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Abstract—Local Optima Networks were proposed to under-
stand the structure of combinatorial landscapes at a coarse-
grained level. We consider a compressed variant of such networks
with features that are meaningful for the study of search difficulty
in the context of local search. In particular, we investigate
different landscapes of the Permutation Flowshop Scheduling
Problem. The insert and 2-exchange neighbourhoods are consid-
ered, and two different objective functions are taken into account:
the makespan and the total flow time. The aim is to analyse
the network features in order to find differences between the
landscape structures, giving insights about which features impact
algorithm performance. We evaluate the correlation between
landscape properties and the performance of an Iterated Local
Search algorithm. Visualisation of the network structure is also
given, where evident differences between the makespan and total
flow time are observed.

I. INTRODUCTION

The study of the Flowshop Scheduling Problem (FSP) has
gained importance in the last decades due to its relevance in
many real-world settings [1], [2], [3]. In the FSP there are n
jobs that consist of m operations and they have to be scheduled
in m machines. We consider that the jobs are processed
in the same order on different machines, what is known
as the Permutation Flowshop Scheduling Problem (PFSP).
When dealing with this problem, researchers have focused
on different objectives: makespan, total flow time, tardiness,
earliness, idle time, etc. In fact, most real life scheduling prob-
lems usually involve multiple objectives. Therefore, several
techniques have been proposed in order to solve the Multi-
Objective Flowshop Scheduling Problem (MOFSP). In [4], one
can find the different approaches designed for the MOFSP.

We focus on algorithms based on local search, which are
among the most widely used metaheuristics to solve com-
binatorial optimisation problems. These algorithms structure
the search space defining a neighbourhood. In this sense, the
concept of landscape is defined as the triple (Ω, f,N ), where Ω
is the search space, f is the objective function to optimise and
N is the neighbourhood. The neighbourhood imposes some
properties on the search space that condition the behaviour of
this kind of algorithm. The performance of these algorithms is
also affected by the objective function considered. Therefore,

a relevant approach when developing effective metaheuristics
is the analysis of alternative search landscapes: considering
different neighbourhoods or different objective functions, for
the same underlying problem.

Local Optimal Networks (LONs) were first introduced in
[5], [6] as a useful tool for understanding the structure and
properties of combinatorial landscapes. LONs model land-
scapes as graphs where nodes are the local optima and edges
account for the probabilities of connecting the basins of
attraction. The LON properties of permutation based problems
have also been studied [7], [8]. In [9], a modification in
the concept of LON was proposed in order to deal with
landscapes with neutrality. The characteristics derived from
local optima networks have also been found to correlate with
the performance of heuristic search algorithms [10], [11], [12],
[13], [14].

In this paper, a compressed variant of the LON is considered
useful to deal with neutrality at the level of local optima and
to study the notions of funnels in fitness landscapes. The
term ‘funnel’ was first introduced in theoretical chemistry,
and it was later studied in the combinatorial optimisation
field [15]. It refers to the communities of local optima that
can act as traps: when trapped in a sub-optimal funnel,
a local search heuristic will not be able to escape even
with relatively large random perturbations. We analyse the
compressed network features of PFSP instances, working
with different neighbourhoods and objective functions. The
2-exchange and the insert neighbourhoods are considered, as
they are the most commonly used in the space of permutations.
Regarding the objective functions, as suggested in [4], the
majority of PFSP studies consider bi-objective formulations,
where the two objectives are to minimise makespan and
flow time. Therefore, our analysis is focused on optimising
these two objective functions. However, instead of considering
the bi-objective formulation, we study the two objectives
separately. Our aim is to analyse the network properties in
order to highlight differences between the landscapes, giving
insights about features that impact algorithm performance in
the single-objective formulation. Firstly, we study features
of the compressed version of the LON, referring to sinks
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and local-optima neutrality, which have never been studied
for this problem in previous work. Secondly, we analyse the
correlation between these properties and the performance of
an Iterated Local Search (ILS) implementation showing that
it is more difficult for the algorithm to minimise total flow
time than makespan. Notice that in [8], the features analysed
were those derived from the non-compressed LONs and just
makespan was considered as the objective function. Finally,
we provide examples of local optima network visualisation,
where evident differences in the structure given by the total
flow time and makespan are observed.

The rest of the paper is organised as follows. The PFSP
and the two objective functions, makespan and total flow time,
are formally introduced in Section II. In section III, the LON
model is briefly described. The network analysis is presented
in Section IV, and in Section V, the correlation between
the network features and ILS performance is studied. Some
examples of local optima network visualisations are shown in
Section VI. Finally, in Section VII the conclusions and future
work are described.

II. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

In the Permutation Flowshop Scheduling Problem (PFSP),
n jobs have to be scheduled on m machines. A job consists
of m operations, and the j-th operation (j = 1, . . . ,m) of
each job must be processed on machine j for a given specific
processing time without interruption. The jobs are processed
in the same order on different machines. The processing times
are fixed non-negative values, and every job is available at time
zero. At a given time, a job can start on the j-th machine when
its (j − 1)-th operation has finished on machine (j − 1), and
machine j is idle. So, the goal of the PFSP is to find the order
in which the jobs have to be scheduled on the machines, in
such a way that a criterion is minimised.

The solutions of this problem are coded as permutations.
So, the search space is the space of permutations of size n.
The number of feasible solutions is n!.

A. Makespan

The makespan is the total length of the schedule. Tradition-
ally, it has been the criterion to be optimised in the PFSP: a
shorter makespan corresponds to an overall higher throughput
of the system.

Let pπ(i),j be the processing time required by job π(i) on
machine j, then the completion time of job π(i) on machine
j, cπ(i),j , can be recursively calculated as:

cπ(i),j =


pπ(i),j i = j = 1

pπ(i),j + cπ(i)−1,j i > 1, j = 1

pπ(i),j + cπ(i),j−1 i = 1, j > 1

pπ(i),j + max{cπ(i)−1,j , cπ(i),j−1} i > 1, j > 1

Thus, in order to minimise the makespan, we need to
minimise the completion time of job π(n) on machine m:

Cmak(π) = cπ(n),m.

B. Total Flow Time

Recently, Total Flow Time (TFT) has captured the attention
of the scientific community since it is more meaningful in the
industry: a shorter TFT means a more responsive system, with
short waiting times for jobs execution.

The TFT is the sum of the completion times of all the
jobs on the machine m. The following formula expresses
mathematically the concept of TFT for a permutation π of
jobs, where cπ(i),m stands for the completion time of job π(i)
(i = 1, . . . , n) on machine m:

CTFT (π) =

n∑
i=1

cπ(i),m.

III. LOCAL OPTIMA NETWORKS

A neighbourhood N in a search space Ω is a mapping that
assigns, to each solution π ∈ Ω, a set of neighbouring solutions
N (π) ∈ P (Ω) \ ∅, where P (Ω) is the powerset of Ω:

N : Ω −→ P (Ω)
π 7−→ N (π)

Two examples of the most commonly used neighbourhoods
in the space of permutations are given by the 2-exchange and
the insert operators. The 2-exchange neighbourhood considers
that two solutions are neighbours if one is generated by
swapping two elements of the other. In the case of the insert
neighbourhood, two solutions are neighbours if one is the
result of moving an element of the other to a different position.

A solution x∗ ∈ Ω is a local optimum (minimum) under
a neighbourhood N if f(x∗) ≤ f(x), ∀x ∈ N (x∗). Each
local optimum has an associated basin of attraction. In general,
the basin of attraction of a local optimum π∗, B(π∗), is the
set composed of all the solutions that, after applying the
local search algorithm starting from each of these solutions,
the algorithm finishes in π∗. Particularly, a Stochastic Hill-
Climbing algorithm is considered in this study (Algorithm 1).
Note that, in the presence of neutrality, Algorithm 1 could
reach different local optima starting from the same solution.
Thus, one solution could belong to more than one basin of
attraction. Let us denote by H the stochastic operator that
associates, to each solution π, the local optimum π∗ obtained
after applying the algorithm (H(π) = π∗). So, the basin of
attraction B(π∗) of a local optimum π∗ can be defined in the
following way:

B(π∗) = {π ∈ Ω | p(H(π) = π∗) > 0} ,

where p(H(π) = π∗) > 0 means that, starting from π, the
algorithm has a non-zero probability of reaching π∗.

There is a transition between two basins of attraction B(π∗i )
and B(π∗j ), if ∃π ∈ Ω such that:

d(π, π∗j ) ≤ D and π ∈ B(π∗i ),

where d(π, π∗j ) denotes the distance between π and π∗j (min-
imum number of movements in the neighbourhood to convert
π into π∗j ), and D ∈ N is a fixed distance threshold. Given a



Algorithm 1 Stochastic Best-improvement Hill-Climber
Choose an initial solution π ∈ Ω
repeat
π∗ = π
Randomly choose σ ∈ N (π) s.t. f(σ) = min

π′∈N (π)
{f(π′)}

if f(σ) < f(π) then
π = σ

end if
until π = π∗

value of D, the weight wij of the transition between B(π∗i )
and B(π∗j ) is:

wij =
∣∣{π ∈ B(π∗i )|d(π, π∗j ) ≤ D}

∣∣
The Local Optima Network (LON) is the weighted and

directed graph G = (V,E), where V is the set of vertices
that are the local optima, V = {π∗1 , π∗2 , . . . , π∗nv}, and there
is an edge eij ∈ E between two local optima i and j if
wij > 0, that is, E = {eij |wij > 0}. We work with a reduced
version of these graphs (lower number of vertices and edges)
that is helpful to extract features meaningful for the study of
the search difficulty. Given a LON, the Compressed Local
Optima Network (CLON) is built by following two rules:

1) Only those edges eij that arrive at a local optimum π∗j
that is not worse than the departure local optimum π∗i
(f(π∗j ) ≤ f(π∗i )) are taken into account. The rest of the
edges are removed from the network.

2) A set is formed by those connected local optima with the
same fitness value. This set contracts to a single vertex
in the new network.

Thus, the CLON is the directed graph Gc = (Vc, Ec), where
Vc = {v1, v2, · · · , vnvc} is the set of vertices that are local
optima or sets of local optima with the same fitness (and
connected in G), and Ec ⊆ E is the set of edges eij that
departure from a vertex worse than the destination vertex. In
this sense, the network only accounts for non-deteriorating
escaping moves, and thus, it allows for the identification of
funnels and the extraction of meaningful features from the
point of view of (iterated) stochastic local search algorithms.

IV. RESULTS OF THE NETWORK ANALYSIS

A. Experimental Design

The instances of the PFSP used in the experiments have
been created using the problem generator proposed by [16],
which is based on the well-known Taillard’s benchmark ([17],
[18]). n = 10 jobs and m ∈ {5, 6, 7, 8, 9, 10} machines are
considered. For each combination of n and m, 30 instances
are generated. Thus, all the instances are of permutation
size n = 10, so that the experimentation is computationally
affordable: |Ω| = 10! ≈ 3.63 · 106. Algorithm 1 is applied
starting from each solution of the search space, using two
different neighbourhoods: insert and 2-exchange. As a result,
the different local optima and their basins of attraction are
obtained for both neighbourhoods. We fix D = 1 under the 2-
exchange neighbourhood as the edge-escape distance, and the

0
1
0
0

2
0
0

3
0
0

4
0
0

n
u
m

b
e
r 

o
f 
lo

c
a
l 
o
p
ti
m

a

 5        6        7        8        9       10               5        6        7        8        9       10
     insert                                          2−exchange

number of machines

makespan TFT

Fig. 1. Number of local optima of the PFSP instances according to the number
of machines, distinguishing between the makespan (red) and the TFT (blue),
and using the insert and the 2-exchange neighbourhoods.

connectivities between the basins of attraction are calculated.
Of course, different escaping criteria could be chosen. Once
the LON is built, applying 1) and 2) described in Section III,
we obtain the CLON for each instance, each objective function
and each neighbourhood.

B. Number of local optima

Figure 1 shows the number of local optima for the instances
studied and both objective functions: makespan and TFT.
When minimising the makespan, the number of local optima
increases with the number of machines considering both neigh-
bourhoods. This is consistent with the observation that increas-
ing the number of machines (number of operations in each job)
makes the problem harder to solve. However, in the case of the
TFT and the insert neighbourhood, the number of local optima
remains nearly constant as the number of machines increases.
When using the 2-exchange neighbourhood, the number of
local optima increases but much more slowly than for the
makespan. For a small number of machines, when minimising
the TFT, instances have a larger number of local optima and
with a larger variance than when minimising the makespan.
For a large number of machines, the number of local optima is
similar for both objective functions. As expected, the number
of local optima using the insert neighbourhood is lower than
with the 2-exchange, as the insert neighbourhood is larger and
thus, the landscape induced is smoother, this move operator
being more suitable for solving instances of the PFSP.

C. Sinks

The CLON model is useful to study some features that it
was not possible to examine with the LONs. These features
seem to be more meaningful in order to analyse the search
difficulty as they just consider the escaping edges that end at
a better vertex. We focus on those CLON properties that refer
to sinks. A sink si can be defined as a node that has at least
one incoming edge but no outgoing edges:

si = {vi | ∃eki ∈ Ec ∧ @eik′ ∈ Ec}

So, a sink is a reachable node, but there is no possibility of
escaping from it to a better node. If a node vi is formed by a
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Fig. 2. Number of sinks (left) and globally optimal sinks (right) of the PFSP instances according to the number of machines, distinguishing between the
makespan (red) and the total flow time (blue), and the insert and the 2-exchange neighbourhoods.

global optimum or a set of global optima, it is called a globally
optimal sink.

In Figure 2, we show for both neighbourhoods the number
of sinks and the number of globally optimal sinks. Although
the number of local optima in both cases was considerably
high, the number of sinks is low. Using the insert neighbour-
hood the majority of the instances have a single sink, and in
all of them one globally optimal sink is observed. For the 2-
exchange neighbourhood, the number of sinks is higher, and
considering the minimisation of the makespan, a lower number
of sinks is found than when minimising the TFT. Almost all
of the instances have a single globally optimal sink, but in
the case of the makespan, more instances with 2, 3 or even 8
globally optimal sinks are found.

According to these results, we could state that minimising
the TFT is more difficult than minimising the makespan, at
least when using the 2-exchange neighbourhood (for the insert
neighbourhood, there are not palpable differences). Indeed, for
the makespan, there is a lower number of sinks, and thus, lower
number of nodes from which it becomes impossible to escape
to a better one. At the same time, we find a considerably
larger number of globally optimal sinks. The growth in the
number of sinks confirms that the problem becomes harder as
the number of machines increases.

The study of the connections between the different nodes
and the globally optimal sinks is essential to understand
whether the global optima are easily reachable or not. In
general, starting from any node of the CLON, we can draw
a path following the outgoing edges and moving from node
to node, until a sink is found. The set composed of all the
departure nodes of paths that finish at the same sink, is what
we call the funnel of such sink. Notice that one node can
have more than one outgoing edge. Thus, different sinks can
be reached when departing from the same node. In this sense,
we define the unique nodes of a funnel as the nodes inside
this funnel which do not belong to any other different funnel.

We report in Figure 3, firstly, the average proportion of the
size of the globally optimal funnels with respect to the sum of
the sizes of all the funnels. Secondly, the average proportion
of the number of the unique nodes of the globally optimal

funnels with respect to the sum of the number of unique nodes
of all the funnels. Finally, we show the Page Rank centrality
score [19] of the globally optimal sinks.

Using the insert neighbourhood, the proportion of the size of
the globally optimal funnel, as well as of the number of unique
solutions in the globally optimal funnels, is one in almost
all the instances. When minimising the TFT, more instances
with a lower proportion appear than when minimising the
makespan. For the 2-exchange neighbourhood, these propor-
tions decrease with the number of machines. The proportions
for the TFT are much lower than for the makespan. In fact, for
the TFT, almost all the instances have a proportion of the size
of the globally optimal funnels, or about 0.7, and a proportion
of the number of unique solutions in the globally optimal
funnels lower than 0.2. This is additional evidence of the TFT
being more difficult to minimise than the makespan. Regarding
the Page Rank of the globally optimal sink, a similar behaviour
is observed for both neighbourhoods. It decreases with the
number of machines and the Page Rank for the TFT is lower
than for the makespan. The Page Rank is also lower when
considering the 2-exchange.

D. Neutrality

Neutrality of the PFSP instances has been extensively
studied in [20], in particular with respect to the proportion of
solutions that have the same fitness value within the insertion
neighbourhood. In this work, we focus instead on neutrality
at the coarser level of the CLON.

As a first indicator, the proportion of unique fitness values
to the number of nodes (|Vc| = nvc) is evaluated. If there is
no neutrality, this value is 1. In the opposite case, this value
would be 1/nvc when all the nodes of the CLON are global
optima. Then, the average size of the nodes of the CLON
is also analysed. If one node is composed of a single local
optimum, its size is 1; while if it is a set of local optima, the
size of the node is the cardinality of this set. So, this measure
gives information about the number of local optima with the
same fitness that are connected to each other.

These two properties are represented in Figure 4. For the
2-exchange, more nodes with the same fitness are found than
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Fig. 3. Average proportion of the size of the globally optimal funnels with
respect to the sum of the sizes of all the funnels (top), average proportion of
the number of unique solutions in the globally optimal funnels with respect to
the total number of unique solutions (centre), and Page Rank of the globally
optimal sinks (bottom), of the PFSP instances according to the number of
machines, distinguishing between the makespan (red) and the TFT (blue),
and using the insert and the 2-exchange neighbourhoods.

for the insert neighbourhood (the proportion of unique fitness
values is lower). Minimising the makespan, the proportion of
unique fitness values decreases with the number of machines,
so that more neutrality is present in the instances with a high
number of machines. However, this behaviour is not observed
for the TFT. In fact, the proportion is higher for the TFT. This
reflects the fact that there is less neutrality at the nodes of the
CLONs for the TFT than for the makespan. This correlates
with the result about the average size of the nodes: for the
TFT they are lower than for the makespan. Precisely, for the
TFT, the average size of all instances is about 1.

V. PERFORMANCE OF THE ITERATED LOCAL SEARCH

A. Iterated Local Search

Iterated Local Search (ILS) algorithms are built to escape
from local optima [21]. The general scheme is given in

Algorithm 2. So, we need to specify the following steps:
(i) Generation of the Initial Solution

(ii) Local Search
(iii) Perturbation
(iv) Acceptance Criterion

In the present work, (i) the initial solutions are taken
uniformly at random in the space of permutations of size
n = 10. (ii) The Local Search is the same Stochastic
Best-improvement Hill-Climber of Algorithm 1. We consider
two different neighbourhoods for this heuristic: insert and 2-
exchange. (iii) As the perturbation operator, we choose one 2-
exchange movement. Finally, (iv) only those local optima that
improve the current fitness are chosen. The search terminates
at the global optimum, which is known a priori, or when
reaching a pre-set limit of fitness evaluations: FEmax =
0.1|Ω| = 0.1 · 10! = 362880.

Algorithm 2 Iterated Local Search
π0 ← GenerateInitialSolution
π∗ ← LocalSearch(π0)
repeat
π′ ← Perturbation(π∗)
π′∗ ← LocalSearch(π′)
π∗ ← AcceptanceCriterion(π∗, π′∗)

until termination condition met

B. Performance Evaluation

For the performance criterion, we use the expected number
of function evaluations to reach the global optimum (suc-
cess) after independent restarts of the ILS algorithm (Algo-
rithm 2) [22]. This measure accounts for both the success
rate (ps ∈ (0, 1]) and the convergence speed. After N − 1
unsuccessful runs stopped at Tus steps and the final successful
one running for Ts steps, the total run-length would be T =∑N−1
k=1 {Tus}k + Ts. Taking the expectation and considering

that N follows a geometric distribution (Bernoulli trials) with
parameter ps, gives:

E(T ) =

(
1− ps
ps

)
E(Tus) + E(Ts)

where E(Tus) = FEmax, the ratio of successful to total runs
is an estimator for ps, and E(Ts) can be estimated by the
average running time of those successful runs.

Figure 5 shows the performance of the ILS for the different
objective functions and neighbourhoods. The results for the
estimated probability of success and the estimated run-length
(at logarithmic scale) are displayed. In general, under the insert
neighbourhood, the estimated probability of success is lower
for the makespan than for the TFT, and the estimated run-
lengths are larger. However, for the 2-exchange neighbour-
hood, the estimated probability of success for the makespan
decreases with the number of machines while the estimated
run-length increases. Thus, for a small number of machines,
the estimated probability of success is larger for the makespan
than for the TFT and the estimated run-length is lower. As the
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Fig. 4. Proportion of unique fitness values to number of nodes (left) and average size of the nodes (right) of the PFSP instances according to the number of
machines, distinguishing between the makespan (red) and the TFT (blue), and the insert and the 2-exchange neighbourhoods.

number of machines increases, the values for both objective
functions become quite similar.

C. Correlation with CLON features

This section explores the correlations between the CLON
metrics analysed in Section IV and the ILS performance
presented above. More precisely, Table I reports the rank-based
Spearman’s ρ statistic between each CLON metric and the ILS
estimated run-length, considering the natural pairings of move
operator and perturbation intensity between ILS variants and
CLON models.

In all cases, the Page Rank of the global optima is the
measure with the highest correlation: the lower the Page Rank
of the global optima (PR) the longer it takes for the iterated
search to solve an instance to optimality. Usually, the number
of local optima (#LO) have been considered as a complexity
measure for algorithms based on local search. Here, we show
that there are other metrics with a higher correlation with
the ILS performance than the local optima. For example,
the number of sinks (#sinks), the proportional size of the
globally optimal funnels (GOfunnel) and the proportion of the
number of unique nodes (#unique GOfunnel) in the globally
optimal funnels. In the case of the insert neighbourhood
and minimising the makespan, the correlation for these three
metrics is not so high. Note that, in this scenario, the number
of sinks in almost all the instances was 1, and the proportion
of the size and of the number of unique nodes in the globally
optimal funnels were also 1. The same is observed for the
number of globally optimal sinks (#GOsinks): under the
insert neighbourhood this value is 1 in all the instances. The
proportion of unique fitness values (#unique fitness) has also a
high influence on the ILS performance, being higher than that
of the #LO for the TFT and the 2-exchange neighbourhood.
The correlation with the size of the nodes (|vi|) under the
insert neighbourhood is higher than for the 2-exchange.

VI. VISUALISATION

One of the advantages of modelling an instance as a network
is the possibility of visualising it. This section is devoted to
provide an example of the visualisation of the CLONs. The

graphs have been created using the igraph package in the R
programming language [23]. As the CLON model indicates,
the nodes are sets of local optima and the edges represent
escape transitions according to one 2-exchange move. The
size of nodes is proportional to the number of incoming
edges, thus, it reflects the extent to which nodes attract the
search dynamics. The colour of the nodes reflects their funnel
membership. The palette follows a red to yellow gradient,
where red identifies the global optima, and the yellow colour
gradient reflects increased fitness. The nodes that belong to
more than one funnel are in grey. We present both 2D and
3D images. The X and Y coordinates are determined by a
graph layout algorithm, while in the 3D visualisation, the Z
coordinate indicates the fitness values [15].

As a representative case, in Figure 6 we show the resultant
CLON of one PFSP instance with 10 jobs and 7 machines,
when minimising the TFT (6a) and the makespan (6b). In this
example, the neighbourhood used in the local search is the 2-
exchange. Clearly, the structure observed for the TFT is more
complex than for the makespan. In the makespan, a lower
number of nodes appear and just one funnel is found where
all the nodes connect with the global optimum. However, in
the TFT, there are 4 sinks and there is a large number of nodes
belonging to more than one funnel. Although there is a very
large number of nodes, only 3 of them connect uniquely with
the global optimum.

VII. CONCLUSION

Local Optima Networks were proposed to understand the
structure of combinatorial landscapes at the intermediate scale
of local minima and their basins of attraction. In this paper, a
variant of such model was presented: the Compressed Local
Optima Network. The number of nodes and edges are reduced,
yet this compressed network has features that are meaningful
for the study of search difficulty. These properties were studied
for different landscapes of the PFSP. The neighbourhoods con-
sidered were 2-exchange and insert. Regarding the objective
functions, our analysis was focused on minimising makespan
and total flow time. We examined the properties in order to
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Fig. 5. Performance of Iterated Local Search according to the number of machines, distinguishing between the makespan (red) and the TFT (blue), and the
insert and the 2-exchange neighbourhoods. Estimated success probability (left) and estimated run-length (right).

TABLE I
SPEARMAN’S ρ STATISTIC FOR THE CORRELATION BETWEEN THE ESTIMATED RUN-LENGTH OF ILS VARIANTS AND THE CLON METRICS BY THE

RESPECTIVE NEIGHBOURHOOD AND OBJECTIVE FUNCTION.

N f #LO #sinks #GOsinks GOfunnel #unique GOfunnel PR #unique fitness |vi|

insert makespan 0.4682 0.2314 ——— −0.2316 −0.2311 −0.6507 −0.2785 0.3229
total flow time 0.3846 0.4608 ——— −0.4618 −0.4597 −0.5707 −0.3024 0.2670

2-exchange makespan 0.5353 0.6593 −0.1266 −0.6159 −0.6549 −0.7889 −0.5606 −0.0022
total flow time 0.4545 0.6075 −0.1048 −0.8516 −0.8436 −0.9405 −0.4451 0.1278

highlight differences between the landscapes, giving insights
about features that impact algorithm performance.

The main conclusion obtained from the analysis of the
network features is that minimising the TFT is more difficult
than minimising the makespan. Indeed, in general, for the TFT,
there is a larger number of local optima and a larger number of
sinks, with just one of those sinks being the global optimum.
Moreover, the proportion of the size of the globally optimal
funnel and the proportion of the number of unique nodes inside
this globally optimal funnel is lower for the TFT than for
the makespan. The page rank of the globally optimal sink is
also lower for the TFT. Especially, the differences between
both objective functions are noticeable for the 2-exchange
neighbourhood. This is due to the fact that the insert is a
suitable operator for the PFSP for both objective functions,
and therefore, similar properties are observed. However, for the
insert neighbourhood, there is one feature for which we find
the highest differences between the TFT and the makespan:
the page rank of the globally optimal sink. Precisely, this is
the feature for which we found the highest correlation with
the ILS performance in all the landscapes.

Other features, such as the number of sinks, the proportion
of the size of the globally optimal funnel and the proportion
of the number of unique nodes in the globally optimal funnel,
also present a high correlation with the ILS performance. In
fact, it is higher than that found for the number of local
optima in all of the landscapes except for the makespan with
the insert neighbourhood. Thus, another important conclusion

derived from this work is that, although the number of local
optima has usually been considered as a difficulty measure in
the context of local search, the features presented here give
more valuable information about it. Taking the makespan as
the objective function, the presence of neutrality at the level
of local optima is higher than when working with the TFT. In
general, the proportion of the number of unique fitness values
is lower for the makespan than for the TFT, with a larger
size of the nodes. As observed, there is an inverse correlation
between the presence of neutrality in the landscape and the
ILS performance. Thus, this is another factor that confirms
that minimising the makespan is easier than the TFT.

We showed two examples of the visualisation of the Com-
pressed Local Optima Network for the same PFSP instance
under the 2-exchange neighbourhood, but referring to the
TFT and the makespan. Images were shown in 2D and 3D
projection. In the 3D visualisation, the Z coordinate indicates
the fitness values. So, the concepts of sink and funnel are easily
interpreted. Clear differences in the structures of both land-
scapes were observed. While the network for the makespan is
composed of just one funnel (the global optimum) and all the
nodes connect with the globally optimal sink, a more complex
network is obtained for the TFT.

All the information gathered in this work about the prop-
erties found for both objective functions helps in the devel-
opment of approaches designed for the single-objective, as
well as multi-objective optimisation. More objective functions
for the PFSP and more instance classes (machine-correlated



(a) Total flow time – 2D (left) and 3D (right) projections

(b) Makespan – 2D (left) and 3D (right) projections

Fig. 6. CLON for a PFSP instance with 10 jobs and 7 machines, using the
2-exchange neighbourhood, considering the TFT (a) and the makespan (b).
Images are shown in 2D and a 3D projection. Funnel structures are visualised
in colours, with red indicating the globally optimal funnel, and the yellow
gradient an increase in cost. Grey nodes are those belonging to more than
one funnel. A black border in the 2D plots highlights the global optima.
Node sizes are proportional to the number of incoming edges. The CLON for
the TFT (a) shows a harder landscape than for the makespan (b), due to the
multiple funnels and the more complex structure.

or mixed correlated) could be explored. In this article, the
networks and their features were exhaustively calculated, so
the whole search space needed to be evaluated. Thus, instances
of size n = 10 were considered. Future work will study LONs
in larger problems. This will require sampling to extract the
LON models and the estimation of their features. The ultimate
goal is to derive easy-to-compute landscape metrics that can
predict the performance and guide the design of heuristic
search algorithms when solving difficult combinatorial prob-
lems. This article is an additional step in this direction.
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