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Abstract—In space environment, perturbations make the
spacecraft lose its predefined orbit in space. One of these undesir-
able changes is the in-plane rotation of space orbit, denominated
as orbital precession. To overcome this problem, one option is to
correct the orbit direction by employing low-thrust trajectories.
However, in addition to the orbital perturbation acting on the
spacecraft, a number of parameters related to the spacecraft and
its propulsion system must be optimized. This article lays out
the trajectory optimization of orbital precession missions using
Evolutionary Algorithms (EAs). In this research, the dynamics of
spacecraft in the presence of orbital perturbation is modeled. The
optimization approach is employed based on the parametrization
of the problem according to the space mission. Numerous space
mission cases have been studied in low and middle Earth
orbits, where various types of orbital perturbations are acted
on spacecraft. Consequently, several EAs are employed to solve
the optimization problem. Results demonstrate the practicality
of different EAs, along with comparing their convergence rates.
With a unique trajectory model, EAs prove to be an efficient,
reliable and versatile optimization solution, capable of being
implemented in conceptual and preliminary design of spacecraft
for orbital precession missions.

I. INTRODUCTION

Spacecraft orbital precession refers to the rotation of the
orbit major axis in space. The orbit major axis, hereinafter
referred to as apse-line, has unfavorable changes in a perturbed
space environment. One solution for this problem is using
electric propulsion systems to correct the direction of the
space orbit apse-line. The use of electric propulsion as a low-
thrust solution for near-Earth application has become routine
and its capabilities continues to grow [1]. Electric propulsion
technology is widely used today, and multiple thrusters exist
for primary electric propulsion application. NASA and the
U.S. commercial market have developed several thrusters
which are suitable for primary electric propulsion on full scale
spacecraft [2].

Implementation of global optimization methods in the de-
sign process of low-thrust trajectories has received notable at-

tention in the past years as it is becoming increasingly evident
that such a framework introduces a high level of automation
in a process that is otherwise still heavily reliant on expert
aerospace engineering knowledge [3]. The systematic study
of global optimization algorithms in relation to chemically
propelled spacecraft [4] has proved that efficient computer
algorithms are able to produce, for these types of space-
craft, competitive trajectory designs. Thus, the attention of
communities not traditionally linked to aerospace engineering
research [5] has increased, bringing a beneficial influx of new
ideas and solutions, thus advancing the field considerably.
While for problem formalizations, such as the multiple gravity
assist [6] and the multiple gravity assist with deep space
maneuver [7], the advantages of using global optimization
algorithms have been proved, no convincing results have been
produced so far in the case of the low-thrust orbital precession
problem.

Orbital precession refers to the rotation of the space orbit in
which the spacecraft motion is settled. This rotation is around
the axis perpendicular to the orbit plane. As a simple descrip-
tion, the problem is to find the best thrust vector deviation
and optimal initial point to start the orbit correction which
results in the desired rotation of the space orbit in the presence
of orbital perturbations. Regardless of the approach (direct
[8] or indirect [9]) considered in this spacecraft trajectory
optimization, the problem will typically culminate facing an
optimization problem to be solved by an optimization method
[10].

The aim of this paper is to deal with the trajectory opti-
mization problem using EAs according to the following steps:

• Simulation of spacecraft dynamics in a perturbed space
environment.

• Developing the optimization approach based on low-
thrust trajectories.

• Specifying the objective function based on the space
mission requirements.
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• Transforming the problem to a black box with inputs and
the objective function.

• Solving the problem using different evolutionary algo-
rithms.

According to this process, this paper is organized as follows.
Section 2 is devoted to the statement of the problem and
mathematical modeling of spacecraft trajectory which includes
the spacecraft dynamics along with the simulation of orbital
perturbation. Section 3 presents the optimization approach,
including the objective function and optimization algorithms.
Section 4 discusses the computational results of the proposed
approach in different space missions. Section 5 concludes this
paper.

II. TRAJECTORY MODEL

Consider a spacecraft moving in initial orbit with semi-
major axis of a and eccentricity of e as depicted in Fig. 1.
Due to orbital perturbation [11], the argument of perigee is
changed to ω with respect to the inertial coordinate system.

Fig. 1. Schematic view of space orbit apse-line rotation.

The objective is to rotate the spacecraft orbit back to its
desired orientation within a specific time, starting at a point on
the initial orbit, called the true anomaly of θi. According to this
scenario, two different space missions can be defined. The first
mission is to accomplish this task in less than a single period
(i.e., mission time is less than the orbital period). This type of
orbit transfer takes place using a continuous low-thrust transfer
trajectory. Since the low-thrust propulsion system is employed,
very little rotation can be made in this type of mission.

If large rotation is desired, the transfer should take place
in several periods and more time steps instead of just one,
since the thrust level is low and it is not possible to rotate the
space orbit in less than one period. In this new concept, the
space mission is the rotation of the orbit in multiple periods
where the whole space rotation is divided into several transfer
trajectories and each transfer takes place in less than one

period. While the orbit rotation in the first concept is small,
large space orbit rotation is expected in the second concept
since this mission actually includes several orbit corrections
in sequence.

Trajectory optimization of spacecraft in both of these types
of missions requires adequate simulation of spacecraft motion,
and forming an optimization problem as a black box and using
a global optimization technique to solve it [12]. As a first step
to this end, the dynamics of the spacecraft along with orbital
perturbation should be adequately modeled.

The trajectory model which is used to convert low-thrust
trajectory optimization into a non-linear programming problem
(to be solved by global optimization methods) is crucial to the
success of the overall algorithm one wants to produce [13].
Criteria to be accounted for include accuracy in the description
of the spacecraft dynamics, computational efficiency in the
objective function and constraints evaluation, problem dimen-
sion, and number of non-linear constraints produced. Bearing
these issues in mind, in this article, the following dynamic
model is used [14]:

~̈r = − µ
r3
~r + ~γp + ~γF (1)

where ~r is the radius vector of the spacecraft with the respect
to inertial coordinate system, r is the magnitude of radius
vector (i.e., r =

√
~r.~r ), µ is the gravitational constant of

the Earth, ~γp is the net perturbative acceleration from all
sources other than the spherically symmetric gravitational
attraction from the Earth and ~γF is the acceleration due to
the external force generated by the propulsion system acting
on the spacecraft within the orbit transfer.

For low-thrust propulsion system, we assume a constant
specific impulse Isp and a constant thrust T (t) = T . With
these assumptions, the acceleration due to the propulsion
system can be mathematically described as [15]:

~γF =
~T

m
(2)

where ~T denotes the thrust vector and m represents the mass
of the spacecraft. The decreasing rate is the following:

ṁ = − T

Ispg0
(3)

where g0 is the gravitational acceleration at the surface of the
Earth.

Four types of orbital perturbation are considered in this
research including atmosphere drag, Earth oblateness, solar
radiation pressure and lunar gravity. Therefore, the following
model for perturbative acceleration is considered [16]:

~γp = ~γaero + ~γoblate + ~γlunar + ~γsolar (4)

In this equation, ~γaero is the perturbing acceleration due to
the drag force. The commonly accepted altitude at which space
begins is 100 km (60 miles). Although most of the Earth’s
atmosphere lies below 100 km, the air density at that altitude



is nevertheless sufficient to exert drag and cause aerodynamic
heating on objects moving at orbital speeds and to lower the
speed and the height of a spacecraft [17]. The imperfection
of the Earth and its mass distribution is the main cause of the
Earth’s oblateness, which produces ~γoblate. This orbital per-
turbation acceleration is calculated based on the gravitational
field of the Earth [18]. Detailed explanations are provided
in [19]. Also, perturbing acceleration due to lunar gravity
(~γlunar) can be modeled by modeling the position vector of the
Moon relative to the Earth and the spacecraft. Details of this
simulation are provided in [20]. Finally, for simulation of solar
radiation pressure and its resulting perturbation acceleration
(~γsolar), the cannonball model [21] is adopted in this research.

III. OPTIMIZATION APPROACH

The optimization problem here can be defined as finding
the optimal thrust vector which rotates the space orbit for
a specific value (∆ω). As a matter of fact, in the current
constrained optimal control problem, the thrust magnitude is
supposed to be constant and at its maximum value.

Considering the transfer as an in-plane maneuver in this
research, semi-major axis (a), eccentricity (e) and argument of
perigee (ω) are calculated in simulations. Derivation of these
orbital elements from the state vectors are skipped due to lack
of space. Details are provided in [15].

By knowing the initial condition (~ri,~̇ri), thrust vector (~T )
and the simulation time (ts), and solving the presented dif-
ferential equation of spacecraft dynamics (Eq. 1 to Eq. 3)
along with described perturbations (Eq. 4), the motion of
the spacecraft within the transfer trajectory will be revealed.
This trajectory transfers the spacecraft from the initial orbit
to another. Depending on the thrust variation and initial
condition, the orbital parameters of the space orbit will change
from ai, ei and ωi to af , ef and ωf respectively.

Since the space mission is orbital precession, the shape of
the orbit should remain unchanged (af = ai, ef = ei). It is
supposed that the initial orbit is known, however the starting
position of the spacecraft in initial orbit where the transfer
begins (θi) is unknown.

Since the space mission is an in-plane maneuver, the thrust
vector (~T ) can be stated with one direction angle (α) and
thrust magnitude (T ). The allowable variation of direction
angle depends on the type of attitude control system of the
spacecraft. As a common modeling, the direction angle is
assumed to have linear variation with time in this research.
Therefore α can be mathematically stated as an initial value
(αi) and a final value (αf ).

Knowing the initial orbit and the desired rotation, the
required velocity change (∆v) can be calculated [15]. The
ideal rocket equation shows the relation between the fuel mass
and the required velocity change for each transfer as below.

mf

m0
= 1− e−

∆v
Ispg0 (5)

where mf and m0 are the fuel mass and the overall mass
of the spacecraft respectively. It is a phenomenon that in

spacecraft trajectory optimization, the transfer time and the
thrust magnitude have a logical contradiction with each other
in space travel as they can’t be minimized at the same time.
This fact is obvious regarding Eq. 3, which shows the relation
of these two with the fuel mass and its variation. Using the
fuel mass calculated by Eq. 3, the thrust magnitude can be
calculated for any rotation.

This approach is suitable for single period transfers. How-
ever, for multi-period transfers, the mission needs to be divided
into several single period transfers first. To this end, the overall
maneuver is divided into N number of transfers. Each transfer
occurs within less than one period and the space orbit is
expected to have a rotation of δω in each period. Therefore,
the desired rotation in each step will be calculated as:

δω =
∆ω

N
(6)

Regarding this approach, the problem turns into N number
of optimization problems to be solved in N steps in a
sequence. In each step, the initial orbital parameters, along
with the mass of the spacecraft, are gathered from the previous
step. However, the initial true anomaly (θi), initial and final
thrust direction (αi and αf ) and the transfer time ts remain
unknown for the optimization algorithm to find. As a typical
choice for the thrust magnitude, the dedicated thrust for each
transfer is calculated based on having the one-step transfer
time equal to one period. However, the optimization algorithms
are forced to perform this transfer in less than one period.
This makes the problem naturally complex to converge. The
complexity can increase even more if the upper bound of the
transfer time is limited to another value less than period time.
It should also be noted that the complexity is more affected by
the mission case rather than the boundaries of transfer time.

A. Objective function

According to the proposed approach, the objective of the
optimization algorithm is to find the optimal values of θi
(spacecraft position on its initial orbit), αi, αf (variation of )
and ts at each step in order to have a desired rotation in the
space orbit while keeping the shape of the orbit unchanged.
By selecting these four parameters, the initial condition of
the problem will become known along with the transfer time.
The objective is to have the spacecraft settled in the desired
space orbit after it finishes its motion in transfer trajectory.
Simulation of the spacecraft motion regarding the presented
dynamic model in the previous section will give the final states
of the spacecraft (~ri,~̇ri). As stated previously, by converting
the final states into the orbital parameters as described in [15],
the final semi-major axis (af ), final eccentricity (ef ) and final
argument of perigee (ωf ) will be revealed. Following this, the
objective function is calculated as follow:

J = (
af − ai
σa

)2 + (
ef − ei
σe

)2 + (
ωf − ωd

σω
)2 (7)

where σa, σe and σω are weighting coefficients related to
each parameter, which is specified based on desired accuracy



according to mission objective [22]. ωd is the desired argument
of perigee in each step as shown in the following equation.

ωd = ωi + nδω (8)

In this equation n represents the number of periods in which
the transfer is supposed to be done (0 < n < N ).

Regarding this approach, the constrained optimal control
problem turns into a continuous, unconstrained, non-linear op-
timization problem. Since such a class of problem may present
local minima that are not global, they are often unsolvable
using only local optimization algorithms. Practical experience
shows that this is usually the case with trajectory optimization
problems, regardless of the propulsion type [14]. Thus, intelli-
gent algorithms must be used as global optimization strategies
in order to achieve solutions which are as close as possible to
the optimal ones. In the following, the algorithms that have
been tried on such problems are described.

B. Evolutionary Algorithms

By having the optimization problem as a black box, different
evolutionary algorithms can be used to solve the problem. Four
types of EAs are considered in this research.

One promising approach that has recently been applied to
this type of design problem is Genetic algorithms (GAs).
GAs are search algorithms based on a natural mechanism
[23]. Versions of GAs have been used extensively in engi-
neering design problems. The applications of GAs to some
aerospace problems can be found in [24]. Although GAs
have demonstrated better global convergence ability than the
classical algorithms, there exist several critical disadvantages
for applying GAs to solve practical optimization problems,
of which premature and slow convergence rate are included.
These problems are especially serious when the GAs are
used to solve complex nonlinear constraint problems, such as
trajectory design problems [25], with expensive computational
costs.

Another type of EA, particle swarm optimization (PSO)
[26], is also considered in this work. The PSO was first
introduced by Kennedy and Eberhart [27] based on observation
and simulation of the social behavior of flocks of birds or
schools of fish. In this algorithm, the optimal solution is
sought by moving a swarm of particles around in the search
space according to simple mathematical rules. The movement
of each particle is determined by its best known position
and the best position achieved by the entire swarm. The
algorithm is simple and can be implemented in a few lines
of computer code. Examples of the applications of PSO in
aerospace problems are described in [28], [29]

Besides the well-known evolutionary algorithms, a qualita-
tively different approach, long used for parameter optimization
problems, is the use of Estimation of Distribution Algorithms
(EDAs) [30]. Like most evolutionary algorithms, such as GA
and PSO, EDAs use the principle of survival of the fittest
applied to a population of individuals representing candidate
solutions. But the major difference is that they produce the

new population of individuals by sampling from a probability
distribution, which is estimated from a database containing
selected individuals from the previous generation [31]. In
a detailed example of comparison between GA and EDAs,
the well-known crossover and mutation process in GA is
replaced by the sampling and learning process in EDAs.
These methods are meta-heuristic optimizers that determine an
optimal set of parameters that has been used to characterize the
problem solution. In recent years the application of EDAs has
become popular in different optimization problems [32], [33]
including the orbital maneuvers based on impulsive transfers
[34]. However, this optimization algorithm has never been used
in spacecraft trajectory design regarding finite thrust analysis.

This article presents the application of EDAs and other
optimization methods for trajectory optimization of space orbit
apse-line rotation based on the employment of low-thrust
propulsion systems. The simulation of orbital perturbations
in space environment is also considered, which makes the
behavior of spacecraft more realistic while moving in space.
Regarding the optimization algorithm, the effect of clustering
in EDAs [30] on the convergence rate is investigated. More-
over, the performance of the algorithm is compared with GA
and PSO.

IV. NUMERICAL RESULTS

A. Experimental Setting

In order to showcase the potential advantages of EDAs,
multiple comparisons are presented in various space missions.
Since the difficulty of the optimization problem is mainly
affected by the mission characteristics, a database of enormous
space missions is considered. The space missions are divided
into two main categories as stated previously: single period
transfers and multi-period transfers.

Single period transfers include the space missions in which
the objective is to change the argument of perigee by a very
small amount (typically less than 1 degree) within just one
period. This category suits the space missions where the orbit
will be corrected instantly in less than one period when the
error of argument of perigee exceeds a specific value.

The latter category includes the space missions where the
objective is to rotate the space orbit to have a large variation
in argument of perigee within several periods. This category
is a more general form of the previous category in which the
orbit correction is conducted several times in a consecutive
order. The entire transfer is divided into several periods and
in each period the objective is to change the specific amount of
argument of perigee. This consecutive process ends when the
argument of perigee reaches zero (or alternatively the desired
final value). Unlike the previous category, the optimization
algorithm is used iteratively in a sequence.

In order to cover different complexities of missions, three
cases of orbit transfers are considered for each category. The
first and second cases consist of orbits in low Earth orbits
(LEO) and middle Earth orbits (MEO). The third case includes
the orbits with perigee radius in LEO and apogee radius
in MEO region. Ten instances are considered in each case.



Fig. 2. Instances of space orbits.

Therefore, a total number of 60 instances is considered in
this research (30 instances for each category). These cases
are illustrated in Fig. 2. This high number of instances is
considered in this research to make sure that the optimization
approach faces all kinds of complexities within this kind of
problem, since the complexity depends on the type of mission.

Although all of the missions are considered as an in-plane
maneuver (2D problem), different inclinations and right as-
cension of ascending node are considered for each instance in
order to have a fully covered benchmark of transfers in various
perturbed environments. Also, the rest of the parameters, such
as initial mass, specific impulse, drag coefficient and other
physical characteristics of the spacecraft, are considered as
random values within a realistic range, so that no two instances
have the same physical parameters.

Four optimization techniques have been employed in the
problems: Estimation of distribution algorithm using full mul-
tivariate Gaussian model (FMG-EDA) [30], Estimation of
distribution algorithm using mixture of multivariate Gaus-
sian model (MMG-EDA) [31], Particle Swarm Optimization
(PSO) [8] and Genetic Algorithm (GA) [23]. All algorithms
are employed with a population size of 100 and maximum
generations of 50. Since it is not the aim of this paper
to find the best combination of parameters to optimize the
introduced problem, the parameters have been set without
performing any previous experimentation. The upper bound of
space mission transfer time is set to 0.9 of the orbital period,
forcing the algorithms to search within the low transfer times
and making the problems relatively tough to deal with. The
acceptable accuracies for semi-major axis σa, eccentricity σe
and the argument of perigee σω are set to 1 km, 10−3 and
10−2 deg. respectively. The upper and lower bounds of initial
direction, final direction and the starting true anomaly are
set to -180 to +180 degrees. In order to avoid the possible
accidental results which may occur during the optimization
processes, each algorithm has been conducted 10 times and the
results are gathered based on the summation of outputs. The
stopping criterion for all optimization algorithms is considered

as J < 1. The reason for this selection regarding Eq. 7 is that
all of the terms are rescaled regarding the selected weighting
coefficients. If an algorithm doesn’t converge based on this
stopping criterion before reaching the maximum generation of
50, the optimization process will be considered as a failure.

B. Single period transfers

As for single period transfers, all space missions are inves-
tigated and instances have been optimized. The main focus in
extracting the results is to evaluate the number of objective
function evaluations for each algorithm along with the total
number of failures. These results are shown in Fig. 3.

 

Fig. 3. Performance of algorithms for single period transfers.

The bars in Fig. 3 display the average number of objective
function evaluations for each algorithm. The number of fail-
ures are excluded from the bars, and are shown separately
for each method. Details of results, including the overall
number of iterations (ξ) (including the failed processes) and
the number of failures (ζ) for all instances in each case, are
tabulated in Table I.

According to Table I, the overall number of failures for PSO
and GA are 12 and 111 respectively. However, none of the



TABLE I
OVERALL NUMBER OF ITERATIONS (ξ) AND THE NUMBER OF FAILURES

(ζ) FOR SINGLE PERIOD TRANSFERS

LEO MEO Mixed
ξ ζ ξ ζ ξ ζ

MMG-EDA 789 0 1025 0 990 0
FMG-EDA 809 0 966 0 926 0

PSO 1015 1 1108 2 1455 9
GA 2307 30 2676 44 2296 37

EDAs faced any failures in any space missions. By excluding
the number of failures and comparing the algorithms, it can
be concluded that EDAs have a fair performance as does PSO.
It confirms that the EDAs have shown to be competitive al-
gorithms alongside PSO. Nevertheless, the number of failures
supports the reliability of EDAs over PSO and GA.

C. Multi-period transfers

For multi-period transfers, the results have been generated
similarly. However, the evaluation process is different. As
it stated previously, the selected optimization algorithm will
be used several times during the transfer (separated by each
period), and the total number of periods varies from case
to case. As a matter of fact, the optimization algorithm will
be used in the sequences of space orbit rotations iteratively.
Results for this category are illustrated in Fig. 4.

 

Fig. 4. Performance of algorithms for multi-period transfers.

As can be seen, similar to single period transfers, EDAs
perform much better than PSO and GA. However, the failures
for EDAs are not zero this time. Nevertheless, they are still
more reliable in comparison to PSO and GA regarding the
average number of iterations for convergence.

It should be noted that, in this category, the two sequential
orbits within the rotation are very similar to each other since
the rotation of space orbit is less than one degree. Thus, one
slight advantage that can be considered in these transfers is
that the optimal solution in every period is very similar to
the previous one. So, the best answer found at each step can
be used as the initial guess for the next step. Applying this
idea can significantly lower the amount of computation for

convergence regardless of the algorithms. Therefore, the initial
generation for each algorithm has been constructed based on
the best solution found at the previous step in this category.
Bearing this in mind, the details of results for this category
are provided in Table II.

TABLE II
OVERALL NUMBER OF ITERATIONS (ξ) AND THE NUMBER OF FAILURES

(ζ) FOR MULTI-PERIOD TRANSFERS

LEO MEO Mixed
ξ ζ ξ ζ ξ ζ

MMG-EDA 14829 1 12129 0 11758 2
FMG-EDA 18407 2 16185 1 16554 5

PSO 17324 5 16800 17 15536 19
GA 26505 30 29206 49 25844 63

Regarding Table II, again the overall number of failures
for EDAs are significantly less than those for PSO and GA.
Besides, the number of iterations to converge indicates the
better performance of EDAs. The major difference which
should be considered in these cases is that the failures in multi-
period transfers are calculated differently. Since the problem
is sequential in this category, the algorithm should succeed
in all periods to accomplish the space mission. Therefore,
if the selected algorithm fails to converge in any period, it
will be considered as a total failure, regardless of how many
successful periods have passed before. Therefore, even the
number of failures can be divided in two groups, the failures
at the beginning of the space missions (when no initial guess
is employed) and at the middle of space missions (when initial
guess exists from the previous period). This data is shown in
Table III.

TABLE III
FAILURES IN MULTI-PERIOD TRANSFERS

MMG-EDA FMG-EDA PSO GA

Start of missions 3 5 15 96

Middle of missions 0 3 26 46

Total 3 8 41 142

Table III shows the fact that EDA using a mixture of
multivariate Gaussian model (MMG-EDA) has the minimum
number of failures and has an advantage over EDA based
on full multivariate Gaussian model (FMG-EDA). It is a
promising result that MMG-EDA never fails in the middle
of space missions. This shows the high level of reliability of
this algorithm in space orbit transfer mission.

Another question arises about the distribution of failures
with the transfers. In response to this query, one should be
reminded that each instance in this research has different
argument of perigee and reduction rate. So, the number of
periods varies from one instance to another. In order to have a
fair illustration of failure distribution, all transfer periods have
been scaled from 0 to 1 and the times when the algorithms



failed are spotted within this time scale. By excluding the
failures at the start of space missions, the results are provided
in Fig. 5.

 

Fig. 5. Failures of optimization algorithms in the middle of space missions

Fig 5 confirms that, with a high possibility, no clear depen-
dencies exist about the time of failures. Since the distribution
of failures is approximately uniform, it can be concluded that
the complexity of the problem is almost unique in an orbital
precession mission.

Besides the number of failures, the average number of
iterations for convergence in each algorithm can also be plotted
as functions of time as in Fig. 6.

 

Fig. 6. Time histories of average iterations to converge

Fig. 6 shows the effect of initialization in each algorithm
while marching through the end of space mission. Obviously,
the failed processes are excluded from these results. According
to this figure, MMG-EDA benefits from the lowest average
number of iterations for convergence. FMG-EDA and PSO
are competitive. However, EDA benefits from a higher level of
improvement from the initial guess, leading to the conclusion

that EDAs are relatively more intelligent in taking advantage
of initial guesses.

Based on the proposed approach, a three-dimensional tra-
jectory design framework is developed utilizing EDAs. The
developed approach is applied successfully on all of the
space missions with different low-thrust three-dimensional
orbital precession problems from LEO, MEO and the mixed
transfers. One of the realistic three dimensional representations
is illustrated in Fig. 7.

Fig. 7. Sample low-thrust transfer trajectory

Fig. 7 depicts the uniform rotation of the space orbit
with semi-major axis of 14000 km, eccentricity of 0.5 and
argument of perigee of 80 degrees. The orbital precession
is accomplished in 100 periods with the rate of 0.8 degree
per revolution using 200 mN thrust with specific impulse of
3000 s. This sample is one of the instances with a successful
optimization process in all periods using MMG-EDA. The av-
erage working time of propulsion system is less than 3.6 hours
per revolution. It demonstrates that, by using EDAs based
on mixture of full Gaussian model, the proposed technique
can quickly generate three dimensional low-thrust trajectories
feasible with respect to the desired orbit rotation. What can
be inferred from Fig. 7 is the practicality of the developed
framework in the design and simulation of spacecraft orbit
transfer missions.

V. CONCLUSION

Design and accurate optimization of low-thrust orbital pre-
cession trajectories, in combination with various EDA meth-
ods, are considered as the key techniques and prerequisites of
future low-thrust missions. In this paper, a general framework
for design and optimization of low-thrust trajectories is devel-
oped, which can be accommodated to various optimization
techniques without performing significant modification. In
this general framework, numerous cases of orbit transfers in
different perturbative environments in space are considered.



In all cases, EDAs prove to be more reliable algorithms
in comparison to other meta-heuristics such as PSO and GA,
since they showed a much lower number of divergence. The
performance of the technique can be enhanced to handle more
complicated problems by increasing the number of populations
at the expense of slowing down the technique.

It is also shown that clustering provides enough flexibility to
find various feasible transfer trajectory profiles and even rapid
convergence in reasonable times. Furthermore, this approach
is flexible in generating various feasible solutions rather than
learning based on full multivariate Gaussian model, which is
quite favorable in the preliminary phases of mission trajectory
design. Finally, the suitability of using the optimal solution
found at each revolution as an initial guess of the next period
for high-fidelity direct optimization techniques in multi-period
transfers is demonstrated successfully.

Besides the investigation of optimization algorithms, the
practical output of this research is the development of a
framework based on EDAs and other optimization techniques
for optimal low-thrust orbit transfer trajectory design. This is
surely a matter of interest for generating optimal trajectories
in conceptual and preliminary design of spacecraft in space
engineering.

Future research may include the analysis of other types of
EDAs in orbital precession mission or other spacecraft trajec-
tory optimization problems. Also, it is an open question to
investigate whether better solutions can be obtained by tuning
the parameters of EDAs (for example number of clusters) or
changing them dynamically while the spacecraft moves in its
transfer trajectory and marches through the end of its space
mission.
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