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Abstract—Development of an effective skin cancer detection
system can greatly assist the dermatologist while significantly
increasing the survival rate of the patient. To deal with melanoma
detection, knowledge of dermatology can be combined with
computer vision techniques to evolve better solutions. Image
classification can significantly help in diagnosing the disease
by accurately identifying the morphological structures of skin
lesions responsible for developing cancer. Genetic Programming
(GP), an emerging Evolutionary Computation technique, has
the potential to evolve better solutions for image classification
problems compared to many existing methods. In this paper,
GP has been utilized to automatically evolve a classifier for skin
cancer detection and also analysed GP as a feature selection
method. For combining knowledge of dermatology and computer
vision techniques, GP has been given domain specific features
provided by the dermatologists as well as Local Binary Pattern
features extracted from the dermoscopic images. The results
have shown that GP has significantly outperformed or achieved
comparable performance compared to the existing methods for
skin cancer detection.

I. INTRODUCTION

Computer-Aided Diagnosis (CAD) systems help in early
detection of melanoma [1]. Melanoma is the deadliest type
of skin cancer as it grows quickly and therefore can be
life-threatening. The cause of melanoma is the uncontrolled
growth of melanocytes, which are the pigment-producing cells
responsible for giving color to skin, eyes and hair. Early
detection of melanoma is vital for reducing death rate and
treatment costs caused by this disease as well. Dermoscopy
has proven ability to significantly increase the diagnostic
performance as it magnifies the skin lesion or mole (cite for
melanoma) up to 100 times. Hence it allows the dermatologist
to have a clear view of several structures inside the lesions that
are invisible to the naked eye [2]. There are several existing
medical procedures that help dermatologists for classification
of melanoma for example, Asymmetry, Border, Color and
Diameter (ABCD) rule and 7-point checklist (atypical pigment
network and vascular pattern, irregular streaks, dots and pig-
mentation, regression structures and blue-whitish veil). The
rich images provided by dermoscopy allows researchers to
apply principles of computer vision and machine learning to
the challenge of interpreting dermoscopic images, particularly
evolving methods for skin cancer classification [3].

Image classification has gained immense importance in
recent years as image processing and machine vision are
widely used in daily life applications [4] such as face recog-

nition, medical imaging systems and remote sensing. Genetic
Programming (GP) is a method that provides solution to a
user-defined problem by evolving a computer program. It is
inspired by the Darwinian Principle of natural selection [5]
that includes operators like selection, crossover and muta-
tion to evolve diverse solutions for the problem. With the
flexible representation, GP has provided promising solutions
that hardly can be thought of by humans. GP has been
extensively employed for pattern recognition, object detection
and classification [4], [6], [7]. Moreover, GP methods have
been employed for various tasks such as feature extraction [8]
which is a process of transforming images into feature values,
feature selection [9] which selects good features among whole
set of features, and feature construction [10] which builds
new features from existing feature set. Feature selection and
construction aim at dimensionality reduction that reduces the
search space for GP for evolving good solutions meanwhile
speeding up the search process by using less number of
features in the reduced search space. To find goodness of
a feature or its contribution in classifying instances from
different classes, various feature ranking methods have been
applied. A mutual information based measure is used in
this work to find out features which are most prominent to
distinguish between diseased and non-diseased instances.

For evolving a classifier, image data needs to be in a format
with which GP can deal with. For this task, image descriptors
have been extensively used to convert raw pixel values into
features that can easily be incorporated into GP to build a
classifier [6]. There are two categories of image descriptors:
sparse and dense [11]. Sparse descriptors use a number of
regions for extracting features, whereas dense descriptors work
in a pixel-by-pixel approach. Local binary patterns (LBP) [12],
a dense image descriptor, has been widely used in the field of
pattern recognition. For extracting features from dermoscopic
images, LBP has been used in this work.

With the ability of GP to select good features that can
improve the classification performance and its diverse range
of solutions for a single problem, it can be applied to der-
moscopic images to evolve computer programs that have the
potential to classify the diseased images effectively. In the field
of medicine, the balance between sensitivity and specificity
varies depending, for instance, on whether you are doing
screening or confirming a diagnosis. Incorrectly diagnosing
a disease is worse than not diagnosing the disease at all [13].
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Therefore, we aim to build a classification model using GP
to identify diseased images using LBP and domain specific
features provided by the dermatologist.

A. Objectives

The overall aim of this study is to evolve a GP-based
classifier, particularly for skin cancer detection using features
extracted from dermoscopic images and features based on
domain specific knowledge. This study aims at providing
answers for the following research questions:
• Which features (among domain specific, LBP and the

combination of both) perform better for classifying dis-
eased and non-diseased instances?

• Would the GP approach perform better than other well-
known classification methods for skin cancer detection?

• For dimensionality reduction, whether the classification
accuracy can be improved when the features selected by
GP are used?

• Which features get selected by GP during its evolutionary
process to achieve better performance and why?

B. Organization

The rest of the paper is organized as follows. Section II de-
scribes the relevant previous work, discusses the LBP method
and mutual information calculation. Section III presents the GP
system including the program representation, search space, fit-
ness function and describes the evaluation procedure. Section
IV describes the experiments performed, dermoscopic dataset,
GP parameters and methods for comparison used. Section V
presents the results of these experiments and discusses how
well they address the research questions, and examines four
good evolved solutions. Section VI concludes the paper with
the achievements of current work, and provides some possible
future directions.

II. BACKGROUND

This section describes the existing methods on skin cancer
diagnosis and GP related classification and feature selection
work. Moreover, LBP as directly related to this work and
mutual information calculation are also discussed.

A. Literature Survey

For the detection of melanoma, a classification method has
been proposed based on Artificial Neural Networks (ANNs)
in [14]. The method consists of four stages: preprocessing,
pigment network extraction, feature extraction and classifi-
cation. Preprocessing involves removal of noise such as air
bubbles, artefacts caused by applying gel on skin before
capturing the image, and hair on skin. The thresholding and
directional Gabor filter is applied to the blue component of
images for the first stage. For pigment network detection,
again the Gabor filter is applied with different thresholding
values. For feature extraction, mean and standard deviation are
computed on the pixel values of the sub-images with a window
of size 2 × 2 or 4 × 4 pixels. These statistical parameters
are taken due to the fact that cancerous pigmented network

has irregular distribution and thickened lines as compared
to normal benign lesions. Classification is then performed
using ANNs fed with the extracted features. The performance
is assessed by the commonly used classification accuracy
measure and the method achieved 94% accuracy. In medical
diagnosis, when the data available is mostly unbalanced (hav-
ing different number of instances from different classes), using
the classification accuracy as the fitness evaluation measure
is however not recommended. It is due to the fact that high
performance will be achieved by correctly classifying only the
non-disease instances (which often outnumber the diseased
instances in medical data); however, performing poorly on
diseased instances which are the main concern. Hence, a
different measure is used in this study to deal with the data
imbalance problem.

Piccolo et al. [15] focus on validating the use of digital
dermoscopy by comparing melanoma classification diagnosis
of experienced dermatologists with computer-aided diagnosis
based on ANNs and also with diagnosis provided by minimal
trained clinicians. The results are given in terms of sensitivity
and specificity of 92% and 99%, respectively, for the trained
dermatologist, 69% and 94%, respectively, for the clinician,
and 92% and 74%, respectively, for the computer analysis.
Sensitivity is the true positive rate and specificity is the true
negative rate. According to the results obtained, the authors
have suggested computer analysis must be developed in order
to assist and not to replace physicians in the diagnosis of skin
cancer lesions as the best diagnostic results can be achieved
by using both trained computer classifier and experienced
dermatologist diagnosis. Hence, inspired by their work, we
have used both domain specific features and LBP features to
automatically evolve a good classifier by GP.

Variation in color of melanoma is a major discriminative
aspects for dermatologists that is studied in [2]. This paper
evaluates the importance of color in key-points detection steps
of the bag-of-features model for the classification of melanoma
images based on k-Nearest Neighbor(k-NN). Furthermore,
gray-scale and color sampling methods using Harris Laplace
detector and its color extensions are compared. The perfor-
mance of scale-invariant feature transform (SIFT) and Color-
SIFT patch descriptors is also analyzed. The method achieved
85% sensitivity, 87% specificity and 87% balanced accuracy.
These results cannot be compared with our results as they have
used reduced dataset. To the best of our knowledge, GP has
not yet been studied for skin cancer detection in dermoscopic
image data. Hence, this will be the first time to utilize GP for
detecting skin cancer in dermoscopic images.

In [13], a method for brain tumour classification on mag-
netic resonance imaging (MRI) is proposed based on statistical
methods for preprocessing, fuzzy c-means for brain image
segmentation and GP for tumour classification that achieved
97% accuracy. Early detection of defective nodules in lung
computed tomography (CT) images increase the survival rate
of the patients by 50%, hence, a GP-based nodule detection
method is developed in [16] and achieved 92% detection rate.

Earlier in 1996, Poli [17] described a set of requirements



for terminal set, function set and fitness function in GP to
evolve efficient optimal filters for the tasks of feature detection
and image segmentation, and studied their behaviour in brain
MRI and X-ray coronarograms. They have compared their
results with ANNs and reported that GP has outperformed the
competitor method. ANNs gave 31.7% sensitivity and 92.2%
specificity, whereas GP achieved 61.5% sensitivity and 99.2%
specificity. With better results obtained by GP, the author has
further elaborated that GP has far better ability for image
analysis as compared to other existing methods. Therefore,
motivated by their findings, GP is employed for skin cancer
classification in this study.

B. Local Binary Patterns

The local binary patterns (LBP) image descriptor proposed
by Ojala et al. [12] is a dense image descriptor that has
been used extensively for feature extraction in a wide range
of computer vision applications. LBP works by scanning the
image in a pixel-by-pixel fashion using a sliding window of
fixed radius, where the value of the central pixel is computed
based on the intensities of neighbouring pixels that lie on the
radius as depicted in Figure 1. It also generates a histogram
(i.e. feature vector) based on the computed values. The LBP
operator is formally defined as:

LBPp,r =

p−1∑
i=0

t(vi − vc)2
i (1)

where r is the radius, p is the number of neighbouring
pixels, vi and vc are the intensity values of the ith neighbour
and central pixel, respectively. Here t(x) returns 1 if x ≥ 1
and 0 otherwise. The value computed from above expression
is assigned to central pixel and corresponding bin of histogram
is incremented by 1. The value of bth bin of a histogram H
computed on an image of size m× n is given as:

H (b) =

m−1∑
i=0

n−1∑
j=0

(LBPp,r (Vi,j) = b) (2)

where the value of b ranges between 0 and B − 1, B is the
maximum number of bins in the histogram, Vi,j is the value
of the pixel at coordinate (i, j).

Furthermore, the LBP codes are divided into two categories:
uniform and non-uniform. A code is uniform if circularly it
does not have more than two bitwise transitions from 0 to 1
or 1 to 0. For example, the codes 00000110, 01111110, and
00001000 are uniform, whilst the codes 00110011, 11001110,
and 01010101 are non-uniform. The size of feature vector can
be reduced from 2p bins to p (p− 1)+3 bins by omitting non-
uniform codes. Moreover, using only uniform codes, allows to
detect various texture primitives such as corners, edges, line
ends, dark spots and flat regions. In the dermoscopic images,
uniform codes can help in detection of pigmented network,
streaks and blobs which can largely increase the classification
performance.

In our experiment, a histogram of uniform codes is gener-
ated; hence, there are 59 (= 8 × (7) + 3) LBP features for a

Fig. 1. Step-by-Step procedure to generate LBP8,1 code for image cut-out
(having 8 neighbouring pixels and radius = 1) and get a decimal value of the
central pixel.

single image. The window size of 3 × 3 pixels and a radius
of 1 pixel (LBP8,1) is used.

C. Mutual Information

Entropy and mutual information are used to measure the in-
formation of random variables [18]. Entropy, H(X) measures
the uncertainty of random variables (features) and Mutual
information, I(X,Y ) shows the shared information between
two variables. Conditional entropy, H(X|Y ) is the average
uncertainty about a feature X after observing knowledge of
class label Y .

H(X) = −
∑
x∈X

(P (x)) log2 (P (x) (3)

H (X|Y ) = −
∑

x∈X ,y∈Y
P (x, y) log2P (x|y) (4)

where P (x)is the probability of feature X being x, P (x, y)
is the joint probability of feature X and Y being x and y,
respectively. P (x|y) is the posterior probability of X given
Y . Mutual Information is calculated as the difference between
entropy of a feature X (given in Equation (3)) and conditional
entropy of that feature (given in Equation (4)), with respect to
the class label Y . Formally I(X,Y ) is given by:

I (X,Y ) = H (X)−H (X|Y )

= −
∑

x∈X ,y∈Y
P (x, y) log2

P (x, y)

P (x)P (y)
(5)

When feature X is closely related to class Label Y , mutual
information will be high showing X as a powerful feature with
good discriminating ability between classes. For validating
why GP selects particular features during the evolution process
and improves performance, we used mutual information as a
feature ranking method.

III. THE GP METHOD

This section discusses the proposed GP method. The method
uses two types of features; one extracted from images using
LBP, and the other non-image domain specific features. This
section describes the function set, terminal set and fitness
function. The dermoscopic images are converted to gray-scale
images before applying LBP.



A. Terminal Set

The terminal set consists of LBP features (extracted from
LBP) and domain features (provided by the dermatology
experts along with the dataset). There are a total of 71
numeric features (= 59 (LBP) +12 (domain)). However, three
scenarios are used in using these features: firstly, by using
only domain features; secondly, using only LBP features; and
thirdly, by using both LBP and domain features to check the
performance of the system. The value of the ith feature is
indicated as Fi.

B. Function Set

The function set consists of four arithmetic opera-
tors, one conditional and two trigonometric functions
{+,−,×, /, if , sin, cos}, where the first three and last two
operators have the same arithmetic and trigonometric meaning;
whereas division is protected that returns zero when the
denominator is 0. The if operator takes four input arguments
and returns the third if the first is greater than the second;
otherwise, it returns the fourth argument [7].

C. Fitness Function

As the dataset is imbalanced (having very different number
of instances in different classes), therefore the standard overall
classification accuracy (given in Equation (6)) defined as the
ratio between correctly classified instances (Ncorrect) and
total number of instances (Ntotal), cannot be used as the
performance measure for our data imbalance problem.

Accuracy =
Ncorrect

Ntotal
(6)

Instead, we used a fitness function proposed by Patterson et
al. [19] which gives equal importance to both classes without
any bias. Mathematically it is represented as:

Fitness =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(7)

where TP refers to true positive which is the number of
correctly classified diseased instances, TN refers to true neg-
ative which is the number of correctly classified non-diseased
instances, FP refers to false positive which is the number of
incorrectly classified non-diseased instances as diseased, and
FN refers to false negative which is the number of incorrectly
classified diseased instances as non-diseased. The fitness value
ranges between 0 and 1, where 1 is the ideal case representing
all the instances being correctly classified. In the paper, the
results are represented as percentage, which is achieved by
taking product of obtained fitness value and 100.

IV. EXPERIMENT DESIGN

A. Dataset

A dataset of dermoscopic images namely PH 2 [1] ac-
quired from Pedro Hispano Hospital Portugal, is used in the
experiments. The dataset includes images of skin lesions,
their clinical diagnosis, their binary masks and information
of domain specific features provided by the dermatologists,

Fig. 2. Some Images of dermoscopic dataset, with common nevi (row 1),
atypical nevi (row 2) and melanomas (row 3).

based on 7-point checklist Menzies method. Hence, according
to clinical diagnosis there are 80 common nevi, 80 atypical
nevi, and 40 melanomas among the 200 melanocytic lesions.
In dermatology, common nevi refers to non-disease lesion,
atypical nevi refers to a lesion that is currently non-disease,
but can develop melanoma at a later stage in patient’s life,
and melanoma is the diseased lesion. Samples of the three
categories of skin lesions are presented in Figure 2. For our
experiments of binary classification, 80 common nevi and
80 atypical nevi are used as one class denoted as “non-
melanoma”, and 40 melanoma are used as the other class
denoted as “melanoma”.

The dermoscopic images were obtained from Tuebinger
Mole Analyzer system with a magnification of 20× and
resolution of 768×560 pixels. Dermoscopy includes using an
optical instrument having powerful lighting system to examine
skin lesions in a higher magnification. Before taking the image,
a gel is placed on the lesion that enables the dermatoscope
(instrument) to capture morphological structures and patterns
in inner layers of human skin. Hence, such images are rich
enough to investigate them for presence of skin cancer. The
images are 8-bit RGB (red, green and blue) color images.
An expert dermatologist evaluated each image by considering
these important classification parameters; manual segmenta-
tion of skin lesion, clinical and Histopathology diagnosis, and
dermoscopic criteria based on 7-point checklist (Asymmetry,
Pigment network, Dots/Globules, Streaks, Regression areas,
Blue-whitish veil and presence/absence of Colours; white,
red, light-brown, dark-brown, blue-gray, black). Therefore, a
total of 12 dermoscopic features are provided for each image.
This dataset has been used in [20], [2] for detecting pigment
network using directional filters and melanoma classification
using a bag-of-features model, respectively.

The dataset is split into training and test with 70% instances
for training and 30% instances for testing. The dataset is
randomly split five times (referred to as Split-1, Split-2, . . . ,
Split-5) to get five training sets and five test sets. For making
the results unbiased of splitting (which specific instances are
present in training and which in test), we have reported results
from five different splits instead of one. Each pair of training
and test sets has the same ratio of instances of each class



TABLE I
PARAMETER SETTINGS OF THE GP METHOD.

Parameter Value Parameter Value

Generations 50 Crossover Rate 0.80
Population Size 1024 Mutation Rate 0.19
Initial Population Ramped half-and-half Reproduction Rate 0.01
Selection type Tournament Tree minimum depth 2
Tournament size 7 Tree maximum depth 8

as present in the original dataset. For illustration, the first
split “Split-1” has 140 (= 70% of 200) instances for training
and 60 (= 30% of 200) instances for testing. Furthermore,
among 120 training instances, 112 are non-melanoma and
28 are melanoma, keeping the original ratio (4:1) of class
distribution same. Similarly, among the 60 test instances, 48
are non-melanoma and 12 are melanoma.

B. GP Settings

Parameter settings for GP are given in Table I. For each
independent run, the number of generations is 50. For find-
ing good solutions, the population size is set to 1024 with
“Ramped half-and-half” method for generating the initial
population. For the evolution process, crossover, mutation and
reproduction rates are set to 0.80, 0.19 and 0.01, respectively.
Tournament selection is used with size 7. The depth of the
trees is ranging between 2 and 8 levels.

The number of GP runs is 30, therefore, the average of 30
runs is computed and the standard deviation from these values
are also calculated for each of the 5 splits.

C. Methods for Comparison

To check the effectiveness of our method, we have compared
the performance of GP with other non-GP methods: k-Nearest
Neighbor (k-NN) where k = 1 (the closest neighbour),
Support Vector Machines (SVM) with linear kernel, Naı̈ve
Bayes (NB), Decision Trees (J48), Random Forest (RF) and
Multilayer Perceptron (MLP). The learning rate, momentum
and training time for MLP are set to 0.1, 0.2, and 500,
respectively and it has one hidden layer with three neurons.
These parameters are specified empirically as they gave the
best performance amongst other settings. The implementations
of all these methods are taken from the most commonly
used Waikato Environment for Knowledge Analysis (WEKA)
software [21]. The implementation of GP method is done using
the Evolutionary Computing Java-based (ECJ) package [22].

D. Classification Tasks

We performed two tasks for checking the classification
performance of GP and the non-GP methods.

1) Classification using all features: For the first experi-
ment, we have used all the features for classification, the
training process of GP is repeated for 30 times on each of
the 5 splits. Here, the number of features for both, domain
and LBP are 71, 12 and 59, respectively. To ensure a different
starting point for each of the 30 independent runs, a different
seed value is used each time. Hence, for GP there are 30 runs
× 5 Splits × 3 feature sets × 1 GP method = 450 independent
runs. Each non-GP method is evaluated only once on each of

TABLE II
THE ACCURACY (%) ON THE TEST SET USING ALL FEATURES (RESULT FOR
GP IS REPRESENTED IN TERMS OF MEAN STANDARD DEVIATION (x̄± s)).

GP

Features best x̄± s k-NN NB SVM J48 RF MLP

Both1 97.92 91.28 ± 4.25 81.25 + 83.33 + 90.63 = 94.79 - 73.96 + 87.50 +
Both2 95.83 90.76 ± 3.75 89.58 + 90.63 = 90.63 = 96.88 - 83.33 + 90.63 =
Both3 97.92 89.65 ± 4.30 85.42 + 80.21 + 81.25 + 87.50 + 75.00 + 85.42 +
Both4 93.75 87.92 ± 4.66 82.29 + 87.50 = 89.58 = 86.46 + 78.13 + 92.71 -
Both5 93.75 88.33 ± 4.41 86.46 = 94.79 - 81.25 + 73.96 + 90.63 - 91.67 -

Domain1 97.92 90.52 ± 5.20 73.96 + 98.96 - 88.54 + 87.50 + 91.67 = 90.63 =
Domain2 95.83 90.55 ± 4.76 89.58 = 95.83 - 93.75 - 93.75 - 97.92 - 90.63 =
Domain3 94.79 87.77 ± 4.48 85.42 + 88.54 = 85.42 + 89.58 = 85.42 + 78.13 +
Domain4 94.79 87.40 ± 3.53 75.00 + 96.88 - 89.58 - 87.50 = 90.63 - 86.46 =
Domain5 93.75 84.31 ± 4.63 87.50 - 96.88 - 81.25 + 81.25 + 89.58 - 80.21 +

LBP1 81.25 65.69 ± 7.24 87.50 - 62.50 + 65.63 + 70.83 - 65.63 = 71.88 -
LBP2 77.08 67.08 ± 6.10 78.13 - 73.96 - 62.50 + 61.46 + 70.83 - 78.13 -
LBP3 83.33 67.29 ± 5.20 64.58 + 58.33 + 61.46 + 61.46 + 62.50 + 68.75 =
LBP4 80.21 67.01 ± 5.02 60.42 + 70.83 - 69.79 - 67.71 = 57.29 + 67.71 =
LBP5 84.38 70.49 ± 7.73 75.00 - 77.08 - 58.33 + 60.42 + 66.67 + 70.83 =

the 5 splits, therefore, for the non-GP methods, there are 5
splits × 3 feature sets (both, domain and LBP) × 6 non-GP
methods = 90 independent runs.

2) Classification using GP-Selected features: With the help
of crossover and mutation operators, GP is capable of evolving
good solutions. In other words, GP is good at searching for
good features during the evolution process. These dominant
selected features can be used to achieve better classification
performance by classifying with GP and non-GP methods.
Hence, to check this property of GP, we have used the features
selected by GP during the first experiment to perform the sec-
ond experiment. Here, we are using 30 feature subsets obtained
from the 30 solutions/trees evolved in the previous experiment
(as selected by the best GP tree from each of the 30 runs).
In this task, the number of independent runs for GP is 13500
(= 3 (feature sets) × 5 (splits) × 30 (selected feature subsets)
× 30 (runs) × 1 (classifier)). However, the number of fitness
evaluations in GP is huge, which is calculated as product of
independent runs (13500), the number of generations (50) and
the population size (1024), and comes out to be 7.05 × 108.
The total number of independent runs for the non-GP methods
is 2700 (= 3 (feature sets) × 5 (splits) × 30 (selected feature
subsets) × 6 (classifiers)).

V. RESULTS AND DISCUSSIONS

The results of the two experiments are presented in Table II
and Table III, respectively. Vertically, the tables comprise of
blocks where each correspond to one feature-set (using only
domain features, using only LBP features or using both of
them), while horizontally they consist of 9 columns where
the first lists feature-set, second shows the highest GP fitness
achieved among its 30 runs (for the first experiment in Table
II) and 900 runs (for the second experiment in Table III),
and 7 for different classification methods. The values of GP
are the average accuracy and the standard deviation (x̄ ± s)
computed from 30 and 900 GP runs for the first and second
experiment, respectively. For the other classifiers in our first
experiment, only accuracy is given as they are run only



TABLE III
THE ACCURACY (%) ON THE TEST SET USING GP-SELECTED FEATURES (RESULT ARE GIVEN IN TERMS OF MEAN AND STANDARD DEVIATION (x̄± s)).

Features GP (best) GP (x̄± s) k-NN NB SVM J48 RF MLP

Both1 100.0 90.94 ± 4.21 89.41±4.92 = 87.43±3.45 + 91.56±1.53 = 87.85±6.44 + 88.65±4.39 + 88.65±3.41 +
Both2 97.92 90.80 ± 3.68 89.55±4.44 = 93.40±2.67 - 93.75±0.00 - 91.77±4.51 = 91.94±2.95 = 91.91±2.39 -
Both3 98.96 89.50 ± 4.33 85.45±4.39 + 82.50±6.54 + 91.22±4.40 - 88.06±4.61 = 83.37±5.56 + 85.24±3.64 +
Both4 97.92 89.00 ± 3.99 85.52±4.62 + 88.06±3.49 = 89.58±0.00 - 85.14±4.96 + 85.17±4.55 + 86.98±5.12 =
Both5 96.88 86.33 ± 4.94 84.79±4.47 = 91.91±2.84 - 87.57±2.48 - 84.44±3.80 + 88.58±3.53 - 86.77±4.57 =

Domain1 97.92 89.59 ± 5.39 84.48±6.97 + 96.39±2.49 - 88.68±2.60 = 87.22±3.03 + 92.12±4.02 - 86.77±4.80 +
Domain2 97.92 91.65 ± 4.26 91.46±3.16 = 95.76±0.76 - 93.75±0.00 - 93.75±0.00 - 97.64±2.12 - 93.96±3.30 -
Domain3 97.92 89.25 ± 4.41 85.35±2.23 + 89.24±1.46 = 86.36±3.01 + 89.83±1.80 = 85.97±2.18 + 81.08±3.70 +
Domain4 96.87 88.45 ± 4.58 82.78±6.74 + 95.28±2.03 - 89.44±1.19 - 88.13±0.95 = 91.67±2.54 - 87.01±2.15 +
Domain5 94.79 83.59 ± 5.36 87.50±4.39 - 93.40±3.38 - 82.71±2.92 + 81.74±1.82 + 86.53±3.96 - 80.66±3.64 +

LBP1 81.25 64.85 ± 6.38 72.12±6.48 - 61.28±5.35 + 50.69±1.55 + 64.93±4.41 = 65.42±0.78 = 69.90±4.95 -
LBP2 89.58 68.18 ± 6.90 73.33±5.82 - 63.99±9.45 = 50.56±1.42 + 62.50±7.28 + 65.38±5.66 + 73.40±4.30 -
LBP3 82.29 65.54 ± 5.61 63.72±4.61 + 62.64±3.44 + 52.92±3.90 + 61.84±3.99 + 61.60±3.57 + 68.06±4.93 -
LBP4 82.29 65.41 ± 6.71 62.29±5.09 + 70.31±4.06 - 50.97±1.76 + 60.00±5.59 + 58.06±2.93 + 69.03±3.85 -
LBP5 91.67 67.74 ± 7.13 72.85±4.72 - 70.42±6.23 = 50.14±0.75 + 64.55±5.16 + 65.31±3.60 + 69.90±5.64 -

once. However, for the second experiment, the values of non-
GP methods are represented as mean accuracy and standard
deviation computed over 30 independent runs. For making a
clear comparison between GP and non-GP methods, the results
are also tested using the Wilcoxon signed-rank test with a
significance level of 5%. The statistical test has been applied
once on the test results to check whether GP can compete with
other more powerful classifiers. The symbols “+”, “-” and “=”
are used to represent significantly better, significantly worse
and not significantly different performance, respectively.

Using GP as a classifier, it is evident from the results
in Table II, that using both features in all splits are giving
better classification performance as compared to the domain
and LBP features. Also the standard deviation is smaller as
compared to the domain and LBP features in most of the splits.
The LBP features are experiencing a high standard deviation
which can be the result of bad generalization on the test set
as it is still achieving good highest accuracy (84.38%). The
domain features are providing good performance, however,
not as good as the combination of both features and the
standard deviation is also worse than both features in most
cases. Our results validate the statement concluded by [15] in
their experiments that using knowledge from both domains
(dermatology and computer vision), we can achieve better
classification performance in identifying diseased and non-
diseased instances. Among both features in our experiments,
the knowledge of dermatology comes from domain features
and knowledge of computer vision comes from LBP features.

From the results given in Tables II and III, we see that
GP has evolved good classifiers specifically when using both
features. GP with selected features is most prominent by suc-
cessfully classifying all diseased and non-diseased instances
giving 100% in some GP runs. In the Tables, a fitness of
95.83% (calculated using Equation (7)) shows that only one
melanoma instance is misclassified (11 out of 12) and all non-
melanoma instances are correctly classified (48 out of 48).
Instead, if the commonly used classification accuracy (given
in Equation (6)) was used as the fitness measure, the accuracy
achieved would be higher i.e. 98.33% (59 out of 60) however
it is not appropriate for data imbalance problem.

A. Comparison with other Classifiers

In most cases, using both features GP has better and equal
performance than other non-GP methods. The reason for RF’s
bad performance using both features is due to the fact that
RF randomly selects a feature subset among all features, then
by applying an impurity measure it selects the best feature
among the feature subset and assigns it to its tree node. Here,
as the number of LBP features is nearly five times more than
domain features, hence, there are more chances of selecting
LBP features in the subset than domain features. According to
the feature ranking (discussed in Section I), we see that domain
features have more mutual information as compared to LBP
features. Hence, randomly selecting more LBP features results
in reduced performance of RF. As can be seen from Table II,
GP using all features has shown better or equal performance
in most cases (24 out of 30) among both features.

The results obtained in the second experiment are listed in
Table III. The accuracy is calculated as the mean of 30 accura-
cies, where each value is obtained from the classifier applied to
one feature subset. The accuracy and standard deviation of RF
for Split-2 in case of both features is 91.94±2.95 as presented
in Table III. Furthermore, according to Wilcoxon test, here the
“=” symbol indicates that there is no statistically significant
difference between RF and GP. Using SVM with GP selected
features (Table III) has outperformed GP using both features,
however, using all features (Table II) GP performance remains
better or comparable to SVM. Moreover, SVM using GP
selected features has achieved 0.0 standard deviation, which
is the best result (Table III). Hence GP has shown good
performance as a feature selection method as well.

B. Program Analysis

Analyzing the evolved GP trees can provide useful under-
standing of how GP learns to solve a specific problem. We
examine four of the best evolved classifiers using both feature-
set from different splits. The four programs are depicted in
Figures 3 and 4, where each figure has two evolved programs
from the same GP run. Part (a) of these figures show an
evolved program at an earlier generation whereas part (b)
shows the evolved program at last generation. The input



(a) (b)

Fig. 3. Good Evolved GP trees from Split1 using both features, 20th (same) run with 83.03% and 90.18% accuracy, respectively.

(a) (b)

Fig. 4. Good Evolved GP trees from Split2 using both features, 25th (same) run with 83.03% and 91.51% accuracy, respectively.

TABLE IV
FOUR GOOD EVOLVED PROGRAMS FOR BOTH FEATURE SET.

Figure Infix Expression

Fig. 3(a) ((cos(F64 − (F68 × F52))/sin(cos(F19/((F12/F11) −
cos(F24)))))/sin(((F1 × F6) + (F9/F25)) + ((F23 + F12) +
(F52 − F11))))

Fig. 3(b) ((cos(F64 − (F68 × F52))/sin(cos(F19/((F12/F19) −
(F64 − F12)))))/sin(((F1 × F6) + (F19/F21)) + ((F28 +
F64) + (F1 × F6))))

Fig. 4(a) (cos(sin(F17/F39)) − sin(if (sin(F13 × F64), sin(if (F41, F35,
F37, F33)), if (F20 − F1, cos(F50), F0 − F28, sin(F9)), sin(cos(
F6)))))

Fig. 4(b) (cos(sin(sin(F21)/F39))− sin(if (sin(if (sin(F13 × F64), cos(
F64), sin(cos(F64)), sin(cos(F6)))), sin(cos(F64)), cos(sin(
F17/F39)), sin(cos(F6)))))

features correspond to F0–F70 in these programs where LBP
features range between F0–F58 and domain features between
F59–F70. The Infix expressions of these four trees, which
we have analyzed, are given in Table IV. Vertically, this
table comprises four rows each of which is showing the
Infix expressions of two GP trees evolved in the same run.
Furthermore, the first column of the table lists the figure
number of the corresponding tree representation.

The first two programs we analyze are shown in Figure
3(a) and (b). The solution in Figure 3(a) has achieved 83.03%
accuracy. The second program we analyze is from the same
GP run in a later generation, (as shown in Figure 3(b)) scored
90.18% and is identical to the GP tree in Figure 3(a) except
for some differences in selecting features for its nodes which
are underlined in column two, Table IV for Figure 3(a) and
(b). These differences are responsible for the variation in
performance between the two solutions. These figures show
that the overall structure of the evolved GP programs can be
decomposed to examine how the learned GP classifiers solve
a particular problem. These evolved solutions use a series of
operators {+,−,×, /, if , sin, cos} within the tree. Similarly,
two more GP trees have been examined from a different run
and a different split. The structure of these programs are also
same except one major and the rest, minor differences. The
major difference is that the nested if operator has moved from
its third argument to first argument with altered branches,
which are underlined in Table IV for Figure 4(a) and (b). The
tree in Figure 4(b) is bigger than the tree in Figure 4(a) as it
has increased its tree depth from 6 to 8. These changes have
improved the performance from 83.03% to 91.51%.



For analysing why GP selects a particular feature that
results in its improved performance, we have observed from
Figures 3 and 4 that features having more mutual information
values contribute towards GP’s better performance. Examin-
ing features according to mutual information, we have seen
that domain features have high mutual information values as
compared to LBP features, specifically F64 and F68. These
two domain features correspond to presence or absence of
“blue-whitish veil” and “dark-brown color” in the dermoscopic
images, respectively. These features appear more often in the
trees shown in Figures 3(b) and 4(b), which have higher
accuracy than those in Figures 3(a) and 4(a).

VI. CONCLUSION

Inspired by the promising results of genetic programming
in computer vision, we have investigated how well GP can
perform for skin cancer detection in dermoscopic images. GP
has achieved good results and has the potential to provide
efficient and effective solutions for real-world problems such
as cancer detection. It has been seen that using knowledge
from both domains (dermatology and computer vision), GP
has achieved better or comparable performance in most cases
as compared to other methods (k-NN, SVM, Naı̈ve Bayes,
Decision Trees, Random Forest, and Multilayer Perceptron).
With all features, highest accuracy achieved is 97.92% and
with GP-selected features, even 100% accuracy is achieved in
some of GP runs on the unseen data. Early detection of skin
cancer is curable and largely increases the survival rate of the
patient. Therefore, such CAD systems can help dermatologists
to assist their decision. We have used GP to evolve solutions
for this binary classification problem of detecting skin cancer.
We have used LBP to extract features from images and also
used features provided by domain experts. Three scenarios
are considered in using different feature sets; using domain
features, using LBP features and using a combination of both.
We have also examined GP as a feature selection method and
did experiments where GP-Selected features are used to evolve
solutions using GP and other state-of-the-art classification
methods.

In the future, we would like to investigate the impact
of employing preprocessing techniques (to remove reflection
artefacts in the images due to the presence of gel and noise
due to hair) before feature extraction. We are also interested in
checking the system performance by using a different dataset
from another origin and also focus on the computation time
to make it effective for real-world applications like cancer
diagnosis. As “blue-whitish veil” and “dark-brown” color
domain features are most prominent in diagnosing diseased
images, we can utilize color descriptors to generate better
features than those generated from gray-scale images.
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