additional equipment. Second, further costs arise
when scheduling different robots due to e.g. varying battery
levels, even between any pair featuring the same subset of
functionalities for the mission. Such costs associated to the
mission will be hence given by

N M(n)
Co(A"Hl) = > [Crtm)+ > Cran) |, @
n=1 m=1

M(n)>2

where Cgr(n) and Cr(m) respectively denote the cost for
robot n and task m. The latter cost is computed as Cr(m) =
Cpw (m)+ L(m), where Cw (m) denotes the cost associated
to installing a radio interface fulfilling the maximum rate
required to transmit the information captured during task m;
and L(m) denotes the relative coverage level available at
location (x,,,y,) with respect to an ideal communication
channel exclusively undergoing distance-dependent free space
losses. Values of all cost concepts are normalized to the range
[0,100] so as to achieve a properly balanced cost definition.
Before formally posing the optimization problem tackled in
this manuscript it must be noted that the above definitions im-
plicitly assume that all inspection tasks must be addressed and
completed by the robot swarm, i.e. UY_ A" = {1,..., M}.
This may not be feasible when the number of available
robots N is significantly lower than M or the number of

qualified robots in the swarm is not high enough to cover
all the skill requirements of the mission commit. As we
will later tackle these two hypothesis and propose different
algorithmic approaches to deal with them, we will relax
this requirement in the problem statement. Therefore, the
multi-objective problem can be formulated as the discovery
of the Pareto optimal mission plans {{A\"*}N_, such that
AF = { N\, AT, AKﬁn,*)v Ao} that differently balances
between mission time Ty (+) and cost Cs(+), i.e.

A" = min [To((A ), Col@ )], @)

n=1

subject to A", £ A", if m £ m/ orn#n/, )

where miny[f1(x), f2(x)] represents that the optimization
criterion is driven by the Pareto trade-off between conflicting
objectives f1(x) and fa(x) set by different values of the
optimization variable x. The solution to the above problem is a
set of solutions that trades one objective for another differently
yet optimally in terms of Pareto dominance.

A. Multi-objective Harmony Search Algorithm (MOHS)

The Harmony Search (HS) optimization algorithm was first
proposed by Geem et al. in [40] and has been lately applied
to diverse applications and problems that range from multiple
disciplines, such as Energy [41], Games [42], vehicle routing
[43], [44] and Health operations [45], among others.

This paper presents a multi-objective version of the HS al-
gorithm that simultaneously minimizes the total time and cost
of a certain mission. As HS is a population-based algorithm
its parameters (HMCR, PAR and RSR) are applied to a set of
possible solutions {H(k)}%_, (denoted as Harmony Memory),
which aim at iteratively modifying such solutions towards
regions of higher optimality. Following the naive notation of
HS, a possible candidate set H(k) is denoted as harmony,
whereas note stands for any of its IV entries.

The Random-Keys (RK) encoding [46] represents each
note of the harmony Hy , (with n € {1,...,N} and k €
{1,...,K}) as a real positive number; the integer part | Hy, , |
refers to the index of the robot that will accomplish task
TASK,,, whereas the fractional part Hy, ,, — | Hj», | establishes
the order of the tasks in such a way that tasks with lower
fractional part are executed earlier than those with higher
fractional part. In this optimization problem each note is
encoded based on a simplified version of this encoding, as the
integer part, responsible for ordering the tasks, is combined
with a genetic TSP (Travelling Salesman Problem) solver in
order to fasten the entire process. The reason for utilizing
the TSP solver is that, at this point, the best order for the
inspection tasks is the optimal path between them (by terms
of minimizing distances), so the TSP will lead to optimal and
solutions.

To decode the RK-encoded individual all notes sharing the
same value for their integer part are grouped and sorted in
increasing order of the value of their fractional part. This
process results in the planning of tasks for every robot.

1623



For instance, the solution vector H(k) = {Hp,}i_, =
{2.35, 1.96, 2.73, 1.14} corresponds to the schedule:

Robot 1: TASKy, TASKo

Robot 2: TASK;, TASK3
Following this encoding, the integer part makes the task-robot
assignment and once the tasks for all the robots are identified,
the optimal route for each robotic is calculated separately.
Thus, the fractional part is not included on this approach.

In the literature RK encoding has been utilized to represent
solutions of evolutionary solvers that handle task plans, often
improved further by means of local search procedures [47].
The main benefit of using this representation method based
on trees is that it can be utilized to generate initial feasible
individuals that remain feasible upon crossover and mutation
and as such, do not require any repairing operator to ensure
feasibility [48] along the iterative process. That being so, the
authors in [49] propose a GA based approach for topology
optimization. Other recent contributions have also utilized RK
for solving the job-shop problem; in [28] a computer simu-
lation of a plant that provides a quantitative measure of the
optimality fitness that guides the search process is presented.
In a similar approach, HS has been previously combined with
RK in [50], but applied to a single objective optimization
scheduling problem for solving the aforementioned job-shop
paradigm.

1) General Scheme: The steps of the proposed multi-
objective HS algorithm are the following:

A. The initialization step is only performed at the first
iteration. At this point, the Harmony Memory H(k) is
randomly filled: the integer part, which determines the
robot that executes each task n with n € {1,..., N}, is
taken uniformly at random from {1,...,M}.

B. In the improvisation procedure, two probabilistic opera-
tors described above are sequentially applied to each note
so as to produce a new set of K improvised harmonies, as
it is thoughtfully detailed in Section II-Al. The optimal
routes for each robot are calculated with a genetic based
TSP algorithm and the harmonies are updated with the
reordering of the tasks.

C. In the evaluation step, the candidate solutions are eval-
uated under both metrics (total completion time and the
cost) according to the Expressions (1) and (2).

D. Once all the new solutions are evaluated and its met-
ric computed, each solution is assigned a rank and a
crowding distance value. The solutions with less rank
value and largest crowding distance will be selected in
order to remain in the HM along the iterative process. As
explained in [39] less rank value yields to solutions with
optimized metrics, whereas largest crowding distance
aims at obtaining larger Pareto fronts.

E. This process is repeated until a stop criterion is reached.
In this proposal, the algorithm iterates by returning to step
B until the maximum number of iterations Z is reached.
When the algorithm stops, the set of candidate solutions
stored in the HM, which comprise the final approximation

of the Pareto front, corresponds to the solutions for the
scheduling problem presented in this manuscript.

2) Improvisation parameters: The improvisation procedure
that generates new candidate solutions along the iterative
process is comprised by two operators that are sequentially
applied to each note of the harmony, namely:

e The Harmony Memory Considering Rate (HMCR €
[0, 1]) operator applied to a certain note establishes that
the new value of such note is taken randomly from
the values of such note (same position in the solution
vector) in the rest of harmonies of the HM. Thus, under
the HMCR probability, the new value for a certain note
is uniformly selected at random from the discrete set
{1,..., M}, where M stands for the total number of
robots. As the HMCR operator is only applied to the in-
teger part of the note, changes arising from its application
will only affect to the robot-task assignment.

o The Random Selection Rate (RSR € [0, 1]) represents
the probability that the new value for a certain note is
generated by making a subtle modification of its previous
value. This operator is applied also to the integer part
of the note so that it aims at changing randomly the
assignment of a task to a certain robot. This parameter
can include in the solution vectors robots that were not
included before, so it prevents from early convergence of
the algorithm.

III. DEVELOPED TOOL

The aim of the tool presented in this paper is to handle
several robots and plan their actions so as to optimize the
whole mission cost and time using a tool that helps the
operator making suitable plans. Thus, the focus is put on the
“plant monitoring” scenario, in which the mission comprises:
1) inspecting the plant, 2) taking measurements, 3) navi-
gating around and 4) providing information to the operator.
The exchanged information includes diverse actions such as
the acquisition of images and/or videos and the delivery of
measurements from different sensors onboard. That being so,
to map the real scenario and provide real-time information
to the operator, apart from defining the tasks that comprise
the mission, the first step is to depict the set of available
robots in the exact area to be inspected, as shown in Figure
2. The developed tool makes possible to select a subset of
robots to complete the mission and provides real information
of its current positions. Additionally, weather forecast and
relevant information from previous inspections is provided
before tracing the new inspection plan. Once, the robots are
located, the operator has the opportunity to discard in advance
some tasks or robots for the mission. Examples of tasks
involved in the monitoring of an area are “move to waypoint”,
“follow row”, “measure” or “take samples” (e.g. from the
gas fuel), “acquire stereo vision data” (images and/or video),
“send communication”, and other duties alike. It is important
to remark that differences among robots are related not only
to their capabilities to perform the tasks (i.e. not all robots
can accomplish any task), but also to their price and incurred
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cost when undertaking a certain task; each robot may require
different time and battery cost to carry out a certain task.

Once the mission is selected, the weather alerts, the past
conditions and the task and robots supervised by the operator,
the algorithm is launched on real time operation. Then, the
output provided by the scheduler represents a set of solutions
in which each of them corresponds to a task plan for each
robot in the mission, which includes their task sequence and
planned trajectory. The computed plans are shown in a mission
management graphical user interface. For this setup, all those
tasks are addressed with a Graphical User Interface (GUI)
that show the mission input and output on a geographical
information system, along with a Gantt chart of the task
schedule for each robot, as depicted in Figure 2.

Thus, making use of the GUI, the operator is provided with
a set of solutions and information related to each of them
(time, cost, inspection points involved, a map of the route in
google maps, among others), in order to facilitate the selection
of the optimal solution. As explained before, each solution
the algorithm provides has optimized the task schedule for
each member of the entire robotic swarm and the operator
selects the best candidate among the proposed solutions. The
output of the solver, now integrated into the human-machine
interface, has revealed that the algorithm is capable of planning
the mission of up to four robots, covering the entire area to be
inspected with computation time in the order of a few minutes’
time. In summary, the GUI entails the following steps:

o Information retrieval: the operator gets real time infor-
mation related to previous inspections, weather alerts and
robot location.

o Mission definition: the system informs the operator which
robots are available and their configurations, as well as
the inspection points presumed to be involved in such
mission. The operator can discard from the display in the
GUI the robots and points set that wants to remove from
the mission.

o Multi-objective scheduling algorithm: to optimize the
whole mission and coordinate the robots, the system
needs a planning model describing the available objects
and their possible tasks. Given this model, the proposed
heuristic algorithms compute the best sequence of actions
performed by the robots, i.e. the plan.

o Gantt chart view of the task plans for each robot: the
mission plan consists of a list of tasks assigned to each
robot. Plans are shown as paths on the map and Gantt
charts, showing the duration of the tasks, the order of
execution for each robot and depicting the route in the
map.

o Taking into account the information provided, the op-
erator selects a plan from the GUI and stores it in the
database; the plan can be executed on real time or queued
in the system.

This study is focused not only on the multi-objective schedul-
ing algorithm themselves, but also in real time operation with
robots. The results provided in the next subsection describe

quantitatively the task schedules produced by the algorithm,
as well as results obtained in the real environment in Steinkjer
(Norway).

MULTIOBIETIVE OPTIMIZATION ALGORITHM

i Jan 27 2017 13:58:28 GMT+0100 (Hora esténdar romancs)
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Fig. 2. Real simulation setup deployed in Steinkjer (Norway).

IV. EXPERIMENTAL RESULTS

In order to assess the performance rendered by the multi-
objective MOHS approach proposed in this paper, a compar-
ison study towards the well-known Non-dominated Sorting
Genetic Algorithm (NSGA-II [39]) in a real scenario in
Steinkjer (Norway) will be presented and discussed. In this
real scenario a total of N = 4 robots are employed for
accomplishing a specific mission composed of different tasks
(M = 200) linked to inspection points. As stated in Section
IIT each robot is capable of executing certain tasks in a specific
inspection point based on its capacity and properties. As robots
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have distinct functionalities and usages, a different cost and
time is associated per pair (m,n), i.e. robots with higher
cost per task require less time to execute the task, as well
as different time to move from a certain inspection point to
another. However, there are tasks that can be performed by
different robots, and the selection of one or another depends
on the total list of tasks and the availability of each robot.
Simulation results consider: 1) a baseline scenario in which
robots are located relatively close to each other and without
battery limitations; 2) a distance-based scenario in which

robot n = 1 (the fastest and most expensive one) is lo-
cated far from the mission area; and 3) a battery-limited
scenario in which robot n = 4 (the cheapest but slowest

one) undergoes a battery capacity restriction. Both multi-
objective approaches are configured with the same number
of Monte Carlo simulations, i.e. 10 in all cases, and maintain
a memory of 50 candidate solutions. This ensures fairness in
the comparison between such approaches as the number of
fitness evaluations is the same among solvers. The values of
the operators for all approaches have been optimized in order
to obtain the best performance in the baseline scenario, and
are extended to the remaining use cases (battery-limited and
distance-based scenarios). Regarding MOHS, the values of the
HMCR and PAR operators are set to 0.3 and 0.1, respectively.
NSGA-II employs a uniform crossover of 0.3 and Gaussian
mutation with probability of 0.1. Both algorithms run over 20
Montecarlos.

There are different multi-objective performance metrics that
can be employed in order to evaluate the quality of the
approximated Pareto fronts obtained by multi-objective ap-
proaches. On the one hand, two Pareto fronts can be compared
in terms of diversity metrics. In this regard, Table I shows
the hypervolume (HV) and the normalized hypervolume (HV
norm) metric (%) with a common reference point per real
case study. It is widely known that distribution and spread in
multi-objective techniques are a highly sought characteristic:
distribution refers to the relative distance among solutions,
whereas spread stands for the range of values covered by the
estimated Pareto front. In this regard, the HV metric, which
calculates the fraction of space covered by solutions in the
objective space with respect to a cuboid given by reference
points, blends both aspects together into a single numerical
score. The results obtained in all of the scenarios reveal a
higher HV value when employing the MOHS approach as
opposed the NSGA-II. That being so, MOHS has a better
explorative behavior that permits to explore a wider range
of solutions with different number of robots, i.e. solutions
with similar cost metric values as per Expression (2) but that
require slightly more time — corr. (1) — to accomplish the
same mission. NSGA-II offers less diversity of solutions than
MOHS and renders a worse performance than MOHS in terms
of the HV metric in all scenarios.

On the other hand, cardinality metrics refers to the num-
ber of solutions that exists in the resultant Pareto Front;
intuitively, a high number of solutions — and hence a high
value of such metrics — is preferred. In this context, Table

TABLE I
HYPERVOLUME AND NORMALIZED HYPERVOLUME (HVNOR.) (%) WITH
A COMMON REFERENCE POINT PER MULTI-OBJECTIVE APPROACH AND
REAL USE CASE SCENARIO (1: BASELINE SCENARIO; 2: DISTANCE-BASED
SCENARIO AND 3) BATTERY-LIMITED SCENARIO).

MOHS HV | NSGAIl HV | MOHS HVnor. | NSGAII HVnor.
1| 2723784736 | 2070765328 0.008463 0.006232
2 | 3409253248 | 1113950776 0.011139 0.004611
3 | 2180496742 | 2154872832 0.007907 0.006541
TABLE I

COVERAGE RATE (CR) (%), NUMBER OF NON-DOMINANT POINTS (NP),

AND TOTAL POINTS IN THE PARETO FRONT (PP) PER MULTI-OBJECTIVE

APPROACH AND REAL USE CASE SCENARIO (1: BASELINE SCENARIO; 2:
DISTANCE-BASED SCENARIO AND 3) BATTERY-LIMITED SCENARIO).

MOHS | NSGAIlI | MOHS | NSGAII | MOHS | NSGAIL
CR CR NP NP PP PP
1 33 10 13 4 24 15
2 25 21 7 6 15 13
3 26 3 8 1 17 17

IT presents the number of non-dominated solutions (NP) in
the resulting Pareto Fronts per multi-objective approach and
use case. As can be shown, MOHS obtains higher number
of non-dominated solutions in all scenarios. This is due to
the explorative capability of MOHS, which allows exploring
a wide range of distinct solutions in the search space. As a
result, this solver obtains more diversity of results. However,
it is adverted that the gain of MOHS with respect to NSGA-II
is reduced in Scenario 2, where NSGA-II and MOHS attain
similar values; the reason behind this is because Scenario 2
can just operate with 3 robots (one of them is far located) and
the explorative capability of the algorithm is less required for
finding neal-optimal solutions.

Finally, the Coverage Rate metric (CR) (%) also presented
in Table II, reflects the number of solutions within each Pareto
Front that are non-dominated by any solution in the rest of
fronts. As can be shown MOHS is capable of obtaining the
highest percentage of non-dominated solutions in all scenarios
due to its capability to extensively explore the search space.
In this case, the same effect is adverted when analyzing the
number of points in scenario 2: results show that the values
provided by both algorithms are similar because of the search
space reduction due to robot restrictions in such scenario.

Making a deeper analysis of all the results obtained, it can
be adverted in Figure IV that in Scenario 1, as it has not time
or battery restrictions, the plans are executed by four robots
in parallel. This is the optimal approach as the routes of the
robots are independent, so the overall time of the mission is
calculated taken into account the last robot to come back to
the hut. Intuitively, the first scenario utilizes the four robots in
parallel, attaining 15 points in the Pareto frontier with the GA
and 24 the MOHS, as it can be seen in Table II. This results
further evidence that the HS is more explorative and finds more
diverse solutions seeking on the search space of the problem,
as the HV, HV norm, CR, NP and PP parameters indicate. In
this scenario the difference between MOHS and NSGA-II is
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clear.

Nevertheless, regarding the results obtained in Scenario 2, in
which n = 1 (the fastest and most expensive one) is located
far away, both algorithms calculate the plan just with three
robots, and hence the search space is reduced with respect
to the baseline scenario. Accordingly, less solutions are found
(13 the NSGA-II and 15 MOHS); one can see that MOHS still
follows a more explorative behavior, but forfeits the advantage
attained in the first scenario.

The last Scenario shows the case in which robot n = 4
(the slowest and less expensive one) is running out of battery.
That being so, this robot can be included in the mission,
but just for few tasks. In this case again, the search space
allows the robots to operate, but the number of task assigned
to n = 4 is reduced; this problem is more restricted than
the baseline presented in Scenario 1, but less than Scenario
2. In this case, both algorithms find 17 points in the Pareto
optimal, evidencing that this case has middle complexity and
the explorative behavior of the MOHS does not offer clear
advantages over the NSGA-IL.

More in detail, we can see that the differences between
scenarios mentioned previously can be adverted in the Pareto
fronts: it can be seen that the results obtained in the first
scenario are the ones that achieve faster solutions (further
minimize time axis x), as all robots can operate fully in
parallel. On the contrary, one can see that the results obtained
with both algorithms for Scenario 2 are the ones that less
minimize time axis; the plans calculated for this scenario take
the longest as just comprise three robots. Consequently, the
costs (y axis) are a bit reduced with respect to Scenario 1
because the robot left outside of the plan is the most expensive
one and hence, the task have been assigned just to 3 robots,
but less costly. At last, Scenario 3 can utilize the four robots,
but taking into account that one of them is not fully loaded.
This robot n = 4 is slow but cheap, and henceforth, using it
for few tasks will incur not only into higher costs in the overall
mission, but also in higher overall time. Despite the four robots
operate in parallel, if one is running out of battery, the rest
will have to assume more tasks than in the baseline Scenario
1, and will take longer to accomplish the mission.

V. CONCLUDING REMARKS

This work presents a task assignment and scheduling prob-
lem performed collaboratively by robot swarms. This paradigm
is envisioned within monitoring and inspection missions lo-
cated in a plant. The main objective herein aims at minimizing
two conflicting criteria: the overall time of the mission and
its cost. Regarding the cost of a certain mission, it can be
defined as a numerical score related to the impact of the
assignment of a task to a certain robot entails (such as e.g.
battery consumption). In order to efficiently deal with this
multi-objective paradigm, two different multi-objective meta-
heuristics, namely NSGA-II and MOHS, have been designed
both using a RK encoding strategy. This way, the solutions
simultaneously represent both the mapping from tasks to
robots and the scheduling of tasks within every robot commit.
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Fig. 3. Pareto fronts obtained for the three scenarios.

The performance of the multi-objective solvers has been
assessed over three real-based scenarios deployed in Steinkjer
(Norway) in terms of different multi-objective performance in-
dicators, which quantify the cardinality, distribution and spread
of the obtained non-dominated solutions. In the proposed
paradigm, the importance of achieving a wide Pareto front and
diversity of results is a key point. In this regard, MOHS attains
a higher explorative behavior than NSGA-II rendering the best
performance metrics in terms or Hypervolume and Coverage
Rate in all scenarios, especially in those under operational
constraints as it explores the search space efficiently and
consequently yields the best approximation of the optimal
Pareto frontier.

Future research will be focused on creating a full decision
support system (DDS) in order to further help the operator
in the plant maintenance. First steps towards constructing a
full DDS will work towards storing information about past
missions and utilize such acquired knowledge in order to
advise the operator when the Pareto front is calculated and
just one solution has to be chosen. Furthermore, in order to
attain better plans, further constraints will be included in the
optimization problem, such as the inclusion of relationships
of dependence between tasks, the availability of charging
depots in the mission area or the transfer of unfinished tasks
between robots. All these restrictions and improvements will
be included in the problem statement in the near future and
tested in the real scenario located in Steinkjer.
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