
A Local Search Method for Graph Clustering 
Heuristics based on Partitional Distribution Learning 

Diana Manjarres*, Itziar Landa-Torres * and Javier Del Ser* ' t,:!: 
*TECNALIA RESEARCH & INNOVATION, 48160 Zamudio, Bizkaia, Spain 

Email: {diana.manjarres.itziar.landa.javier.delser}@tecnalia.com 
tUniversity of the Basque Country UPVIEHU, Bilbao, Bizkaia, Spain 

Email: javier.delser@ehu.eus 
+Basque Center for Applied Mathematics. 48009 Bilbao, Bizkaia, Spain 

Abstract-The community structure of complex networks re­
veals hidden relationships in the organization of their constituent 
nodes. Indeed, many practical problems stemming from different 
fields of knowledge such as Biology, Sociology, Chemistry and 
Computer Science can be modeled as a graph. Therefore, graph 
analysis and community detection have become a key component 
for understanding the inherent relational characteristics under­
lying different systems and processes. In this regard, distinct 
unsupervised quality metrics such as conductance, coverage and 
modularity, have upsurged in order to evaluate the clustering 
arrangements based on structural and topological characteristics 
of the cluster space. In this regard graph clustering can be for­
mulated as an optimization problem based on the maximization 
of one of such metrics, for which a number of nature-inspired 
heuristic solvers has been proposed in the literature. This paper 
elaborates on a novel local search method that allows boosting 
the convergence of such heuristics by estimating and sampling 
the cluster arrangement distribution from the set of intermediate 
produced solutions of the algorithm at hand. Simulation results 
reveal a generalized better performance compared towards other 
community detection algorithms in synthetic and real datasets. 

I. INTRODUCTION 

In the last decades graph theory has been extensively applied 
for representing and analyzing a wide variety of systems 
and environments in distinct areas such as Biology, Technol­
ogy, Sociology and Computer Science. In these disciplines 
graph analysis has become crucial to infer information and 
understand the characteristics of complex networks. One of 
the most relevant problems addressed in graph theory when 
applying through real systems is the inference of a clustering 
or community structure, i.e. groups of nodes with many edges 
within the same cluster and comparatively less connections 
between different clusters. Such communities or clusters can 
be regarded as groups of nodes that share similar features and 
play COlmnon roles within the overall graph. For instance, in 
Protein-Protein Interaction (PPI) networks, conununities have 
shown to group proteins that have a specific functionality in 
the cell [1]. Another example that is on the rise nowadays is 
the creation of virtual groups across the Internet. Each virtual 
group can be seen as a community or cluster that includes 
people with the same interests or skills. In this context, 
the identification of persons with similar interests allows for 
recommendation systems to be more efficient and better guide 

customers to products achieving higher sales opportunities 
([2]-[3]). 

One of the main differences between data clustering and 
community detection in graphs is the definition of the qual­
ity metric that identifies the desired structural properties of 
the groups' partitions. While in data clustering communities 
are related to sets of nodes that are compared based on 
a distance or similarity metric, communities in graphs are 
more focused on the concept of internal versus external edge 
density. In this regard, several distinct unsupervised quality 
metrics have been proposed in the literature ([4]-[5]), such 
as: the coverage metric [6], the modularity metric [7] and 
the conductance metric [8]. Among the metrics discussed 
above, modularity is the most widely applied one to detect 
the strength of communities. It compares the number of inter­
community edges with the expected number of links in a 
random graph having the same size and distribution of nodes 
as the original graph. Nevertheless, all these metrics have been 
surpassed by the appearance of an alternative global measure 
of performance, coined as Surprise [9]. This metric upsurged 
in an attempt for overcoming a cluster resolution limit, that 
is, the impossibility of detecting communities below a certain 
size threshold that depends on the overall size of the graph. 
By means of using a cumulative hypergeometric distribution 
it is possible to calculate the probability of the distribution of 
links and nodes in the communities defined for the network 
by a given partition. Therefore, Surprise metric measures how 
unlikely or "surprising' is that distribution. 

By means of the maximization of the Surprise metric, 
authors in many research works have achieved outstanding re­
sults and more accurate community structure characterization 
than modularity-based methods over standard benchmarks and 
real-world scenarios ([9]-[11]). In this regard, meta-heuristic 
algorithms can be seen as an efficient tool for their application 
in conununities detection in graphs due to their intrinsic capa­
bility to adapt and search near optimal solutions in complex 
optimization problems. Authors in [12] have recently proposed 
a novel heuristic community detection approach based on 
the so-called Firefly Algorithm (FA, [l3]). Simulation results 
demonstrated that the proposed solution generalizes better than 
other schemes in different synthetic scenarios. 

Following the same line of research, this paper builds upon 
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this state of the art by presenting a novel local search method 
for graph clustering based on population-based distribution 
learning. More specifically, the proposed local search method 
constructs a matrix based on the co-occurrence of vertices in 
clusters of the input partitions. This matrix is then used as an 
input for the graph clustering technique (based on FA) leading 
to a new set of potentially more optimal partitions [14] . The 
proposed technique is tested over synthetic and real-world 
scenarios and is proven to outperform community detection 
algorithms in terms of generalized performance. 

The rest of the paper is structured as follows: Section II 
presents the optimization problem of communities detection 
in graphs. Next, Section III and subsections therein describes 
the proposed algorithm and local search method for commu­
nities detection. Section IV presents the obtained simulation 
results and the comparison towards other community detection 
algorithms of the literature. Finally, Section V concludes the 
paper and proposes future research lines. 

II. GRAPH CLUSTERING PROBLEM FORMULATION 

In general, a graph G = (V, £) can be viewed as a set 
V of V ~ 1 V 1 vertices or nodes, which are connected by a 
set of links or edges £ = {( u , v) lu, v E V} each associated 
with a weight w( u, v) E R C = {C1 , C2 , ... ,C N } represents 
a clustering arrangement of the graph G in which nodes of the 
graph are partitioned in N disjoint groups such that Ci n Cj = 0 
and U~1Ci = V. For the encoding of a clustering solution, 
i.e. the correspondence between nodes in G(V, £) and clusters 
in C, a V-sized vector of integers X = {Xv}~=1 with X v E 

{I, ... ,N} is defined. 
In order to seek an optimal clustering arrangement C* an 

optimization problem for the maximization of the Surprise 
metric coined as S(C) and formally stated in Equation (1) 
can be casted. The main strength of employing this metric 
instead of conventional ones like modularity is its capacity 
for being nearly unaffected by the well-known resolution limit. 
This alternative metric is given by 

(1) 

where F ~ V(V - 1)/2 represents the maximum number of 
links in the graph; n ~ LUEV L'N'V w( u, v) the actual num­

ber of links in the graph; M ~ L i=l ICi l(ICi l- 1)/ 2 the max­
imum number of intra-community links for the arrangement; 
and p the actual number of inter-community links in the parti­
tion, computed as p ~ L ;:1 Lf=i+1 L UEC, L VECj w(u,v). 
Therefore, the problem of finding the optimal clustering ar­
rangement C* reduces to 

C* ~ arg max S(C), 
CEC<> 

(2) 

where CO denotes the set of all possible partitions for a V­
sized graph. As stated in [lS] the above problem is NP­
hard and can be solved by means of a meta-heuristic solver 
as presented in several research works [16], [17], [12]). The 

following section introduces the implemented nature-inspired 
solver in the latter reference - namely, a Firefly Algorithm 
(F A) suited to tackle this specific clustering problem - , fol­
lowed by the details of the herein proposed novel local search 
method. 

III . PROPOSED ALGORITHM 

The Firefly Algorithm (FA) pioneered by Xin-She Yang in 
[l3] consists of a population-based swarm solver inspired on 
the behavioral mobility patterns of fireflies. In the FA algo­
rithm there are two important concepts: the variation of light 
intensity and the formulation of the attractiveness between 
fireflies in the swarm. For simplicity, the attractiveness of a 
firefly is determined by its brightness, whereas the intensity 
decreases as the distance to other fireflies increases. Therefore, 
the brightness is associated to the fitness function to be 
optimized, yielding the so-called update equation given by 

X~+1 = X~ + ,8 exp [-,T;j ] (X; - xD + atet, (3) 

where X~ represents the i-th firefly (solution) in the population 
at iteration t, Ti j denotes the distance between firefly i and 
j, et is a vector of random variables following a certain 
probability density function, and ,8, , and at are parameters 
that balance between the explorative and exploitative search 
capabilities of the algorithm. A more detailed description of 
the steps of a naive FA is given in Algorithm 1. 

Algorithm 1 Firefly Algorithm 

1: f(X) corresponds to the fitness function to be maximized. 
2: Generate an initial population of P fireflies {Xg}:=l. 
3: Set ,8, " at, the maximum number of iterations T and 

the distance function T i j depending on the solution space 
spanned by the problem. 

4: t = O. 
5: procedure FIREFLY ALGORITHM(f(X), a, ,8 , T ij, T) 
6: while t ::; T do 
7: for i = 1 : P do 
8: for j = i + 1 : P do 
9: if J(X;) > f (XI) then, 

10: Vary attractiveness X~ with distance T via 
Equation (3). 

11: Evaluate new solution and update light 
intensity f(X~+ l) . 

12: else 
13: Update X; via Expression (3). 
14: Evaluate and update f(X~+1 ). 

15: Update Ti j. 

16: Rank fireflies and find the best solution at iteration t 
given by the highest fe) over {J(X~+1 n:=l. 

17: t = t + 1. 

In order to efficiently represent the differences with respect 
to the cluster arrangement rather than on the numerical repre­
sentation of the utilized encoding, the distance among fireflies 
Tij is given by their phenotype rather than by their genotype. 
Formally speaking the phenotype represents the observable 
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structure, whereas the genotype refers to the inheritable or 
internal information. Therefore, in graph clustering problems, 
the correspondence between nodes in G(V, E) and clusters 
in C = {C1, ... , C N} can be represented by a V -sized 
vector of integers X = {XV}~= l with Xv E {l , ... , N} . 
In this paper, the operators for the proposed meta-heuristic 
technique are applied directly on the genotype of the problem 
avoiding the redesigning of the overall meta-heuristic solver. 
More specifically, the set of operators that are applied on the 
genotype space are the following: 

• Step 9: the value of the Surprise metric achieved by the 
cluster arrangement C must be maximized. As previously 
stated, it directly refers to the brightness of the firefly. 

• Steps 10 and 13: update attractiveness by means of an 
increment of distance r and the difference X; - X~ 
between individuals. By this way, solutions with similar 
level of brightness should move less than solutions that 
lie far apart from each other in the genotype space. 
Moreover, the addition of a random perturbation a tet 
in Equation (3) allows slight changes in their phenotype 
space. 

The approach in [12] incorporates a measure of genotypical 
similarity between cluster arrangements that will control the 
update procedure, i.e. the so-called Normalized Mutual Infor­
mation score NMI( Ci , C j) [18] which is given by 

NMI(C C) --'- J(Ci; Cj ) 
" J - JH(C i ). H(C j ) 

(4) 

where J (Ci ; C j) represents the mutual information between 
the partitions, computed as 

. C , C j ( P(n,m) ) 
J(Ci ;C j ) = ~f1 P(n, m) log Pi(n)Pj(m) , (5) 

with P(m, n) = ICi,n n Cj,ml/V and Pi(n) = ICi,n l/V. It can 
be observed that the higher NMI(Ci ,Cj ) is, the more similar 
the cluster arrangements represented by C i and C j will be. 

Thus, the mutual association among the nodes within each 
cluster Ci,n of the attracting firefly Ci will be transferred with 
probability 1 - NMI(Ci , Cj ) to the cluster arrangement of the 
attracted firefly C j. This transfer is made on a node-wise basis, 
i.e. for every node v E Ci,n and for every n E {I , ... , N;} the 
algorithm decides, with probability 1 - NMI( Ci , Cj ), whether 
v in the attracted firefly Cj should be associated with the rest 
of nodes in Ci,n or, instead, left as it was in its corresponding 
cluster in C j. Note that if cluster arrangements aren similar to 
each other, the transfer probability decreases. 

The random perturbation of the naive FA described in 
Algorithm 1 is implemented in the proposed algorithm in 
a probability basis referred to as Topological Search Rate 
(TSR). This parameter allows a greedily exploration of the 
solution space in order to encounter a topologically better 
assignment for the firefly at hand. Thus, the random pertur­
bation performed at this step of the proposed algorithm will 
reassign node v within firefly i to cluster Ci,n with probability 
TSR .1J!(V,Ci,n ) / L~~ llJ!(V , Ci , k)' i.e. proportionally to the 

closeness centrality of the node with respect to every cluster. 
As stated in the following equation, this metric is the reciprocal 
of the sum of the shortest path distances from v to the nodes 
in Ci,n, i.e. 

( ) ICi,n l/1 
IJ! v , Ci,n = '" d() , 

~UECi,n U,V 

(6) 

where d( u , v) refers to the shortest-path distance between 
nodes u and v . Note that fireflies that have a great confidence 
about their cluster assigment will be represented by higher 
values of this metric. 

Finally, the third operator of the algorithm evaluates the 
degree of looseness of every node v E V with respect to the 
cluster to which it is assigned in C;: if its intra-cluster degree 
is lower than that of the rest of the nodes in the cluster, the 
node is disconnected (with probability 0.5) from the cluster to 
form a new community. This operator allows for a discovery 
of small-sized clusters and ultimately, singletons. 

These three operators are iteratively applied over a popu­
lation of P fireflies which represent feasible cluster arrange­
ments. The initial population is defined at random and the 
transfer of information is applied to every compared pair of 
fireflies, subsequently followed by the probabilistic topological 
search and the procedure to discover small-sized communities 
or singletons. 

A. Proposed Local Search Method 

Once a new set of fireflies is derived a novel local search 
procedure is applied to each solution to obtain an improved 
set of solutions. The elitism is applied at this step by selecting 
only those fireflies that after the application of the local search 
procedure the Surprise metric is increased. The proposed local 
seach procedure grounds on the iterative estimation at every 
iteration t E {I , ... , T} of a V x V probability matrix vt, 
whose entry Vf,j indicates the number of partitions over the 
population of fireflies {X~}:= l in which nodes i and j of the 
network are assigned to the same cluster, i.e. 

", p S(C ) ",v "'v. lI (C t . = Ct.) Vt - ~p= l P ~,= 1 ~) ='+l p ,' P,) (7) 
i,j - ",p S(C) , 

~p= l p 

where 1I(·) is an auxiliary indicator function taking value 1 
if its argument is true and 0 otherwise. Once composed this 
matrix serves as a basis for the generation of P new fireflies 
by randomly creating cluster arrangements that follow the 
pairwise association between nodes indicated by this estimated 
matrix. The generated solutions are then evaluated by means 
of the Surprise metric S (C) and merged with the ones obtained 
at previous iteration. As in other well-known evolutionary 
algorithms, such as Genetic Agorithm, Harmony Search or 
other population-based meta-heuristics, only the best solutions 
are selected to pass next generation. The procedure stops when 
a fixed number of iterations is completed. 

In order to shed light on the overall procedure a more 
detailed description is presented in Algorithm 2. In essence 
the proposed local search method can be regarded as the 
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hybridization of a canonical Estimation of Distribution Al­
gorithm (EDAS [27]) that constructs a probabilistic model 
over the genotype of the solution space as indicated by the 
swarm of produced fireflies at every iteration. As such the 
proposed local search method can be straightforward applied 
to any population-based global search heuristic, either from 
Evolutionary Computation or Swarm Intelligence. 

Algorithm 2 Firefly Algorithm for graph clustering [12] with 
the proposed local search procedure (FA+LS) 

1: S(C) denotes the fitness function to be maximized. 
2: Initialize P fireflies {C~}:=l at random. 
3: Set T (# of iterations), TSR (Topological Search Rate). 
4: Set t = O. 
5: procedure FIR EFLY ALGORITHM WITH LOCAL SE ARCH 

6: while t ::; T do 
7: for i = 1 : P do 
8: for j = i + 1 : P do 
9: if S(C;) > S(CD then, 

10: Transfer node-to-cluster mappings from C;. 
to C; with probability 1 - NMI(Ci, Cj ), 

yielding C;+1 
11: Apply the random perturbation operator over 

every node v E V and C~+1 (w.p. TSR). 
12: Discovery of singletons and small-sized 

communities in C;+l . 
13: Evaluate and update S(C~+1 ). 
14: else 
15: Transfer node-to-cluster mappings from C; 

to C; with probability 1 - NMI(Ci , Cj ), 

yielding C;+1 . 
16: Apply the random perturbation operator over 

every node v E V and C;+1 (w.p. TSR). 
17: Discovery of singleton and small-sized com­

munities in C;+1 . 
18: Evaluate and update S(C;+1). 

19: Apply the proposed local search procedure to each 
firefly by means of matrix D calculation. 

20: Only those fireflies that improve the S metric with 
respect to no local search are selected. 

21 : t = t + l. 
22: The best cluster arrangement at iteration t is given by 

the highest S(-) among {S( C~ )}:= l' 

IV. SIMULATION R E SULTS AND DISCUSSION 

This section presents the performance of the proposed graph 
clustering approach over synthetic and real-world network 
topologies with varying sizes. Without loss of generality this 
paper focuses on undirected unweighted graphs such that 
(u ,v) = (v,u) and w(u,v) E {O, I} 'Vu,v E V (1: link exists; 
0: link does not exist; w( u, u) = 0 'Vu). The simulation results 
are further compared in terms of Surprise optimality towards 
the set of graph clustering techniques integrated in the so­
called Surpri s e Me tool [19] . This tool sequentially executes 
a number of clustering techniques and ranks them in terms of 

their associated Surprise score. Therefore, for each network 
topology a different clustering technique can be selected and 
there exists no universal technique that outperforms any other 
over dintinct network topologies. Moreover, the goodness of 
the proposed local search method is envinced by comparing 
the obtained results with respect to the same technique without 
the application of the local search procedure. 10 MonteCarlo 
simulations and 300 iterations are executed by the proposed 
FA and FA+L S techniques with a TSR probability of 0.01. 

Specifically, the techniques within the SurpriseMe tool 
are: 

• CP M [20]: A Constant Potts Model. 
• SCLUSTER [21]: A dendrogram-based approach aimed 

at performing iterative hierarchical cluster analysis. 
• RNSC [22]: A Restricted Neighborhood Search Clustering 

algorithm. 
• RN [23]: A local spin-glass-type Potts model for commu­

nity detection that utilizes an absolute energy evaluation. 
• INFOMAP [24]: An information-theoretic approach which 

relies on information flows sent over random walks 
through the graph so as to construct a map with enhanced 
information about the clustering structure of the graph. 

• UVCLUSTER [25]: A hierarchical clustering scheme that 
build a dendrogram by means of iteratively explores 
distance datasets. The peer-to-peer distances between 
nodes are evaluated in order to compute the strength of 
the connection between nodes of a cluster. 

• RB [26] : A graph clustering approach that infers the spin 
configuration that minimizes the energy of an infinite 
ranged Potts glass. 

Furthermore, the so-called Louvain method often used to 
unveil community structures in networks by iterative aggre­
gating nodes on a clustering hierarchy has been included in 
the benchmark as a reference (label LOUVAI N). 

Table I depicts the (min/mean/max) values obtained by the 
proposed FA with Local Search method (FA+L S) and without 
the LS procedure (FA) over 6 network instances: Relaxed 
Caveman 50 nodes RC ( 50 ), Relaxed Caveman 100 nodes 
RC ( 1 00 ) , Erdos Renyi 50 nodes ER ( 5 0 ) , Erdos Renyi 100 
nodes ER ( 1 0 0 ) , Powerlaw Cluster Graph 50 nodes P L ( 5 0 ) 
and Powerlaw Cluster Graph 100 nodes P L ( 1 00) : 

• RC( e, 'l9, Prw ) refers to graph instances generated by 
the Relaxed Caveman Model. This model starts with 
e cliques of 'l9 nodes. Such nodes are subsequently 
randomly rewired with probability Prw to link different 
cliques. These parameters give rise to IVI = e . 'l9 nodes 
grouped in peifect communities that become more loosely 
connected as Prw increases. 

• ER (1], Per) denotes graph instances created by an Erdos­
Renyi Model which consists of a random graph of 1] 

nodes with connections between them generated under 
probability Per. 

• PL(J.l,,B, P LI ) refers to graph instances following the 
Power Law Cluster Graph Model. 1£1 = J.l nodes are 
progressively included to the graph. Per newly added 
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TABLE I 
RANKING STATISTICS OF THE S URPRISE VALUES (min/mean/max) OBTAINED BY THE COMMUNITY DETECTION TECHNIQUES WHEN APPLIED TO 6 

DIFFE RE NT GRAPH INSTANCES COMP UTE D OVER 10 INDEPENDE NT MO NTE CARLO REALIZATIONS . 

FA+LS FA CPM SCLUSTER RNSC RN I NFOMAP UVCLUSTER RB LOUVA I N 
RC(5,1O,0.1) 3.36/129.56/184.07 59.25/116.83/193.48 193.48 193.48 193.48 193.48 193.48 193.48 193.48 193.48 
RC(5,20,0.1) 234.97/690.63/798.93 11.53/599.97/764.36 798.93 798.93 798.93 798.93 798.93 798.93 798.93 798.93 
ER(50,0.1) 10.50/29.10/37.88 5.55/18.84/37.78 36.33 38.14 31.71 37.31 33.02 35.97 34.97 25.56 
ER(100,0.1) 21.47/80.33/89.09 28.17/74.49/88.30 85.12 75.99 81.86 3.40 0 86.01 83.21 57.69 
PL(50,3,0.1) 21.08/28.89/31.74 8.36/23.33/31.84 28.47 29.21 29.84 30.48 0 29.68 25.52 21.64 
PL(l00,3,0.1) 15.73/64.75/80.22 11.97/59.22/78.47 76.70 69.69 78.67 71.24 64.79 70.58 68.43 51.71 

TABLE II 
MAXIMUM VALUES OF THE S URPRISE METRIC OBTAINED BY THE PROPOS ED FA+LS ALGORITHM AND THE REST OF ALGORITHMS. 

node (3 edges are created at random and a new edge 
connecting a given node to one of its neighbors named 
triangle is created with probability Pt,. 

As can be observed by analyzing the results in Table I, 
mean values for Surprise metric are outperformed by using 
the proposed local search method in all the aforementioned 
network topologies. When analyzing the performance of Sur­
prise maximization along the iterative process by FA and the 
proposed FA+ LS technique, it can be observed in Figure 1 
that by applying the local search procedure higher values for 
Surprise are obtained at lower iterations and a higher value is 
achieved during the iterative process. Moreover, a Wilcoxon 
test has been performed over FA and the proposed FA+LS. 

Results show that both distributions are statistically significant 
at a confidence level of 95% for RC and ER graph instances. 

600 

500 

v 
.~ 400 
E 
~ 
.e. 300 

Jl 

200 

50 100 150 
Iter 

-, ------~------~ 

200 250 300 

Fig. 1. Mean Surprise values along iterations for FA and FA+ LS for the 

Relaxed Caveman network with 100 nodes RC(lOO) . 

When comparing maximum values of FA+LS with respect 
to results obtained by the rest of community detection algo­
rithms embedded in the SurpriseMe tool, it can be noted 
that the FA+LS method is a universally competitive graph 
clustering proposal which behave well across networks of 
diverse topologies. 

UVCLUSTER 

49.49 

A. Real Case Study: Dolphins Network 

Once the proposed algorithm has been validated in syn­
thethic scenarios, in this subsection a real case scenario based 
on directed social network of bottlenose dolphins is presented. 
The nodes are the bottlenose dolphins (genus Tursiops) of a 
bottlenose dolphin community living off Doubtful Sound, a 
fjord in New Zealand. An edge indicates a frequent association 
and the observations occurred between 1994 and 2001. As 
stated in [28] the network is composed of 62 dolphins and 
edges were set between animals that were seen together more 
often than expected by chance. The dolphins separated in two 
groups after a dolphin left the place for some time. 

Table II depicts the maximum values obtained by the 
Surprise metric by the proposed FA+ LS algorithm and the 
rest of community detection algorithms. As can be observed 
FA+ LS algorithm is able to achieve the highest Surprise value 
which demonstrates its potential and suitability as a universal 
community detection technique. 

V. CONCLUDING REMARKS 

This papers has elaborated on a novel local search method 
for graph clustering based on population-based distribution 
learning capable of outperforming other community detection 
algorithms in the literature. The proposed scheme hinges on 
estimating the probability distribution of pairs of nodes over 
the set of cluster arrangements found by a global solver, 
from which new cluster proposals are sampled in a similar 
fashion to canonical estimation of distribution algorithms. In 
particular this work has described the incorporation of such a 
procedure to a Firefly algorithm specially devised for tackling 
graph clustering problems. Furthermore, the simplicity of the 
proposed method makes it a low-complexity alternative for its 
hybridization with other population-based heuristics. 

The performance of the proposal has been tested over 
synthetic network topologies of different sizes, as well as over 
a real case scenario based on the Dolphins dataset. In general it 
has been shown that the proposed FA+LS technique is capable 
of achieving competitive results in a large number of networks 
while other proposals of S u rp r is eMe tool are well-suited 
for specific network topologies and do not behave well as an 
universal community detection tool. 
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Future research will be focused on extending this study to 
more diverse and real-based graphs, as well as undertaking 
the detection of overlapped communities. Efforts will be also 
conducted towards the parallelization of the search process of 
the algorithm in order to enhace its convergence. 
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