
Optimal Experimental Design of Field Trials
using Differential Evolution

An application in Quantitative Genetics and Plant Breeding

Vitaliy Feoktistov
Stéphane Pietravalle

Nicolas Heslot
Biostatistics Department

Research Centre of Limagrain Europe
Chappes, France

vitaliy.feoktistov@limagrain.com

Abstract—When setting up field experiments, to test and
compare a range of genotypes (e.g. maize hybrids), it is important
to account for any possible field effect that may otherwise bias
performance estimates of genotypes. To do so, we propose a
model-based method aimed at optimizing the allocation of the
tested genotypes and checks between fields and placement within
field, according to their kinship. This task can be formulated as a
combinatorial permutation-based problem. We used Differential
Evolution concept to solve this problem. We then present results
of optimal strategies for between-field and within-field placements
of genotypes and compare them to existing optimization strate-
gies, both in terms of convergence time and result quality. The
new algorithm gives promising results in terms of convergence
and search space exploration.

Index Terms—Optimization, combinatorial, permutation, diffe-
rential evolution, breeding trials, experimental design.

I. INTRODUCTION

In plant breeding trials, field experiments are commonly
used to test genotypes (e.g. maize hybrids or wheat varieties)
and estimate their potential for a range of variables, such
as yield, at all stages of the breeding process. Accurately
estimating those variables is crucial to ensure that only the
best genotypes are kept for further selection.

In a field experiment, each genotype is allocated to one or
several small plots on a field. Measured performance on that
plot is due to an effect of the genotype, measurement error
and an effect of the field (e.g. nutrient availability). Fisher
highlighted the importance of experimental design in the early
1930s [1], to reduce bias and better estimate effects of interest.

In its most basic form, experimental design rely on ran-
domization and replication but better design structures, for
instance, through the use of blocking, can further improve
the reliability of the estimates. However, blocking structures
rely on the strong assumption of local homogeneity and also
require the design to be replicated. As a result, they can
sometimes be difficult to use, especially in early generation
variety trials, where the aim is to test a very large number of
genotypes with constraints on space and seed availability. In
recent years, model-based designs have been used more widely

[2]–[4]. At the local scale, one example of such a design is the
repchecks design and relies on a spatial correlation structure of
error first assumed by Gilmour et al. [2]. This design consists
of a number of unreplicated experimental genotypes and some
(usually three or four) replicated and well spread-out check
genotypes to capture and model any potential field effect.
In plant breeding trials, it is important to test the genotypes
over a range of locations to estimate their performance over
a network (e.g. market). Similarly to the constraints present
locally, it is often practically impossible to have all genotypes
replicated over all locations. As a result, many genotypes are
only present on a subset of the locations in the network; this
can be achieved through multi-location designs such as the
sparse repchecks or sparse p-reps designs [5], [6].

The Section II describes the optimal design of field ex-
periments problem. Its mathematical formulation as well as
modelling as combinatorial permutation-based optimization
task. The problem is split into two phases to be solved
efficiently. The Section III describes a general framework of
Differential Evolution (DE) algorithm, and then introduces the
new created algorithm for exploring the permutation space.
This is followed by proposition of several search strategies,
it also mentions the used method to handle constraints. The
Section IV demonstrates the obtained results for both op-
timizations. Here we show the efficiency of the approach
and compare it with the existing software packages. Real-life
examples are presented. The Section V concludes the paper
outlining promising trends and directions.

II. PROBLEM FORMULATION

A. State of the Arts and Motivation

Two PhD theses tried to tackle this problem from a practical
viewpoint [7], [8]. That resulted in two software packages:
DiGGer [9], a design search tool in R [10], and OD [11], also
an R-package. Other recent papers contribute to improving
the mathematical model of efficient designs [4]–[6] and show
real-case studies.

ar
X

iv
:1

70
2.

00
81

5v
2

 [
cs

.N
E

]
 2

2
Ju

l 2
01

9

The core of both software packages is coded in Fortran
and highly optimized. The problem can be considered as a
HPC one and despite of all code tunings, the computations are
still very expensive. To solve this problem, many metaheuris-
tics have been tested, among them: Tabu Search, Simulated
Annealing, Genetic Algorithms, and others. Nevertheless, for
many real cases the mentioned algorithms are not suitable due
to their computational time, in other words a poor conver-
gence. This motivated us to develop a new approach to solve
this problem more efficiently.

B. Modelling Optimal Design as a Permutation Problem

Let us consider the following linear mixed model [12]

y = Xβ + Zu+ ε (1)

y – is vector of phenotype, X – a design matrix for the
fixed effects, β – are fixed effects, Z – a design matrix
for the random genetic effect u, so that u is distributed
multivariate normal with covariance G, and ε – the error term
is multivariate normal with covariance R. G = Kσ2

a, where σ2
a

– is the additive genetic variance and K is the kinship which
can be based on pedigree or on markers. Kinship information
can be ignored in the optimization process by setting K to an
identity matrix.

From this model, the mixed model equations can be written
[13][

X
′
R−1X X

′
R−1Z

Z
′
R−1X Z

′
R−1Z +G−1

](
β
u

)
=

(
X

′
R−1y

Z
′
R−1y

)
(2)

In a general case, the prediction error variance PEV is

PEV = var(u− û) = [Z
′
MZ +G−1]−1 (3)

where

M = R−1 −R−1X(X
′
R−1X)−1X

′
R−1 (4)

For more details, see [14] and [15].
The optimization task consists in finding an optimal design

matrix Z∗, which minimizes the PEV . Let exists some start
design matrix Z0 with given properties, then the optimization
task can be rewritten as finding the optimal permutation π∗, so
that Z∗ = π∗(Z0) is the permutation of lines of Z0 matrix with
respect to constraints representing desirable design properties.

Taking into account relatedness between genotypes ensures
an optimal design is generated avoiding planting closely
related genotypes next to each other and splitting families
evenly between locations. This is a NP -hard problem and
is hard to solve for large sized cases, i.e. real situations.
Thus, the task is split into two phases. The first one (phase I)
is called Between Location phase, and optimizes dispatching
the genotypes among several locations (sparse design). The
second one (phase II) is Within Location phase. At this stage,
the optimal design inside of a location is resolved taking in
consideration auto-regressive error and genotype subsets from
the previous phase. As shown in Eqs. 3 and 4, for both phases,

the optimization can also take into account additional fixed
effects estimation such as block effects within location.

The incorporation of a spatial auto-regressive process
(ar(1)× ar(1)) with a so-called measurement error variance
(nugget) implies a given structure in the variance-covariance
matrix of the residuals of the mixed model. Assuming a
rectangular field of size r rows and c columns, allowing the
last row to be incomplete (with cl columns), the matrix R is
of size [c · (r− 1)+ cl, c · (r− 1)+ cl] and can be defined as

Ri,i = ψ

Ri,j = ρ
|ai−aj |
r · ρ|bi−bj |c

(5)

where ρr and ρc are the autocorrelation coefficients for the
rows and columns respectively, ψ = 1 + nugget and

ai = (i− 1) mod c+ 1
aj = (j − 1) mod c+ 1
bi = (i− 1) quo c+ 1
bj = (j − 1) quo c+ 1

(6)

III. DIFFERENTIAL EVOLUTION

A. General Description

Since its first introduction in 1995 [16], [17] Differential
Evolution is one of the most successful metaheuristic algo-
rithm. It has won many CEC global optimization competi-
tions. The algorithm was generalized to different branches of
optimization such as constrained, multi-modal, multi-objective
and large-scale optimization as well as made suitable for noisy
and mixed-variables objective functions. Thus it covers with
success many applications in a number of areas of science and
industry. A detailed history of the algorithm can be found in
Chapter 1 of [18].

Differential Evolution is a population-based approach. Its
concept shares the common principles of evolutionary al-
gorithms. Starting from an initial population P0 of NP ,
solutions DE intensively progresses to the global optimum
using self-learning principles. The initialization can be done in
different ways, the most often uniformly random solutions are
sampled respecting boundary constraints. Then, each solution
is evaluated through the objective function.

To be formal, let the population P consists of indi : i =
1, NP solutions, or individuals in evolutionary algorithms
terms. The individual indi contains D variables xij , so-called
genes. Thus indi = {xij}Dj=1 and P = {indi}NPi=1 .

At the each iteration g, also called generation, all individuals
are affected by reproduction cycle. To this end, for each current
individual ind a set of other individuals Θ = {ξ1, ξ2, . . . , ξn}
are randomly sampled from the population Pg . All the DE
search strategies are designed on the basis of this set.

The strategy [19] is how the information about Θ set
individuals is used to create the base β and the difference
δ vectors of the main DE operator of the reproduction cycle,
often called as differential mutation by analogy with genetic
algorithms, or else differentiation by functional analogy with
gradient optimization methods. So the differentiation operator

can be now viewed in its standardized form as the current
point β and the stochastic gradient step Fδ to do

ω = β + F · δ (7)

where F is constant of differentiation, one of the control
parameters. Usually the recommended values are in [0.5, 2)
range.

The next reproduction operator is crossover. It is a typical
representative of genetic algorithms’ crossovers. Its main func-
tion is to be conservative when passing to the new solution
preserving some part of genes from the old one. The most
used case is when the trial individual ω inherits the genes of
the target one with some probability

ωj =

{
ωj if randj ≥ Cr
indj otherwise (8)

for j = 1, . . . , D, uniform random numbers randj ∈ [0, 1),
and crossover constant Cr ∈ [0, 1), the second control
parameter.

So, the trial individual ω is formed and the next step
is to evaluate it through an objective function, also called
fitness. Sometimes, constraints are handled at this stage too.
Reparation methods are used before the fitness evaluation, in
order to respect the search domain [L,H] and/or c(ω) ≤ 0
(hard approach). Other constraints can be evaluated during the
objective function computation (soft approach). It should be
noted that in many industrial applications the evaluation of
objective function and constraints demands significant com-
putational efforts in comparison to other parts of the DE
algorithm, thus the algorithm’s convergence speed during the
first iterations is very important.

The following step is selection. Often, the elitist selection
is preferred

ind =

{
ω if f(ω) ≤ f(ind)
ind otherwise (9)

At this moment the decisions on constraints and multi-
objectives values are also influence the final choice of the
candidate.

The Differential Evolution pseudo-code is summarized in
Alg. 1.

B. Adaptation to the Permutation Space

Differential Evolution is very successful in solving conti-
nuous optimization problems. Nevertheless, there were many
attempts to spread the DE concept on combinatorial optimiza-
tion. A good summary of DE adaptations can be found in [20].
In this paper, we concentrate on the combinatorial problems
than can be formulated as permutation-based. We propose a
new technique to explore combinatorial space and apply this
technique to find the optimal design of field experiments, a
real application from agriculture and plant breeding.

Further we discuss how to transform the differentiation
operator to handle the permutation space. There are two points
we need to define

1) what would be the distance δ in permutation space? and

Algorithm 1 Differential Evolution - a general pattern
Require params :
F,Cr,NP,Strategy . control parameters
f(·) . objective function
c(·), L,H . constraints

procedure DIFFERENTIALEVOLUTION(params)
Initialize P0 ← {ind1, . . . , indNP } ∈ [L,H]
Evaluate f(P0)← {f(ind1), . . . , f(indNP)}
while not stopping condition do

for all ind ∈ Pg do
Sample Θ = {ξ1, ξ2, . . . , ξn} from Pg
Reproduce
ω ← Differentiation(Θ,F,Strategy)
ω ← Crossover(ω, ind,Cr)

Evaluate fω ← f(ω) . often costly operation
Select (ω vs ind)→ ind

end for
g ← g + 1 . go to the next generation

end while
end procedure

2) how we apply this distance knowledge to compute the
DE step from the base point β (see Eq. 7)?

As it was shown earlier [18], the crossover operator is
optional and can be missed in many cases without degradation
of convergence rate. So we decided not to use it for a
permutation-based optimization.

1) Distance: Many types of distances for the permutation
space were invented, explored and used. A good overview of
combinatorial distances with indicating their complexity and
performance tests is presented in [21].

It is obvious that the Hamming distance is one of the best
candidates because of its simplicity to compute O(n) and
suitability for the DE context. For two permutations π and
π′, the Hamming distance between them is

∆H(π, π
′) =

D∑
j=1

χj where χj =
{

1 if πj 6= π′j
0 otherwise

(10)
2) DE step: Several combinatorial operators are possible

to generate the permutation π. Most common are swap,
interchange and shift. Swap is considered a local operator
as it concerns the neighbours of some permutation position
πj . Interchange is a global operator, it swaps two distant
positions πi and πj . Shift interchanges two k-length substrings
[πi, . . . , πi+k] and [πj , . . . , πj+k].

Many combinatorial heuristic algorithms alternate propor-
tions of local and global actions to balance the search process
in order to avoid stagnation or unnecessary exploration. We
do not use the different operators to trade-off local and
global techniques but chose only one global operator, namely
interchange and control it with locality factor λ, which can be
considered as an equivalent of the F differentiation constant
but for the permutation space.

Thereby the size of DE steps is defined as λ∆H(δ). Thus
the trial individual is computed as

ω = β ⊕ λ∆H (11)

where the operator ⊕ is an interchange operator, which applies
λ∆H successive interchanges on the β vector.

It should be noted that this is a general concept and any
distance metric ∆ and any permutation operator � may be
used instead of these ones. Their right combination depends
mainly on the problem to solve. Also, the locality factor λ
may be self-learned or real-time adjusted.

C. Some Strategies and their Properties

The strategies are key to the search space exploration. They
propose different techniques on how to choose and to construct
β and δ from the set of sampled individuals Θ. Here we give
three examples having different search properties.

1) rand3: For each individual ind a set Θ of three other
random individuals {ξ1, ξ2, ξ3} is sampled from the population
Pg . The vector δ is defined by metric on ξ1 and ξ2, that
is δ(ξ1, ξ2) = ‖ξ1 − ξ2‖∆H , in other words, the distance is
calculated as ∆H(ξ1, ξ2) (see Eq. 10). β = ξ3. So the trial

ω = ξ3 ⊕ λ · ‖ξ1 − ξ2‖∆H (12)

This strategy is good for most cases, especially for large-
scale problems when an intensive exploration is needed. When
λ→ D, the strategy turns into a random search.

2) rand2best: Let best is the current best individual, that
is f(best) ≤ f(indi) ∀indi ∈ Pg . Two additional random
individuals are extracted, Θ = {ξ1, ξ2}, to compute δ(ξ1, ξ2).
β = best. Thus

ω = best⊕ λ · ‖ξ1 − ξ2‖∆H (13)

This strategy is inspired from social behaviour, when there
is an alternated leader organizing and directing the others, and
others have a tendency to be attracted by the leader. It also has
some analogies with Particle Swarm Optimization [22]. This
strategy is efficient for mid-sized problems. It provides a good
balance between exploration and exploitation.

3) dir2best: Here, the best individual and two others ran-
domly extracted are selected, but this time the individuals are
ordered as follow: f(ξ1) ≤ f(ξ2) and best 6= ξ1. β = ξ1, so

ω = ξ1 ⊕ λ · ‖ξ2 − best‖∆H (14)

This strategy uses stochastic gradient information, that is the
distance to the best individual. It has excellent convergence
properties on small- and mid- size problems. In large-scale
tasks, because of an intensive exploitation, it has a tendency
to premature convergence (Chapter 4 of [18]).

D. Constraints

The initial matrix Z0 (see Eq. 3) possesses some design
properties to keep. This represents the set of constraints to
respect c(ω) ≤ 0. Thereby a hard approach for constraints
handling is most suitable. We apply it at the stage of the
differential operator. As the objective function is long to

compute, it is easier and more efficient is to evaluate only
feasible individual. This way, we significantly reduce the space
of exploration without doing unnecessary evaluations.

IV. RESULTS

A. Phase I – Between Locations

In this section, we present the results of the allocation
of genotypes across locations. To illustrate the impact of
accounting for the kinship matrix K, we use an extreme
case of a population of 403 genotypes and five locations (of
300 plots each). The 403 genotypes are split into three check
genotypes (present and replicated 20 times on each location)
and 400 experimental genotypes. We further impose for these
400 genotypes to each be present once on three out of the
five locations. We then define them as belonging to three
independent families (sizes 14, 187 and 199) of full siblings,
by using a block matrix for the kinship matrix K calculated
using pedigree.

K =

A14 0 0
0 B187 0
0 0 C199

 (15)

where A, B and C are square matrices whose off-diagonal
elements are 0.5 and diagonal elements are 1.

Following the constraints imposed on them, it is clear
that the check genotypes can be excluded from this first
optimization phase. Because of the small size of family 1,
a random allocation of genotypes across locations can lead to
a very unbalanced spread as shown in Table I below, where
this family is under-represented in location 3, therefore caus-
ing a risk of biasing the corresponding genotypes estimates
(confounding between location and family effects).

TABLE I
PHASE I - INITIAL FAMILY SPREAD ACROSS LOCATIONS

Family 1 Family 2 Family 3
Location 1 9 111 120
Location 2 9 116 115
Location 3 1 116 123
Location 4 13 110 117
Location 5 10 108 122

Here, we therefore have, using Eq. 3 and Eq. 4,

R = I1200

X =

1240 0 0 0 0
0 1240 0 0 0
0 0 1240 0 0
0 0 0 1240 0
0 0 0 0 1240

 (16)

and Z0 is the design matrix, size [1200, 400].
Fig. 1 shows the convergence of the objective function for

this first phase. This was obtained using 30 restarts, each with
2000 steps (number of function evaluations) and convergence
was reached in 383.1 seconds. The objective function was
approximated by single value decomposition, using the first
three eigenvalues, the population size NP was set at 25 and

the search strategy used was rand3. For each simulation, we
allocated only six cores (threads) of a Intel Xeon E5-4627 v3
processor under Windows Server 2012 R2 operating system.

The convergence value of the process (0.04156354) shows
a good improvement over the objective function value of the
design (0.04841361) randomly generated. This can be seen in
Table II, where the spread of each family across locations is
better balanced.

Fig. 1. Phase I - Convergence rate: nfe - number of function evaluations.

However, as mentioned in Section I, experimental designs
can have many constraints imposed on them, depending on
their complexity. Further work is ongoing to add additional
constraints (e.g. repetition of experimental genotypes within
location).

TABLE II
PHASE I - OPTIMIZED STRATEGY

Family 1 Family 2 Family 3
Location 1 9 121 110
Location 2 13 105 122
Location 3 7 117 116
Location 4 7 107 126
Location 5 6 111 123

B. Phase II – Within Location

After running the optimization across locations, it is neces-
sary to run this phase independently over each of the locations,
after having re-incorporated the check genotypes, to obtain an
optimal field layout.

The first part of this section looks at the gain made through
this approach, compared to an approach currently used widely,
DiGGer. In the second part of this section, we investigate
the effect of using the kinship information in the local (i.e.
within location) optimization. To do so and compare this
algorithm to the existing algorithm (DiGGer), we use an
extreme case of a field with 144 plots in twelve rows and
columns where we aim at allocating a repchecks design
with 119 experimental genotypes and three check genotypes,
where the three checks are repeated nine, eight and eight
times respectively. Further, we define the 122 genotypes as
belonging to three independent families of size 40, 40 and 42
respectively, each with one of the check genotypes. In both

examples presented below, we used 6 restarts, each with 10000
steps (number of function evaluations), the population size
NP was set at 25 and the search strategy used was rand2best.

1) Ignoring kinship: As well as defining the X and Z
matrices in the same way as during the between locations
optimization, it is important to account for the local autocor-
relation defined by R. The matrix R used in this case is derived
using autocorrelation coefficients ρr and ρc of 0.5, based on
data collected on existing trials. We further assume a trait with
a large (h2 = 0.8) heritability (analogous to the noise/signal
ratio) to ensure that a good spatial spread of the genotypes is
critical during the trial set-up. To allow a direct comparison
between the method proposed here and DiGGer, we define the
kinship matrix K as the identity matrix, therefore ignoring
relatedness between genotypes.

Fig. 2. Phase II - Allocation: (A) Checks at start; (B) Checks optimized -
DiGGer; (C) Checks optimized - New Algorithm

Fig. 3. Phase II - Convergence rate: nfe - number of function evaluations.
The red lines correspond to the value of the objective function for the design
as optimized by DiGGer and the number of functions needed for our algorithm
to better it

In Fig. 2, we present an example of a field within a
location, where each small rectangle is a plot and corresponds
to a genotype. The first figure shows the starting design,
where we purposely grouped all three check genotypes at
one end of the field, to see the impact of the optimization.
The middle figure shows the spatial spread of those after the
optimization procedure derived using DiGGer. Unsurprisingly,

because of the equal weight given to both dimensions in
the autoregressive process in DiGGer, the optimized strategy
shows clear diagonals of check genotypes. Further, a common
feature of DiGGer can also be observed: those diagonals are
often made of adjacent plots (two diagonals length four in
the example presented). The third plot of the figure presents
the optimization obtained through our algorithm and shows
a visually better spread of the check genotypes; although
the pattern of diagonals is still present, it is better spread
out throughout the field, with no more than two adjacent
plots. Fig. 3 presents the convergence speed of the algorithm,
together with the value of the objective function reached by the
DiGGer algorithm. In this example, convergence was reached
in 24.4 seconds using our algorithm and in 9.9 seconds using
DiGGer. Further, note that, unlike our algorithm, DiGGer is
mono-thread and cannot use the benefit of multi-core servers.

The visually better design is confirmed when looking at
the value of the objective function produced by DiGGer
(0.59656328) and the new algorithm (0.59188730). However,
it is important to note that the algorithm used in DiGGer is
based on the Reactive Tabu Search [7]. Note that, in this case,
using only 2000 steps, whilst keeping everything else identical,
led to a convergence time of 5.3 seconds without dramatically
affecting the value of the objective function (0.59340239,
i.e. still improving on the convergence value produced by
DiGGer).

2) Accounting for kinship: In this second case, we include,
in the optimization phase, a non-identity kinship matrix K.
The matrices X and Z0 are defined as in IV-A. Further, the
122 genotypes are split in three families of full siblings:

K =

A40 0 0
0 B40 0
0 0 C42

 (17)

where A, B and C are square matrices whose off-diagonal
elements are 0.5 and diagonal elements are 1.

Fig. 4. Phase II - Allocation using kinship information: (A) - Families at
start; (B) - Families optimized using DiGGer; (C) - Families optimized using
the New Algorithm.

Fig 4 shows the initial design, the design as optimised
by DiGGer and the optimised design produced by our new
algorithm. Because DiGGer does not account for kinship

Fig. 5. Phase II (incl. kinship information) - Convergence rate: nfe - number
of function evaluations.
The red lines correspond to the value of the objective function for the design
as optimized by DiGGer, when the experimental genotypes are randomized
at start, and the number of functions needed for our algorithm to better it

information, its optimisation is not affected by this additional
information. As a result, because the strong structure present in
the initial design is not altered, the value of the optimisation
function, accounting for kinship, is fairly poor in this case
(1.16285241). On the other hand, we can see that the new
optimization procedure incorporates the kinship information
well by producing a check pattern where all three families are
interwoven. This is confirmed by a well-improved optimization
function (1.15030587) as shown by the algorithm convergence
speed (convergence reached in 23.7 seconds) in Fig. 5. This
highlights the importance, when using DiGGer, to randomize
the families of genotypes within the field before running the
optimization. Doing so on this example leads to a much
improved value (1.15371275) of the optimisation function
of the design produced by DiGGer compared to when the
experimental genotypes are not randomized, although our
algorithm still betters it (Fig. 5).

V. CONCLUSION

Previous strategies of allocating genotypes between and
within location in experimental designs such as the sparse
and repchecks designs both ignore kinship information. When
allocating the genotypes between locations, this was done at
random (i.e. without necessary ensuring a good spread of fam-
ilies across locations) and, within location, this was done by
only ensuring a good spread of the repeated check genotypes
(without accounting for the relatedness of the experimental
genotypes).

Through the case studies presented in this paper, we have
shown that our new algorithm ensures that the kinship is
well accounted for, therefore limiting the risks of confounding
between locations and genotypes families. Within location,
the gain from the current strategy is two-fold. First, we have
shown that the convergence time from the existing algorithm
is reduced (approx. 50%) when kinship is not accounted for
and that existing patterns of close check genotypes are no
more present. Second, accounting for kinship ensures that no

more confounding is present within a location, even if a strong
pattern of families is present in the starting design matrix.

This paper has concentrated on the repchecks design; how-
ever, it could easily be generalized to other designs by defining
new design matrices and including additional, potentially com-
plex, constraints. Such examples include uniqueness of some
genotypes within location or, in the case of p-reps designs
[6], fixed proportions of duplicated genotypes within location.
The same approach could be used to allocate entries to testers
for topcross production and testing in the context of hybrid
crop breeding. Further work is needed to incorporate these
generalizations.

Although the examples shown in this paper were restricted
to cases where the families of genotypes were simple (in-
dependent families of full siblings), the results presented
can be extended, without loss of generality, to much more
complex kinship matrices, e.g. based on molecular data, to
ensure a more accurate definition of the relationships between
genotypes.

This paper has concentrated on comparing the new approach
to one existing approach, DiGGer. Work is ongoing to further
compare it to the other widespread approach, OD, for which
the objective function used is closer to that used in our ap-
proach than that used in DiGGer. However, early comparisons
show a very clear benefit, in computation time for using our
approach compared to OD, whose convergence times often
make it impractical to use in real-life cases, with hundreds of
genotypes and plots over several locations.

In summary, new ideas of Differential Evolution adaptation
to combinatorial permutation-based optimization are presented
in this paper. This is the first time Differential Evolution is
applied for generating efficient experimental designs. Although
this problem is hard to solve, good convergence properties of
the new algorithm allow to find promising sparse designs for
real large-size problems. The software is extremely optimized
and tuned for the last generations of Intel processors (multi-
threaded, vectorized, . . .) making the computations faster than
existing software. This opens horizons for larger and more
efficient designs in the future.

REFERENCES

[1] R. A. Fisher, The design of experiments, 9th ed. Hafner Publishing
Company, 1971.

[2] A. R. Gilmour, B. R. Cullis, and A. P. Verbyla, “Accounting for Natural
and Extraneous Variation in the Analysis of Field Experiments,” Journal
of Agricultural, Biological, and Environmental Statistics, vol. 2, no. 3,
p. 269, 1997.

[3] B. R. Cullis, A. B. Smith, and N. E. Coombes, “On the design of early
generation variety trials with correlated data,” Journal of Agricultural,
Biological, and Environmental Statistics, vol. 11, no. 4, pp. 381–393,
2006.

[4] D. G. Butler, A. B. Smith, and B. R. Cullis, “On the Design of Field Ex-
periments with Correlated Treatment Effects,” Journal of Agricultural,
Biological, and Environmental Statistics, vol. 19, no. 4, pp. 539–555,
2014.

[5] E. R. Williams, J. John, and D. Whitaker, “Construction of more Flexible
and Efficient P-rep Designs,” Australian {&} New Zealand Journal of
Statistics, vol. 56, no. March 2013, 2014.

[6] E. Williams, H. P. Piepho, and D. Whitaker, “Augmented p-rep designs,”
Biometrical Journal, vol. 53, no. 1, pp. 19–27, 2011.

[7] N. E. Coombes, “The Reactive TABU Search for Efficient Correlated
Experimental Designs,” Ph.D. dissertation, Liverpool John Moores Uni-
versity, 2002.

[8] D. G. Butler, “On The Optimal Design of Experiments Under the Linear
Mixed Model,” Ph.D. dissertation, The University of Queensland, 2013.

[9] N. E. Coombes, “DiGGer design search tool in R,” pp. 1–34, 2009.
[Online]. Available: http://www.austatgen.org/files/software/downloads

[10] R Development Core Team, “R: A Language and Environment for
Statistical Computing,” R Foundation for Statistical Computing Vienna
Austria, 2016. [Online]. Available: http://www.r-project.org/

[11] D. Butler, B. Cullis, and J. Taylor, “Extensions in Linear Mixed Models
and Design of Experiments,” in Statistics for the Australian Grains
Industry, 2014, pp. 32–61.

[12] S. R. Searle, G. Casella, and C. E. McCulloch., Variance components.
Hoboken: John Wiley, 1992.

[13] C. R. Henderson, Applications of linear models in animal breeding.
Guelph, ontario: University of Guelph, 1984, no. 1.

[14] ——, “Chapter 11 MIVQUE of Variances and Covariances,” in Applica-
tions of linear models in animal breeding. Guelph, Ontario: University
of Guelph, 1984, vol. 1, no. 3, pp. 1–32.

[15] D. Laloe, “Precision and information in linear models of genetic
evaluation.” Genetics Selection Evolution, vol. 25, no. 6, pp. 557–576,
1993.

[16] R. Storn and K. Price, “Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Sci-
ence, vol. 11, no. TR-95-012, pp. 1–15, 1995.

[17] ——, “Differential Evolution – A Simple and Efficient Heuristic for
global Optimization over Continuous Spaces,” pp. 341–359, 1997.

[18] V. Feoktistov, Differential Evolution: In Search of Solutions. Springer
USA, 2006, vol. 5. [Online]. Available: http://www.springer.com/
mathematics/book/978-0-387-36895-5

[19] V. Feoktistov and S. Janaqi, “Generalization of the strategies in
differential evolution,” in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., vol. 00, no. 4, 2004, pp.
165–170. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1303160

[20] G. Onwubolu and D. Davendra, Eds., Differential Evolution: A Hand-
book for Global Permutation-Based Combinatorial Optimization. Stud-
ies in Computational Intelligence Vol 175, Springer Berlin Heidelberg,
2009.

[21] M. Zaefferer, J. Stork, and T. Bartz-Beielstein, “Distance Measures for
Permutations in Combinatorial Efficient Global Optimization,” Parallel
Problem Solving from Nature–PPSN XIII, vol. 8672, pp. 373–383, 2014.

[22] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the 1995 IEEE International Conference on Neural
Networks, vol. 4, Perth, Australia, IEEE Service Center, Piscataway,
NJ, 1995, pp. 1942–1948.

http://www.austatgen.org/files/software/downloads
http://www.r-project.org/
http://www.springer.com/mathematics/book/978-0-387-36895-5
http://www.springer.com/mathematics/book/978-0-387-36895-5
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1303160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1303160

	I Introduction
	II Problem Formulation
	II-A State of the Arts and Motivation
	II-B Modelling Optimal Design as a Permutation Problem

	III Differential Evolution
	III-A General Description
	III-B Adaptation to the Permutation Space
	III-B1 Distance
	III-B2 DE step

	III-C Some Strategies and their Properties
	III-C1 rand3
	III-C2 rand2best
	III-C3 dir2best

	III-D Constraints

	IV Results
	IV-A Phase I – Between Locations
	IV-B Phase II – Within Location
	IV-B1 Ignoring kinship
	IV-B2 Accounting for kinship

	V Conclusion
	References

