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Abstract—Feature selection is the process of identifying statisti-
cally most relevant features to improve the predictive capabilities
of the classifiers. To find the best features subsets, the population
based approaches like Particle Swarm Optimization(PSO) and
genetic algorithms are being widely employed. However, it is
a general observation that not having right set of particles in
the swarm may result in sub-optimal solutions, affecting the
accuracies of classifiers. To address this issue, we propose a novel
tunable swarm size approach to reconfigure the particles in a
standard PSO, based on the data sets, in real time. The proposed
algorithm is named as Tunable Particle Swarm Size Optimization
Algorithm (TPSO). It is a wrapper based approach wherein an
Alternating Decision Tree (ADT) classifier is used for identifying
influential feature subset, which is further evaluated by a new
objective function which integrates the Classification Accuracy
(CA) with a modified F-Score, to ensure better classification
accuracy over varying population sizes. Experimental studies
on bench mark data sets and Wilcoxon statistical test have
proved the fact that the proposed algorithm (TPSO) is efficient
in identifying optimal feature subsets that improve classification
accuracies of base classifiers in comparison to its standalone form.
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Index Terms—Feature Selection, Evolutionary Computing,
Particle Swarm Optimization, Alternate Decision Trees.

I. INTRODUCTION

In statistical pattern recognition, each pattern represents a

real world object described by a set of features (synonymously

called as dimensions, here after). More the number of features

used, better the description of the object. However, all the

features may not be important for the decision making problem

on hand. For instance, a student can be described with the

features like height, weight, regularity, father name, family

income, etc. Now, for the problem on hand, like selecting

a student for a basket ball team, the feature like height and

weight are highly relevant, where as the features like father

name, family income are irrelevant. The features, regularity

and family income are highly relevant to classify whether the

student shall be awarded the fellowship or not. Hence, best

feature selection for the problem on hand is important for

quality decision making.

1This paper is accepted for oral presentation at IEEE Congress on Evolu-
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Now-a-days, with the development of high-throughput tech-

nologies, it is possible to measure hundreds of feature values

for each object, which has resulted in large volumes of

high dimensional data for analysis. In hyper spectral image

analysis, using advanced hyper spectral instruments, hundreds

of feature values (each one corresponding to one spectral

band) can be measured for each object on earth [1]. In

contemporary scientific applications, it is quite often to get

such large volumes of high dimensional data, which becomes

very challenging problem for analysis [2].

In pattern classification, irrelevant (some times redundant

or noisy) features will affect the classification accuracy. It has

been proved that, in the presence of large number of features,

the learning models become overfit on the training data, which

leads to poor generalizability of the trained model, offering a

great challenge for pattern classification and prediction prob-

lems. Thus, the feature selection process has been considered

as a pre-processing step to eliminate irrelevant and redundant

features, which is critical for decision making in real world

applications [3]–[7].

The feature selection algorithms have been widely used in

many application areas such as genomic analysis [8], text

classification [9], information retrieval [10], intrusion detec-

tion [11], bio informatics [12] etc. A comprehensive survey

on feature selection methods is published in [13]. Empirical

studies on feature selection algorithms for real world problems

are presented in [14]–[17].

Feature selection is an optimization problem which aims to

determine an optimal subset of d features out of n features

in the input data (d << n), that maximize the classification

or prediction accuracy. Performing an exhaustive search to

find an optimal subset of d features out of all possible 2n

candidate feature subsets, based on some evaluation criterion,

is computationally infeasible, and it becomes an NP-hard prob-

lem with the increasing n value [13]. Hence, different other

search strategies like complete, sequential, random search are

explored. However, most of these approaches suffers from

local minima problem. Therefore, Evolutionary Computation

(EC) techniques, which ensures global optimum or near global

optimum, such as Genetic Algorithms(GAs) [18], Genetic

Programming (GP) and Particle Swarm Optimization (PSO),
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were used in many feature selection problems. As stated in

[19], PSO is simple to understand and easy to implement than

GP and GAs and able to handle optimization problems with

multiple local optima reasonably well, it requires less number

of parameters and can converge more quickly. However, the

efficiency of PSO depends on various input parameters that

are to be tuned properly [20], [21]. More detailed study on

PSO and its improvements is presented in [22].

In the standard PSO, the swarm size is an important param-

eter, where very small swarm size will lead to local minima,

while large swarm size would slow down the algorithm [23].

To address this issue, in the present work, we intend to vary

the population sizes of the particles in standard PSO based

on the data sets in real time. A new objective function has

been developed which integrates the accuracy of the classifier

with the modified F-Score. Finally, we propose a new PSO

search method for feature selection using tunable swarm

size configuration. The efficiency of the proposed method is

compared with other popular contemporary feature selection

methods.

This paper is organized as follows. Section II presents

the brief review of the existing methods for feature selec-

tion. In Section III we briefly outlined the standard PSO

methodology and presented the motivation for the tunable

swarm size configuration in the present work. Section IV

outlines the Alternating Decision Tree classifier, which is used

along with the standard PSO for feature subset selection. The

proposed Tunable Particle Swarm Size Optimization (TPSO)

algorithm is presented in Section V. The experiments and

results are presented in Section VI. Conclusions and discussion

are presented in Section VII.

II. FEATURE SELECTION METHODS

In literature, the feature selection methods are broadly

classified into three categories viz., filter, wrapper and em-

bedded methods. Filter methods select the feature based on

the given data, irrespective of the classifier. In the wrapper

model, feature selection will be done based on the feedback

of the predefined learning model. Wrapper based methods will

find better and optimal feature subsets with high accuracy,

as they are considering the feedback of the learning model,

but it requires expensive computation. However, it is proved

that filters have better generalization capabilities than wrapper

based ones [8].

Algorithms with embedded models such as C4.5 [24] and

least angle regression (LARS) [25], the variable or feature

selection process is incorporated as part of the training process,

and the relevance of the selected feature is analyzed by the

objective function of the learning model under consideration.

Both filter and embedded approaches may result a subset of

selected features or the weights that represent the relevance or

importance of all features.

Some feature selection methods compute the ranks of all

features using some ranking criterion, such methods are simple

and computationally efficient. These rank based methods are

more robust against over fitting, resulting more bias with less

variance [4], [26]. Further, the statistical approaches such as T-

Statistics, F- Statistics, Chi-square test etc., have been explored

significantly in the literature [27], [28]. A few other feature

selection approaches are based on the concepts of information

theory such as information gain [29], mutual information [4],

[30], and entropy-based measure [6]. Machine learning tech-

niques including evolutionary algorithms, SVMs, Decision

Trees etc., are also been used for feature selection. [31]–

[33]. More recently, the evolutionary Computing techniques

such as such as Genetic Algorithms(GAs) and Particle Swarm

Optimization (PSO) are being used popularly used for feature

selection. Bing Xue et.al., explored the performance of PSO

and various other improvements in [22]. PSO is widely used

for Feature Selection on High-dimensional Datasets [34]. A

good survey on novel population topologies for improving the

performances of population-based optimization algorithms for

solving single objective optimization, multiobjective optimiza-

tion and other classes of optimization problems is presented

in [35].

This paper presents an improvement over the standard

PSO, which is a wrapper based approach to improve the

classification accuracy with reduced number of features.

III. STANDARD PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization imitates the movement of a

flock of birds, where each bird has its own intelligence to

find the best direction to move and to reach the destination as

a whole. In standard PSO, each single candidate solution is

considered as a particle in the search space. For each particle,

there is a fitness value, computed using a fitness function to

be optimized, and velocity, which determine the movement

of the particles. During movement, each particle updates its

position based on its previous position, velocity and as well

as considering the positions of neighbouring particle.

The standard PSO starts with a randomly initialized popu-

lation (particles) of size N . Each particle Pi is identified as

a point in the d dimensional space Xi = (xi1, xi2, . . . , xid).
pbest represents the fitness values of the best positions of the

particles given by Fi = (fi1, fi2, . . . , fid). gbest represents

the index of the particle that has the best fitness value in

the swarm. The velocity of a particle i is represented by

Vi = (vi1, vi2, . . . , vid).
The iterative approach starts with an initial random solutions

(particles in initial swarm). In each iteration, for each particle,

the velocity and the position are updated using the following

equations:

xt
ij = xt−1

ij + vtij (1)

vtij = w∗vt−1

ij +η1 ∗r1()∗ (pij−xt
ij)+η2 ∗r2()∗ (pgj−xij),

(2)

where j = 1, . . . , d, w is a positive linear function of time

which updates according to the generation iteration. The η1
and η2 represent the acceleration terms that pull the particles

towards pbest and gbest. The r1() and r2() are random

number generation functions, which generates random values
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that are uniformly distributed in [0, 1]. The terms pij and

pgj represents the pbest and gbest in the jth dimension

respectively. The velocities of the particles are bounded by

a maximum limit Vmax. If Vmax is too small then it may end

up with a local optima, and if the Vmax is too large then the

particles may fly beyond the good solutions.

The swarm size is a critical parameter in this standard PSO

algorithm wherein very few particles will make the algorithm

to get stuck at the local optima, while too many particles would

slow down the algorithm [23]. It is the key factor that has

motivated the present research work.

In this paper, we propose a new particle swarm optimization

search for feature subset selection using tunable swarm size

configuration, which is explained in Section V.

IV. ALTERNATING DECISION TREES (ADT)

Alternating Decision Trees (ADT) are often considered

as generalization of conventional decision trees [36]. ADT

generates the decision rules based on majority voting taking

all simple rules into account. It consists of decision nodes

and prediction nodes. The prediction nodes contain a numeric

value having a positive or negative sign, and the decision node

specify a condition. The decision nodes will be splitting nodes

whereas the prediction nodes are either root or leaf nodes. An

instance is classified by traversing from the root by following

all paths where all the decision nodes are true. A positive

sum of all prediction nodes that are been traversed implies

the membership of one class and the negative sum implies

the membership of other class. Empirical studies proved that,

under some favourable conditions ADTs are more robust than

the conventional decision trees, C4.5 and J48 [37].

V. TUNABLE PARTICLE SWARM SIZE OPTIMIZATION

ALGORITHM (TPSO)

In this section we present our new algorithm called Tunable

Particle Swarm Size Optimization Algorithm (TPSO) which

will find the best initial swarm size for the given data to

overcome the local minima problem [23].

The data set is split into testing and training folds using

a stratified k fold cross validation procedure. For each of

the training data sets we first initialize swarm size and then

select the features using the standard PSO and Alternating

Decision Tree (ADT). We then compute the test accuracy

using the features subset identified in the previous step and

ADT classifier. A new feature score which measures the

discrimination between features having two sets of numbers

categorical or numeric with respect to the decision attribute is

then computed following the procedure in Section V-A.

A. New Feature Discrimination Score

Consider a given the data set Xji, for j = 1, 2, . . . , n −

1, n, i = 1, 2, . . . ,m having n rows and m features where

the last feature is the decision class. If the decision class is

binary then n+ and n− denote positive and negative instances

respectively. In [38] a feature discriminatory score using mean

of the attribute values is computed. In our approach instead

of mean we employ median as it is the best representative

the central tendency of data sets with skewed distribution. We

define the feature score of the ith feature as:

F (i) =
V1

V2

(3)

V1 = abs((x̃i
+
− x̃i

2) + (x̃i
−

− x̃i
2)) (4)

V2 =
1

n+ − 1

n+∑

k=1

(x+

k,i − x̃i
+)2 +

1

n− − 1

n−∑

k=1

(x−

k,i − x̃i
−)2

(5)

where x̃i
+ denotes the median of the values in the ith

attribute corresponding to the positive decision class, x̃i
−

denotes the median of the attribute values corresponding to

the negative decision class, x̃i denotes the median of all the

values of the ith attribute, x+

k,i is the median value of the ith

feature of the kth positive instance and x−

k,i is the median

value of the ith feature of the kth negative instance.

B. Fitness function

We develop a new fitness function to evaluate the effective-

ness of the feature subsets as mentioned below.

Vi = 0.5 ∗A+ 0.5 ∗ (M1/M2) (6)

where A is the accuracy obtained using ADT, M1 is the

sum of the discriminatory scores of the features in the reduced

feature subset, that is M1 =
∑r

i=1
F (i) where r < m, M2 is

the sum of the discriminatory scores of all the features in the

data set, that is M2 =
∑m

i=1
F (i). We assume the condition

that M2 > 0 as
∑m

i=1
F (i) > 0.

In the proposed algorithm we perform a stratified k fold

cross validation and split the data set into ten training and test

data sets. For each training data set we extract the feature

sub set using standard PSO and ADT classifier. We then

compute the feature discrimination score using the formula 3.

We compare the new feature score with the previous scores

and the algorithm increases the particle population size in the

standard PSO by a factor of one till a local maximum is found.

To obtain the local maximum point we first obtain the first

and second derivative of number of particles in the iteration

i (say y) and the feature discriminatory score Vi (say x). The

local maxima is computed as given in Equation 7. The loop

is terminated when the conditions in Equation 7 are met.

dy

dx i−2

>
dy

dx i−1

&&

dy

dx i−1

>
dy

dy i

&&
d2y

dx2
< 0 (7)
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Algorithm 1 New Feature Selection (NFS) Algorithm

Input: Data sets for the purpose of decision making

S(n,m) where n and m are number of records and at-

tributes respectively.

Output: Mean and standard deviation of the number of

features selected and the classification accuracy FM , FS,

AM , AS

1) Identify and collect all records in a data set S.

2) Split the data set in to training and testing sets using

a stratified k fold cross validation procedure. Denote

each training and testing data set by Tk and Rk

respectively.

3) For each k

a) initialize the number of particles in PSO as N=5,

the fitness value as V0 = 0 and i = 0.

i) Extract the optimal feature subset from Tk us-

ing a wrapper based approach with PSO search

for identifying feature subsets using number of

particles as N and alternating decision tree for

its evaluation.

ii) Generate new training and testing data sets

using the features identified in Step 3(a)i from

Tk and Rk respectively. Designate these sets by

Pi and Qi respectively.

iii) Build the ADT using the training data set Pi

and obtain the test accuracy using testing data

set Qi. Designate this accuracy by Bi.

iv) Compute the feature scores of data sets Pi and

Tk respectively. Designate the scores by M1

and M2 respectively.

v) Compute the fitness value as Vi = 0.5 ∗ A +
0.5 ∗ (M1/M2).

vi) Update N as N + 1 and i as i+ 1.

vii) check for local maxima using Equation 7 and

exit the loop if conditions are met.

b) Obtain the feature subset using the particles ob-

tained in set above in PSO feature selection using

ADT.

c) Obtain the test accuracy Ak by building an ADT

using the features obtained from above and desig-

nate the accuracy of fold k and Fk = #Di.

4) Repeat the Steps (3)-(i) to Step (3)-3c for each fold.

5) Designate FM , FS, AM , AS as the mean and

standard deviation of Fk and Ak respectively.

6) RETURN FM , FS, AM , AS.

7) END.

C. Validation

To evaluate the performance of the proposed Tunable Par-

ticle Swarm Size Optimization Algorithm, we first obtain the

feature subset corresponding to the number of particles found

using the above procedure. We then train an ADT using the

features identified in the previous step and then compute

test accuracies on the test data set of the corresponding

fold. The procedure is repeated for all the ten folds and the

average accuracy is computed. The above procedure is given

as Algorithm 1.

VI. EXPERIMENTS AND RESULTS

We have conducted experiments on bench mark data sets

obtained from University of California Irvin (UCI) data repos-

itory [39] StatLog project, Keel [40] and Bangor data repos-

itories (https://www.bangor.ac.uk/). The performance of the

proposed algorithm TPSO is compared with standard PSO and

GA with alternating decision tree classifier. The description of

the data sets are given in the Table I.

In the present methodology we employ a stratified k-fold

cross validation (k = 10) procedure. The folds are selected so

that the mean response value is approximately equal in all the

folds. In case of a dichotomous classification, this means that

each fold has roughly the same proportions of the two types of

class labels. Table II provides details of the default necessary

parameters of GA and PSO in the current experimental study.

A. Computational Complexity and Scalability

The computational complexity is a measure of the perfor-

mance of the algorithm. For each data set having n attributes

and m records, we select only those subset of records m1 ≤

m, in which missing values are present. The distances are

computed for all attributes n excluding the decision attribute.

So, the time complexity for computing the distance would be

O(m1∗(n−1)). The time complexity for selecting the nearest

records is of order O(m1). For computing the frequency of

occurrences for nominal attributes and average for numeric

attributes the time taken would be of the order O(m1). In

case of the proposed method, let O(p) be the time complexity

of wrapper based feature sub set identification using standard

PSO and ADT. For F folds the complexity would be F ∗O(p).
For I changes in the swarm size the time complexity of

feature selection step would be F ∗ O(p) ∗ I . Therefore,

for a given data set with k-fold cross validation having n
attributes and m records, the time complexity of TPSO would

be k ∗ (O(m1 ∗ (n − 1) ∗ m) + 2 ∗ O(m1) + F ∗ O(p) ∗ I)
which is asymptotically linear.

A plot between the varying sizes of the data sets and the

time taken for processing by the proposed algorithm (TPSO)

is shown in Fig. 1. Also, we employed a linear regression on

our results and obtained the relation between the time taken

(T) and the data size (D) as T = 0.0159D+0.2464, α = 0.05,

p < 0.05, r2 = 0.78.

The presence of the linear trend between the time taken and

the varying database sizes ensures the numerical scalability of

the performance of TPSO in terms of asymptotic linearity.
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TABLE I
DATA SETS

Name Source Number of Number of Number of
Features Classes Records

Australian (AUS) UCI Statlog 14 2 690

Contractions (CON) Bangor 27 2 98

German (GER) Keel 20 2 1000

Heart (HRT) UCI Statlog 13 2 270

Ionosphere (ION) UCI 33 2 351

Laryngeal1 (LAR) Bangor 16 2 213

Respiratory
distress syndrome (RDS) Bangor 17 2 85

Sonar (SNR) UCI 60 2 208

WDBC (WBD) Keel 30 2 569

Weaning (WEA) Bangor 17 2 302

TABLE II
PARAMETER SETUP

Name Parameters

GA Crossover=1.0
mutation probability=0.001

PSO initial number of particles Z= 50
iterations G=100

cognitive factor c1 = 2

social factor c2 = 2

Fig. 1. Computational complexity of the TPSO algorithm

B. Performance Comparison on Benchmark Data sets

Firstly, we compared the accuracy of the proposed TPSO

method with accuracies of ADT classifier without employing

any feature selection. The results are tabulated in Table III.

Later, we considered GA and standard PSO algorithms

for feature subset selection and ADT classifier as wrapper

for feature evaluation. A comparison of the performances of

TPSO with GA+ADT and Standard PSO+ADT methods on

benchmark data sets is shown in Table IV.

The mean and the standard deviation of the number of

features selected for k folds of the cross validation procedure

is shown Table V.

From Table V it can be observed that the TPSO method-

ology has rendered higher accuracies using less than 50% of

the original set of attributes.

To substantiate the improvement in classification accuracy

using TPSO methodology a statistical test based on Wilcoxon

method is employed and the results are presented in Table VI.

From the Table VI we infer that TPSO is superior to the

standard PSO feature selection method with positive rank sum

of 55, p < 0.001 and α = 0.05 significance. The TPSO

method indicating a remarkable performance when compared

with GA feature selection with a positive rank sum of 54,

p < 0.003 and α = 0.05

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have discussed the issues related to high

dimensionality of the data sets and feature selection as a

solution to the curse of dimensionality. The feature selection

methods such as filter and wrapper have been discussed.

Particle Swarm Optimization (PSO) is a population based

optimization technique, which has been proved to get optimal

feature subset provided the necessary input parameters are

properly tuned. Particle swarm size is the critical parameter

in standard PSO. To address this issue, we proposed a novel

tunable swarm size configuration approach to find the popu-

lation size of the particles based on the data sets in real time.

The proposed algorithm is named as Tunable Particle Swarm

Size Optimization Algorithm (TPSO). A new fitness function

has been developed which integrates the accuracy of the

classifier with the modified F-Score. Empirically, we compare

the performance of our new algorithm with other state-of-the-

art classifiers on bench marking data sets obtained from UCI,

Keel and Bangor data repositories. Wilcoxon statistical test

confirmed the fact that the proposed algorithm has improved

the classification accuracies in comparison to other methods.
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