
The Importance of the Individual Encoding

in Memetic Algorithms with Diversity Control

Applied to Large Sudoku Puzzles

Carlos Segura∗, Eduardo Segredo† and Gara Miranda‡
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Abstract—In recent years, several memetic algorithms with
explicit mechanisms to delay convergence have shown great
promise when solving 9x9 Sudoku puzzles. This paper analyzes
and extends state-of-the-art schemes for dealing with Sudoku
puzzles of larger dimensionality. Two interesting aspects are
analyzed: the importance of the encoding and its relation with the
way of managing the diversity. Specifically, three different ways
of encoding the individuals and six different methods, including

four that control the diversity in a special way, are studied.
Computational results are shown with twenty 16x16 Sudoku
puzzles. Contrary to the low-dimensional case, important dif-
ferences appear among the several ways of controlling diversity.
Specifically, a method that incorporates multi-objective concepts
in the replacement phase to deal with the diversity, resulted in
the most promising method. Results show that both the encoding
and the way of managing diversity are crucial to attain high
success probabilities in large Sudoku puzzles. They also show
that, while the analyzed encodings induce different search space
sizes, this feature is not enough to justify the differences in the
performance attained by them.

I. INTRODUCTION

Sudoku is a very popular and widespread pastime today. The

origins of this number-based logic puzzle can be established

within the works of the mathematician Leonard Euler who, in

1783, reported on the idea of Latin Squares: grids of equal

dimensions in which every symbol occurs exactly once in

every row and every column. The rules for Sudoku are simple:

given an N2
× N2 board which is divided into N2 blocks

of size N × N , the aim is to fill each empty square so that

the following criteria are met: some squares have already an

assigned number which must be kept, each row of squares

contains the integers 1 through to N2 exactly once, each

column of squares contains the integers 1 through to N2

exactly once, and each N × N block contains the integers

1 through to N2 exactly once.

When solving Sudoku problems, N is considered the order

of the problem. The most popular variant of Sudoku is that

with order N = 3, thus involving a grid of size 9 × 9.

Since this problem is NP-Complete [1], larger grids might

be too complicated to be fun, and as a result, most works

analyze problems with N = 2 (4 × 4) or N = 3 (9 × 9),

but only a few analyze instances of N = 4 (16 × 16) or

N = 5 (25 × 25) [2]. Anyway, even with a 9 × 9 grid there

are enough different Sudoku boards to provide plenty of fun:

6,670,903,752,021,072,936,960 to be exact [3]. Even if we

were interested in counting only essentially different, non-

equivalent Sudoku boards, the number is also rather large,

namely 5,472,730,538 [4].

There are several commonly known techniques for solving

Sudoku by hand. However, all puzzles are not that simple to

be solved by hand, so various algorithms have been developed.

Some of them mimic the way a human would solve the

puzzle, but for harder puzzles, where guessing is required,

those algorithms do not suit well. Some algorithms perform

exhaustive searches but for harder puzzles they will take

longer to solve. Due to the constraint nature of Sudoku, it

is very likely to find a solution that is a local optimum, under

typically used neighborhoods. When stochastic techniques are

used, the solution space is still searched even though a local

optimum has been found, allowing for the global optimum to

be detected in some cases, so a solution to this problem could

lie in using stochastic optimization techniques [5]. In fact,

most popular meta-heuristics have been adapted to tackle the

Sudoku problem [6], [7]. In the particular case of Evolutionary

Algorithms (EAs), its basic variants can solve simple Sudoku

puzzles [8], although they encounter significant difficulties

when tackling more difficult instances [9], [10], [11]. In

order to alleviate these drawbacks, hybrid variants and ad-hoc



genetic operators have been proposed [12], so incorporating

problem-specific knowledge seems to be quite important for

designing successful EAs for Sudoku.

Adapting EAs to new problems is not an easy task, as

this usually involves many difficult design decisions [13].

Particularly, premature convergence has been recognized as

one of their recurrent drawbacks [14], so when applying EAs

to new problems, special attention must be paid to this issue.

Maintaining a diverse population appears as an alternative

to alleviate this problem. In [15] six mature methods that

were designed to control the diversity of the population [16]

were successfully incorporated into a simple Memetic Al-

gorithm (MA) that uses some of the first genetic operators

ever designed. In addition, in [15], a more recent method—

proposed in [17], [18]—was also used. It combines the idea of

transforming a single-objective problem into a multi-objective

one by considering diversity as an explicit objective, with

the idea of adapting the balance induced between exploration

and exploitation to the various optimization stages. In this

work, the four different methods of controlling the diversity

that attained the most promising results are analyzed together

with three different individual encodings with larger Sudoku

puzzles. Additionally, two commonly used methods that do

not control diversity in a special way are also taken into

account. The individual encoding is somehow related to how

the search space will be explored, so it is mandatory to choose

a codification which can ensure a proper space exploration. In

this work two interesting aspects are analyzed: the importance

of the encoding and its relation with the way of managing the

diversity. For the study, 16x16 Sudoku puzzles are taken into

account rather than the most common and human-affordable

9x9 puzzles.

The rest of the paper is organized as follows. A discussion

of the relevant background, including EAs for Sudoku and

some issues related to the encoding of individuals, is given

in Section II. In Section III, the solver designed for Sudoku

is described. Not only the general operation of the MA is pre-

sented, but also the different proposals regarding the individual

encoding and diversity management. Then, our experimental

validation is presented in Section IV. Finally, conclusions and

some lines of future work are given in Section V.

II. LITERATURE REVIEW

A. Meta-heuristics for Sudoku

Since the popularization of Sudoku, several different

stochastic optimization algorithms have been applied to solve

these types of puzzles [6], [7]. From among all different meta-

heuristics, EAs are likely to be the most popular approaches.

In the initial proposals the genetic operators applied were

quite straightforward [8], [19], and therefore, good results were

achieved only for simple Sudoku puzzles. However, in order

to afford harder puzzles an important research line in this

field has focused on the design of more complex crossover

and mutation operators [9], [20], [21], [10]. Due to these

weaknesses of general operators, genetic operators that take

into account specific knowledge of the problem have been

developed [22], [11], [23], [24].

Another research line in this field involves hybridizing

EAs with other population-based meta-heuristics. For instance,

in [25], some principles of Particle Swarm Optimization are

incorporated into an EA, while in [12], EAs and Ant Colony

Optimization are applied together, which is a well-known

stochastic optimizer for Sudoku. In addition, it is very typical

to integrate local searches or individual learning procedures

into EAs. In most cases, simple definitions of neighborhoods

are used. One of the most typical approaches is to generate

each neighbor by simply swapping two positions of a sub-

chromosome [26], [24]. Incorporating a local search greatly

reduces the amount of time required to converge. In this work,

we incorporate a simple stochastic hill climbing method.

Finally, it has been shown that using some of the traditional

schemes for avoiding premature convergence by controlling

the diversity of the population provide important benefits in

the solving of small Sudoku puzzles [15]. In fact, schemes that

do not include any mechanisms to alleviate premature con-

vergence yield quite disappointing results [6], [27]. whereas

some of the most effective solvers do in fact include mecha-

nisms to avoid premature convergence. For instance, in [12],

three different mechanisms to alleviate premature convergence

are included: aging, a restarting mechanism, and a special

sorting method that promotes the selection of complementary

individuals. Furthermore, the advantages of imposing mating

restrictions, which seek to decelerate the loss of diversity, are

shown in [10]. More evidence regarding the above is provided

in [28], where the parallel independent runs model [29] was

successfully applied to the Sudoku problem. This model is

more successful when the approach is highly dependent on the

initial population, which is highly related to the appearance of

premature convergence.

B. Importance of Individual Encoding

Since different problem instances induce different land-

scapes and complexities, whilst different individual encodings

may lead to different solution spaces, the choice of a suitable

encoding or representation is a challenging task. For the

Sudoku problem different alternatives have been proposed.

In most cases, the search space for the Sudoku problem

is defined by all those N2
× N2 grids which fulfill two

of the four given constraints: prefixed square constraint and

any one of the other three constraints (rows, columns or

blocks). The degree of fulfillment of the remaining constraints

defines the fitness value of the grid. For instance, in [8], a

representation using the prefixed squares and the divisions

by blocks, so that the only constraints that must be taken

into account are those associated with rows and columns, is

devised. Note that the generation of solutions that take into

account three constraints simultaneously is NP-Complete [9],

and consequently, the encodings that take into account two

kinds of constraints are the most popular ones. The theoretical

and empirical advantages of this encoding compared to those

where no constraints are considered is shown in [9].



Some direct or grid-based encodings make use of a group

table [30], [31]. In [31], preset squares and blocks criteria

are made the hard constraints to be satisfied. Moreover, an

additional condition was imposed in order to characterize the

search space: any empty square has only limited probable

candidates. In this way, for each empty square there is a group

of possible values which do not enter in conflict with the given

constraints. The individuals produced by the algorithm will

only be those whose empty squares are filled in with one of

the probable numbers that can be placed there, thus reducing

the search space. In [30], a multistage genetic algorithm also

applied a group table to create an initial random population.

The said table got updated in each cycle, since it was also

used to perform mutation.

Other possibility consists of representing the Sudoku board

as a graph with N2
×N2 vertices (one for each square of the

board), together with edges. Two vertices are connected by an

edge if the squares that they correspond to are in the same

column, row or block. Then, each number from 1 to N2 is

assigned a color, so that vertices containing a given number

(prefixed squares) will be colored with the corresponding color

of the number. Afterwards, completing the Sudoku puzzle

without violating the constraints is equivalent to coloring the

vertices of the corresponding graph, while ensuring that two

adjacent vertices are not assigned the same color. A Sudoku

puzzle can be thus presented as a graph coloring problem [32],

[33]. Related to this graph-based representation, the Sudoku

can be represented as a system of polynomial equations,

by considering pairs of squares that share a region rather

than by considering entire regions at a time [34]. After the

transformation, any of the encodings that have been used for

solving these related problems might be used to tackle the

Sudoku.

Another important issue for the performance of EAs is

the definition of the fitness function. Such definition highly

depends on the individual representation being used. For

instance, when using grid-based representations, the sum of

each column, row and grid must be equal to
∑N2

i=1 i and its

product must be equal to (N2)!. One possible fitness function

implements these arithmetic operations to ensure that the

constraints are met, although the non-repetition of an integer

in the same column, row or grid is not guaranteed. This could

cause the algorithm to converge to a solution that does not

meet all the constraints. For this reason, the non-compliance

with the restrictions must be somehow penalized. In [5], a

fitness value is assigned to a possible solution based on the

number of repeated or non-present integers. In [8] a weighted

sum of several conditions that must be fulfilled in a valid

Sudoku solution is considered. Subsequently, it was shown

that such complexity was not justified and that by simply

penalizing the repetitions of numbers in rows, columns and

blocks, similar or even better results might be obtained [22]. In

these initial definitions, the starting numbers given in the board

were just ignored because the encoding of solutions did not

allow altering them. In [35], the results of a best-first search

Algorithm 1 Diversity-based Memetic Algorithm with Lamar-

ckian Individual Learning Procedure

1: Initialization: Assign t = 0. The initial population P0 is filled with N individuals

produced at random.

2: Individual learning: For each individual in P0 , the learning procedure is applied.

3: while (stopping criterion is not satisfied) do

4: Evaluation: Every individual in Pt is evaluated.

5: Mating selection: The mating pool is filled by performing binary tournament

selection on Pt .

6: Variation: The offspring population CP is obtained through the application of

the variation operators to the mating pool.

7: Individual learning: Every offspring in CP undergoes the learning procedure.

8: Survivor selection: Pt and CP are combined and the surviving individuals

selected by the replacement scheme MULTI DYN define Pt+1 .

9: t = t + 1

10: end while

could be improved by additionally penalizing the conflicts with

the given values. The advantages of these types of penalties

have been confirmed in several variants of EAs [36], [23].

III. ALGORITHMIC PROPOSALS

This section is devoted to describe the algorithmic schemes

considered in the current work. Firstly, in Section III-A,

the MA used as our main evolutionary engine is detailed.

Then, Section III-B introduces the different encodings used to

represent Sudoku solutions. Since the variation operators and

the individual learning procedure depend on the particular in-

dividual encoding, they are also presented at this point. Finally,

different approaches to deal with premature convergence,

including those applied together with the aforementioned MA,

are described in Section III-C.

A. Memetic algorithm

The MA considered in this work, which was proposed

in [15], consists of an EA and a stochastic hill-climbing

individual learning procedure. Novel variation operators and

neighborhood definitions to address Sudoku puzzles are not

proposed herein. Instead, some simple mechanisms, which

can be already found in the related literature, are taken

into account. We selected those simple approaches because

they have not usually been able to deal with hard Sudoku

instances. One of the aims is thus demonstrating that by

using a suitable diversity preservation mechanism, general and

simple operators, rather than knowledge-based and complex

ones, can be applied, even when using large Sudoku puzzles.

The pseudocode of the particular MA considered herein is

shown in Algorithm 1. It is a standard EA combined with

a Lamarckian individual learning procedure (steps 2 and 7).

Moreover, it makes use of a diversity-based survivor selection

strategy (step 8), which will be referred to as MULTI DYN in

the rest of the paper. The operation of that strategy will be

detailed in Section III-C.

In order to evaluate a particular individual (step 4 of

Algorithm 1), the objective function takes into consideration

constraint violations at block, row, and column levels. In

order to simplify their description, only constraint violations

at blocks are explained in the following lines, but we note

that those constraint violations may also occur considering

rows and columns. Particularly, constraint violations might



be classified in two different types. In the first type, which

arises when one of the empty squares of a particular block

is assigned a number that was initially set on that block, i.e.,

a number originally given by the instance, the value 100 is

added to the objective function. The second type of constraint

violation consists of the number of repetitions at blocks that

are not classified into the first type, which is also added to the

objective function.

B. Individual Encoding, Variation Operators, and Individual

Learning Procedure

Since in the current paper the main goal is to analyze the

importance of the individual encoding and its relation with

diversity preservation, this section is devoted to describe the

different representations we take into account. Particularly,

three different encodings are applied herein.

In the first representation [8], which is likely to be the most

popular one, η sub-chromosomes, with η being the size of

the Sudoku board, define a given individual. Hence, each sub-

chromosome represents a particular block of the board. At the

same time, each sub-chromosome consists of a permutation

of integer numbers whose size is equal to the number of

empty squares in the corresponding block. Integer values are

in the range [1, η]. We note that values that are preset in

a particular block of the board, i.e., those values originally

given by the Sudoku instance, can not be used in the corre-

sponding permutation of that block. In the case of this work,

16x16 Sudoku instances are addressed, and consequently, an

individual consists of η = 16 sub-chromosomes. Finally, it is

important to mention that for a given instance, the different

sub-chromosomes might have different sizes, since the number

of empty squares varies depending on the particular block.

The second and third encodings only differ from the pre-

vious one in what each sub-chromosome represents. In the

second encoding, each sub-chromosome consists of a permu-

tation representing the numbers assigned to the empty squares

of a particular row, while in the third one, permutations define

the values assigned to the empty squares of a given column.

Fig. 1 depicts the encoding of a particular solution through

the above three approaches. Red values are those assigned to

empty squares, while black values are those preset by the in-

stance. A 9x9 board is considered due to space restrictions. In

this particular case, η = 9 different sub-chromosomes would

define a complete individual. Due to the same aforementioned

reason however, only encodings for two of them are illustrated.

One important observation is that the size of the search

space changes depending on the individual encoding selected.

The size of the search space in terms of the board size η and

the size of each sub-chromosome si, with i = 1 . . . η, can be

calculated by means of (1). For example, if we consider the in-

stance detailed in Fig. 1, the size of the search space regarding

the block-based encoding is equal to 7.8640006e+ 22. In the

case of the row-based and column-based encodings, sizes are

equal to 1.9266801e+ 23 and 7.8640006e+ 22, respectively.

Algorithm 2 The replacement scheme MULTI DYN

1: CurrentMembers = Population ∪ Offspring

2: Best = The fittest individual in CurrentMembers in terms of the original objective

function

3: NewPop = { Best }
4: CurrentMembers = CurrentMembers - { Best }
5: while (|NewPop| < N) do

6: Considering NewPop as the reference set, the Distance to the Closest Neighbor

(DCN) is calculated for each individual in CurrentMembers.

7: D = DI − DI ∗
TElapsed

TEnd
8: Penalize(CurrentMembers, D)

9: ND = Non-dominated individuals in CurrentMembers (without repetitions)

10: Selected = Select an individual from ND at random

11: NewPop = NewPop ∪ Selected

12: CurrentMembers = CurrentMembers - {Selected}
13: end while

14: Population = NewPop

η∏

i=1

si! (1)

With regard to the variation scheme, only a crossover

operator is applied at step 6 of Algorithm 1. This MA does

not apply a mutation operator because, besides the fact that

mutation is not always considered for the variation scheme

of MAs, a preliminary analysis showed that its usage did

not provide any advantage, and therefore, it was removed

to keep our approach as simple as possible. The crossover

operator, which is applied in every generation, exchanges

complete blocks/rows/columns—depending on the particular

encoding—between solutions uniformly, i.e., a typical uniform

crossover is considered, but instead of operating at the gene

level, it operates at the sub-chromosome level.

Finally, the individual learning procedure is very straight-

forward. A neighbor of a candidate solution is generated by

swapping two elements of a block/row/column. Then, using

that definition of neighborhood, a stochastic hill-climbing is

applied, i.e., neighbors are considered in random order and

only movements resulting in an improvement of the objective

function are accepted. The above steps are repeated until a

local optimum is reached.

C. Diversity Management Mechanisms

A novel survivor selection mechanism termed as

MULTI DYN, which considers diversity in an explicit

way, was recently proposed [17], [37]. Furthermore, it was

integrated into the MA introduced in previous sections, with

the aim of solving 9x9 Sudoku instances [15]. This section

aims to detail the operation of the replacement scheme

MULTI DYN, whose pseudocode is shown in Algorithm 2.

First of all, the fittest individual—regarding the original

objective function—from among parents and offspring (Cur-

rentMembers) is selected as one of the survivors (steps 1–

4). Afterwards, while the surviving population NewPop is

not filled with N individuals, being N the population size,

the following steps are repeated (step 5). Basically, the non-

dominated set that considers the original objective function,

and at the same time, the diversity contribution of each

individual in CurrentMembers is determined (step 9). The



Fig. 1. Encoding of a Sudoku solution by means of three different representations

diversity contribution of a given individual is calculated as its

Distance to the Closest Neighbor (DCN) belonging to the set of

individuals that have already been selected to survive NewPop

(step 6). Considering our different individual encodings, we

selected the Hamming distance. The distance between two

individuals is thus given by the number of differences between

their corresponding chromosomes, i.e., in the decision variable

space. Finally, an individual uniformly chosen at random from

the non-dominated set becomes a new survivor (steps 10–12).

It is worth explaining at this point the operation of steps 7

and 8 of Algorithm 2. As it can be observed, the stopping

criterion TEnd and the elapsed time TElapsed are used by

the replacement scheme (step 7) with the aim of balancing

its diversification and intensification abilities. For doing that,

a mechanism that penalizes individuals which do not signif-

icantly contribute in terms of diversity, regardless of their

original objective value, is applied (step 8). The minimum

DCN value that a given individual must satisfy is represented

by D. If that DCN value is lower than D then the individual is

penalized. The penalty consists of assigning a quite high value

to its original objective value. By means of the said penalty,

its non-domination rank may be increased, and in that case,

its probability to survive would be decreased.

We note that an initial value DI has to be fixed, in such

a way D is then decreased linearly until D = 0. Bearing

the above in mind, at the beginning of a run, MULTI DYN

promotes diversification. At the end of the run, the balance is

moved towards intensification.

In addition to the replacement scheme MULTI DYN, other

methods are also taken into account herein for comparison

purposes. In particular, we apply two replacement schemes

that do not include any mechanism to delay convergence. The

first one is a generational approach with elitism (GEN ELIT),

where the best individual in the current generation survives to

the next one, while remaining individuals are created by means

of the variation operators. The second one is the replace-worst

strategy (RW), which is a more elitist version. In this case, the

offspring and parent populations are joined in a set with 2 ·N
individuals. Afterwards, the N fittest individuals, from among

parents and offspring, are selected to survive.

At the same time, three approaches that incorporate specific

mechanisms to manage diversity are also used as comparison

methods. They are some of the approaches providing the

best results in [15] with smaller Sudoku puzzles: Restricted

Tournament Selection (RTS) [38], COMB [39], and the Saw-

Tooth Genetic Algorithm (Saw-Tooth-GA) [40]. In RTS, which

is a crowding method, an individual C is produced whereas

CF individuals are selected at random from the current

population. Then, C and its most similar individual included in

CF compete to survive trough a traditional binary tournament.

In COMB, where maximizing diversity is considered as an aim

of the optimization process, individuals are sorted, first, by

their original objective function, and second, by their contri-

bution to diversity. Afterwards, both rankings are combined to

calculate the final fitness value of a particular individual via

two different parameters: NClose and NElit. The individual

with the lowest fitness is erased and rankings are re-calculated

at each step of the replacement strategy. Finally, the Saw-Tooth

GA, includes a diversity preservation mechanism in the form

of a restarting scheme. Specifically, it considers a population

of variable size, which is initialized periodically, by following

a saw-tooth function. The said function is parameterized by

means of its period P and amplitude D.

IV. EXPERIMENTAL VALIDATION

In this section we describe the set of experiments that have

been carried out to analyze the importance of the individual

encoding and its relation with the diversity management in the

solving of large Sudoku puzzles. The Meta-heuristic-based

Extensible Tool for Cooperative Optimization (METCO) [41]

was used to implement our proposals. Experiments were run

on bi-processor machines with 32 Gb RAM. Each processor

is an Intel(R) Xeon(TM) CPU E5-2620 at 2.10 GHz. The

analyses were performed with 20 different Sudoku puzzles.

Since most 9x9 Sudoku puzzles are solvable with several

MAs [15], larger puzzles with sizes equal to 16x16 have been

used. Specifically, a set with 20 puzzles was used. They were

generated with two of the most popular websites dedicated

to Sudoku [42], [43]1. In the case of the Sudoku puzzles

generated in [42] (tagged as ES), the Diabolique level was

1The set of instances can be downloaded in
http://www.cimat.mx/∼carlos.segura/Sudoku/16x16SudokuPuzzles.tar.gz

http://www.cimat.mx/~carlos.segura/Sudoku/16x16SudokuPuzzles.tar.gz


selected, whereas for the ones generated through [43] (tagged

as TS), the Expert level was used. In both cases, the level

selected was the most difficult from among those available.

Since stochastic algorithms were considered, each execution

was repeated 100 times. In this kind of problem, the objective

is to completely solve the puzzle. Thus, when the puzzle

is not solved, there is no point in comparing the resulting

fitness values. Consequently, the analyses shown in this paper

were done in base of the success probability in achieving a

solution of the puzzle. The test described in [44] was applied

to statistically compare the success probabilities attained by

the different approaches.

The experiments are presented in two different subsections.

The first one is devoted to analyze the importance of the

encoding in the application of MAs to the solving of Sudoku.

Since the MULTI DYN scheme presented the best performance

with the most difficult 9x9 Sudoku puzzles in [15], this scheme

is used to carry out this analysis. The second subsection is

aimed to study the performance attained by several well-

known diversity-management schemes and to analyze the rela-

tions between the encoding and the management of diversity.

A. Importance of Encoding

In order to check the importance of the representation of

individuals for the Sudoku, the MULTI DYN scheme was used

by incorporating the three previously discussed representa-

tions: block permutations (BP), row permutations (RP), and

column permutations (CP). The MULTI DYN scheme requires

two parameters: the population size (N ) and the initial distance

used in the penalty approach (DI). The population size was

set to 100 because it is a very typical value and because

it has reported a promising behavior in smaller Sudoku

puzzles [15]. In the case of DI , five different values were

tested: 0, 5, 10, 20, and 30. Additionally, in every case the

stopping criterion TEnd was set to 5 minutes. Every DI

value reports quite a similar performance when taking into

account the mean success probability obtained with all the

instances and representations. Fig. 2 shows the mean of the

success probability with the different values of DI . The most

adequate value reported a mean success probability equal to

69.33%, whereas the success probability attained with the

worst parameterization was 65.95%. Thus, the MULTI DYN

scheme is not very sensible to its parameterization. In fact,

with DI equal to 0, promising results are attained, meaning

that most of the benefits arise from the use of a multi-objective

replacement, whereas the activation of the penalty approach

(DI values different to 0) just refines the method. In any

case, since the value 10 reported the highest mean success

probability, it was selected to report our remaining results.

Table I shows, for the 20 Sudoku puzzles, the success

probability (column SP) attained by MULTI DYN with each

encoding. In each instance, the largest success probability is

shown in bold face. In addition, the success probabilities of

the schemes whose differences, when compared to the best

one, were not statistically significant are also shown in bold

face. It is quite clear that, selecting a proper encoding is a
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Fig. 2. Mean Success Probability attained with different values of DI

very important step to properly solve the puzzles. For instance,

when taking into account the TS5 puzzle, MULTI DYN with

the BP representation attained a success probability equal to

83%; however, if the encoding applied is RP, then the success

probability decreases to 9%, which is a quite remarkable dif-

ference in performance. Moreover, for each kind of encoding,

there is at least one instance where the application of such an

encoding provokes an important decrease in performance when

compared to the best encoding. In fact, no one of the schemes

appears in bold face in every instance. Thus, selecting always

the same encoding does not seem the best way to proceed. In

any case, it is remarkable that the BP encoding attains quite a

promising performance. In fact, it obtained the largest success

probability in 17 out of the 20 instances, and only in one

of the instances (ES9) where the success probability was not

the largest one, there were statistically significant differences.

Thus, it seems that there is a bias that favors the application

of the BP encoding. However, the existence of ES9 confirms

that this is not a completely general pattern. Since the puzzles

were created by taking into account only two generators, it

is unknown for us if this bias comes from the way in which

the instances are generated or if it is a feature of the problem

itself. Obtaining more general conclusions would require the

generation of many puzzles from several sources, as well as

knowing the way in which they are created, which is usually

not reported. As a result, that study is out of the scope of the

current work.

Another interesting fact is that the different encodings

induce different search space sizes. Initially, we hypothesized

that these sizes might be related to the performance obtained

by the different encodings. In order to check this hypothesis,

the sizes induced by each encoding in the different puzzles

are also reported in Table I. The lowest search space sizes

are shown in bold face for each instance. First, we could

find out that differences in the sizes are noticeable in several

cases. For instance, in the ES1 instance, the size induced by

the RP encoding is 57.06 times larger than the one induced by

the CP encoding. In 11 out of the 20 instances, the encoding

that reported the best performance is the one that induced the

lowest search space. However, this means that in 9 out of the

20 instances, this is not the case. Thus, it is clear that using

only the search space size to predict the overall performance



TABLE I
SUMMARY OF THE SEARCH SPACE SIZE AND RESULTS OBTAINED BY

MULTI DYN WITH DIFFERENT REPRESENTATIONS

Blocks Rows Columns

Permutations Permutations Permutations

Inst. Size SP Size SP Size SP

ES1 4.53e+93 95% 2.14e+95 27% 3.75e+93 98%

ES2 3.36e+89 100% 1.23e+91 54% 1.16e+90 100%

ES3 2.01e+95 98% 3.58e+95 93% 2.83e+97 31%

ES4 2.10e+85 100% 1.52e+87 100% 1.52e+87 23%

ES5 4.63e+91 100% 2.60e+91 100% 2.60e+91 95%

ES6 1.66e+93 100% 8.75e+93 61% 1.02e+96 35%

ES7 4.90e+85 99% 2.72e+86 97% 2.72e+86 90%

ES8 3.28e+87 100% 5.31e+87 84% 5.31e+87 100%

ES9 3.36e+89 59% 5.42e+89 97% 1.61e+95 51%

ES10 7.50e+89 100% 9.23e+91 45% 3.39e+91 74%

TS1 8.84e+106 98% 4.93e+106 57% 2.29e+107 90%

TS2 3.02e+105 52% 1.40e+106 3% 2.28e+105 33%

TS3 3.89e+102 100% 1.95e+103 90% 3.59e+102 81%

TS4 8.95e+109 92% 4.88e+109 33% 1.18e+110 52%

TS5 4.20e+104 83% 1.62e+105 9% 1.07e+105 50%

TS6 2.44e+106 45% 6.71e+106 54% 8.05e+106 17%

TS7 8.88e+105 27% 4.11e+105 15% 3.86e+105 21%

TS8 2.81e+108 76% 2.01e+109 47% 1.18e+109 70%

TS9 5.13e+99 100% 4.06e+99 83% 1.71e+100 64%

TS10 3.79e+103 93% 4.20e+103 30% 3.62e+103 89%

of each encoding is not appropriate. Note that, the relation

between search space size and performance seems to be clearer

in the ES puzzles. In this first group, the best encoding was

the one with lowest search space size in 9 out of 10 cases.

However, this means that in the TS puzzles, this only happened

in 2 out of 10 cases. Moreover, there are cases, such as the

TS4 instance, where the degradation of the performance when

using the encoding that induces the lowest search space is

quite large. In fact, in such a case, the RP encoding attains a

success probability equal to 33%, whereas the BP encoding,

which induces a search space that is 1.83 times larger, achieves

a success probability equal to 92%. Additionally, in the case

of the TS1 puzzle, the encoding with the lowest search space

size is the one that reports the worst results among the three

encodings. Thus, properly selecting the encoding is a quite

important step. However, our results show that calculating the

search space size to select the encoding is just a heuristic that

fails in several cases.

B. Diversity Management

Previous analyses [15] have shown that several state-of-the-

art MAs with diversity management strategies are capable of

properly solving 9x9 Sudoku puzzles. Since the problem is

NP-Complete, it is expected that with puzzles of larger sizes,

the performance of them might degrade in different ways.

The main aim of this section is two-fold. First, to analyze

the performance of the diversity management strategies that

reported the best results with 9x9 Sudoku puzzles, when

applied to larger puzzles. Second, to analyze the relative

importance between the diversity management strategies and

the encodings.

In order to carry out this analysis, all the schemes described

in Section III-C were taken into account. Since all of them

require the setting of additional parameters, different param-

eterizations were tested. The set of parameters used in the

TABLE II
PARAMETRIZATION OF THE METHODS APPLIED TO SUDOKU

Method Parametrization

COMB NClose = 1, 3, 8;NElit = 1, 3, 8

GEN ELIT No parametrization required

MULTI DYN DI = 0, 5, 10, 20, 30

RTS CF = 25, 50, 75, 95, 100

RW No parametrization required

SAW-TOOTH-GA D = 50, 75, 99, P = 25, 50, 200, 500

preliminary studies are reported in Table II. In each case,

the parameterization that is shown in bold face is the one

that attained the largest success probability, when taking into

account the whole set of instances.

Table III shows the success probabilities obtained with each

scheme and individual encoding, when taking into account the

best found parameterization. As in previous tables, for each

instance the largest success probability is shown in bold face.

In addition, the data obtained by schemes whose differences

were not statistically significant when compared to the best

approach are also highlighted. Taking into account all these

results several conclusions can be drawn. In order to facilitate

the analyses, the last two rows summarizes the results. The

second-to-last row shows for each scheme and encoding, the

mean success probability. This shows a clear superiority of

the MULTI DYN scheme when compared against the other

methods. MULTI DYN with the BP encoding attained a success

probability equal to 85.85%, whereas the second best scheme

obtained a success probability equal to 75.05%. Moreover, it

is clear that in order to obtain promising results, a diversity-

preservation method is required. The first four listed methods,

which incorporate diversity-preservation, obtain mean success

probabilities larger than 50% with a proper encoding, whereas

RW and GEN ELIT attained much lower mean success prob-

abilities regardless of the encoding. However, in some way,

once that any diversity preservation scheme is selected, the

election of a proper encoding becomes crucial. In fact, the

performance of MULTI DYN, which is the best-performing

method, degrades a lot when considering an encoding different

to BP. For instance, MULTI DYN with RP attains a success

probability equal to 58.95%, which is inferior to the success

probabilities attained by RTS and COMB when taking into

account the BP encoding. Finally, the last row shows, for each

proposal, the amount of instances where at least one encoding

was similar in performance to the scheme with largest success

probability. The obtained values confirm the superiority of

MULTI DYN. In fact, MULTI DYN with a suitable encoding

was never statistically exceeded by any other variant.

Finally, it is also remarkable that the most suitable encoding

is similar in all the best-performing schemes. For instance, in

ES4, MULTI DYN, RTS and COMB attain high-quality results

with the BP and RP encoding, whereas the CP encoding

degrades the performance in all of them. Similar circumstances

arises in most of the instances, meaning that there is not a large

dependency between the way of managing diversity and the

most adequate encoding.



TABLE III
SUCCESS RATES ATTAINED WITH DIFFERENT WAYS OF MANAGING DIVERSITY

Inst. MULTI DYN RTS COMB SawTooth-GA RW GEN ELIT

Inst. BP RP CP BP RP CP BP RP CP BP RP CP BP RP CP BP RP CP

ES1 95 27 98 87 30 76 91 28 84 84 14 74 10 0 3 4 1 0

ES2 100 54 100 68 32 68 78 33 77 25 15 43 3 0 2 1 2 2

ES3 98 93 31 76 59 11 94 66 19 2 16 0 5 2 0 6 5 0

ES4 100 100 23 89 97 12 99 100 18 1 76 0 0 5 1 0 4 0

ES5 100 100 95 99 100 91 100 100 86 100 100 100 70 48 34 63 42 22

ES6 100 61 35 100 47 25 100 44 31 84 7 6 6 0 0 18 0 0

ES7 99 97 90 97 49 83 94 64 77 100 47 75 10 1 7 18 2 8

ES8 100 84 100 100 68 99 100 75 99 100 97 86 89 4 25 80 11 15

ES9 59 97 51 67 78 53 52 77 37 13 4 54 1 3 1 4 1 4

ES10 100 45 74 96 39 67 98 36 66 44 10 26 4 0 1 3 1 1

TS1 98 57 90 92 31 57 85 27 48 71 28 13 0 0 0 8 0 2

TS2 52 3 33 39 6 17 37 4 9 15 0 6 0 1 1 6 0 3

TS3 100 90 81 95 39 62 98 43 53 92 10 33 2 0 0 12 0 3

TS4 92 33 52 80 26 59 63 19 29 93 10 48 5 0 0 24 1 2

TS5 83 9 50 25 3 10 32 5 20 3 0 2 0 0 0 0 0 0

TS6 45 54 17 44 26 18 41 23 7 31 0 12 0 0 1 6 0 0

TS7 27 15 21 18 7 18 18 6 7 4 1 1 0 0 0 0 0 0

TS8 76 47 70 61 18 56 55 14 37 49 7 27 1 0 1 11 1 1

TS9 100 83 64 90 45 29 88 47 28 100 30 26 3 0 1 37 3 3

TS10 93 30 89 78 37 61 72 33 52 54 7 53 5 1 1 11 1 2

Mean 85.85 58.95 63.2 75.05 41.85 48.6 74.75 42.2 44.2 53.25 23.95 34.25 10.7 3.25 3.95 15.6 3.75 3.4

Wins 20 5 6 5 0 0

V. CONCLUSIONS AND FUTURE WORK

Many studies have shown that 9x9 Sudoku puzzles are

solvable with several variants of MAs. Particularly, variants

that incorporate mechanisms to delay the convergence of the

population have been the most promising ones. However,

since the Sudoku is an NP-Complete problem, increasing the

dimensionality of the puzzles provokes important drawbacks

in the methods applied for lower dimensionalities. This paper

focuses on analyzing the importance of the individual encoding

in MAs when applied to 16x16 Sudoku puzzles. Since the best

results in lower dimensions have been obtained with proposals

that incorporate specific mechanisms to control the loss of

diversity, our studies focus on those kinds of proposals, and

the relations between diversity mechanisms and encoding are

also studied. Specifically, the MULTI DYN, RTS, COMB and

Saw-Tooth-GA, which are methods that can readily solve 9x9

Sudoku puzzles are taken into account. Some methods that

do not rely in a special control of diversity are also included

for comparison purposes. These schemes are studied with three

different individual encodings. They are based on representing

permutations with the missing values in blocks, rows, and

columns, respectively.

Computational results with 20 instances—that were created

by using two different generators—have been used to validate

the proposals. Results show that both the individual encoding

and the way of controlling the diversity are important to attain

high-quality results. The incorporation of a diversity control

mechanisms is somewhat more important that the encoding.

In fact, methods that do not incorporate any mechanism to

control diversity, obtain a poor performance with any of the

tested encodings. However, when even simple ways of control-

ling diversity are incorporated, the selection of the encoding

becomes a crucial step. In fact, our experimental validations

show that simple strategies to control the diversity might

obtain a better performance than more complex strategies with

a not properly selected individual encoding. The block-based

encoding demonstrates a remarkable behavior when taking

the mean performance into account. However, it is not the

winning strategy in every case and the statistical tests show its

inferiority in one case, meaning that selecting always the same

encoding is not the best way to proceed. It could be verified

that for the best-performing schemes, the relative performance

between the different encodings does not vary, i.e. the selection

of the most appropriate encoding does not depend on the

way of delaying the convergence. An analysis of the search

space sizes associated to the different encodings reveals that

selecting the one with the lowest size is not appropriate in

every case. Thus, it is an open topic to develop a mech-

anism to automatically select the most adequate encoding.

Finally, our experimental validations shows that, while in low

dimensionalities all the schemes perform similarly except in

some of the most complex puzzles, in higher dimensionalities,

there are significant differences among the schemes. In fact,

MULTI DYN significantly exceeded any other techniques in

more than half of the instances.

Several lines of future work might be explored. First,

given the differences in performance attained with the various

encodings tested in this paper, it seems promising to develop

methods that use the different encodings simultaneously. In

other problems, heterogeneous island-based models have been

successfully applied to integrate different encodings and/or

operators, so this line of research seems to be very promising.

Additionally, developing a method to properly select the

encoding by inspecting the features of the instances before

the run starts, seems encouraging. Finally, we would like to

increase even further the dimensionalities of the puzzles, with

the aim of better inspecting the limitations of the diversity-

based MAs.
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