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Compact Neural Modeling of Single Flow

Zinc-Nickel Batteries Based on Jaya Optimization

Li Zhang, Kang Li, Zhile Yang, Xiang Li, Yuanjun Guo, Dajun Du, Chikong Wong

Abstract—As a novel family member of the redox flow batteries
(RFBs), the single flow zincnickel battery (ZNB) without ion
exchange membranes has attracted a lot of interests in recent
years due to the high charging and discharging efficiencies. To
understand the electrical behaviour is a key for proper battery
management system. Unlike the electrochemical mechanism mod-
els and equivalent circuit models, the neural network based black-
box model does not need knowledge about the electrochemical
reactions and is a promising and adaptive approach for the
ZNB battery modelling. In this paper, a compact radial basis
function neural network is developed using a two-stage layer
selection strategy to determine the network structure. While Jaya
optimization is utilized to determine the non-linear parameters
in the selected hidden nodes of the resultant RBF neural network
(RBF-NN) model. The proposed method is implemented to model
the ZNB to capture the non-linear electric behaviours through the
readily measurable input signals. Experimental results manifest
the accurate prediction capability of the resultant neural model
and confirm the effectiveness of the proposed approach.

I. INTRODUCTION

The Redox flow batteries (RFBs) have been widely studied

in recent years due to their impressive capacity to efficiently

store large amounts of electrical energy with relatively lower

cost. It is promising to store excessive intermittent renewable

energy such as solar and wind power generation [1].

Since first proposed by Thaller [2] in 1976, many variants

of redox flow batteries have been developed such as the all-

vanadium system (Pinnacle VRB Ltd.), polysulphidebromine

system (Regenesys Technologies Ltd.) and zincbromine sys-

tem (ZBB Energy Ltd.). In 2004, Pletcher et al. proposed

a novel redox lead-acid flow battery system with a single

electrolyte [3]. In addition, another single electrolyte system

using conventional zincnickel battery was proposed by Cheng

et al. [4] in 2007, without any separators in the mechanical

configurations for cost reduction.

In order to safely and efficiently use RFBs, accurate estima-

tion of the state-of-charge (SOC) for battery cell is essential.

Model-based methods are extensively applied in internal state

estimation given that they are close-loop methods and less

sensitive to the measurement errors if the model is designed

properly. In this case, an accurate battery model, which is

crucial to the model-based method, should therefore be built
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first, based on the measured data such as the battery terminal

voltage and load current. However, the battery behaviours

are normally highly non-linear and non-stationary because of

the significantly complex internal chemical reactions. In [5],

a mathematical model was proposed based on the electro-

chemical principle with a number of complex equations and

unmeasured quantities to be determined. An equivalent circuit

model (ECM) was presented in [6] to describe the battery non-

linear behaviours using electronic components. But both the

two models are related to the internal reactions. Thus, a black

box neural network model, which does not have to rely on

the knowledge of the internal reaction, was applied to model

ZNBs in [7]. In [7] the influence of the structure of the neural

network was however neglected.

In order to model the non-linear behaviours of zincnickel

batteries, a compact RBF-NN model is proposed in this paper.

It is known that the number of hidden nodes and choice

of suitable values for nonlinear parameters in the hidden

nodes such as the centers and the widths, as well as the

output weights [8] are important factors in constructing a good

RBF-NN model. According to the principle of parsimony, a

compact network is preferable to a complex one under the

similar approximation and generalization performance. Li et

al. proposed a fast recursive algorithm (FRA) [9] and a fast

two-stage selection algorithm (TSS) [10] combining forward

selection and backward refinement for building linear-in-the-

parameter models for a wide class of nonlinear systems.. In

this paper, the TSS model selection method is used to refine the

structure of the RBF-NN model. With these novel algorithms,

the number of hidden nodes and the weights relating to the

output nodes are determined simultaneously. In addition, a

recently efficient meta-heuristic algorithm namely Jaya [11] is

applied to optimize the centers and the widths of the hidden

nodes to improve the model accuracy.

The reminder of the paper is organized as follows. A brief

introduction of the compact RBF neural network is presented

in Section II, followed by Section III that introduces the Jaya

algorithm. Then the procedure to built an optimal compact

RBF-NNl model is detailed in IV. Further, the experimental

and simulation results are analyzed in the Section V. Finally,

Section VI concludes this paper.

II. CONSTRUCTION OF COMPACT RBF NETWORKS USING

TSS ALGORITHM

According to [9], [10], [12], the RBF-NN structure makes

it possible to formulate its construction as a linear-in-the-

parameters structure. Based on this formulation, a compact



RBF-NN can be built using the two-stage stepwise identifica-

tion method. All candidate neurons are reviewed in the two

stages to select the most significant hidden nodes for building

the compact model. Meanwhile, the weights in relation to the

output nodes are estimated based on the least square solution.

A. RBF Neural Networks

Consider a multi-input-single-output (MISO) RBF network

is used to approximate a nonlinear system, it can be formulated

as a in linear-in-the-parameters model as follows:

y(t) =
∑n

k=1
θkϕk(X(t); ck;σk) + ε(t) (1)

where y(t), X(t) ∈ Rm and ε(t) are output, input and model

error at time instant t respectively. Herein, m and n denote

the number of inputs and hidden nodes respectively. And

ϕk(X(t); ck;σk) is the Gaussian function as the activation

function for the hidden nodes. ck ∈ Rm is the center vector

and σk ∈ R1 denotes the RBF width. θk represents the output

linear weights.

Suppose N samples such as the X(t), y(t), t = 1, · · · , N
are used as the training data for the RBF-NN construction.

Therefore, Equ. (1) can be reformulated in a matrix form as:

y = Φθ + e (2)

where Φ = [φ1, · · · , φn]
T ∈ RN×n is known

as the output matrix of the hidden nodes.

φi = [ϕi(X(1), · · · , ϕi(X(N)]T , i = 1, · · · , n,

y = [y(1), · · · , y(N)]T ∈ RN is the output vector.

Besides, θ = [θ1, · · · , θn]
T ∈ Rn denotes the output weights.

B. Two Stage Stepwise Method

In order to construct a compact RBF-NN model with a

minimal number of hidden nodes, a two-stage stepwise method

[10] is employed in this paper. During the first stage, the

FRA is used to select significantly non-linear regressors to

build the parsimonious RBF-NN model [9]. Then, the already

selected important model terms (nodes) are reviewed in the

second stage. After term refinement, the weights of the model

are estimated using the update recursion formulation. The

optimized model usually has a better generalization capability.

a) Stage 1: Forword Selection: A compact RBF-NN

model has been preliminarily formed during the forward selec-

tion by selecting the largest net contribution neurons, storing

in a regression matrix P and rearranging in Φ. Consider

a linear-in-the-parameter RBF-NN with randomly generated

hidden neurons, supposing ith model terms (neurons), the

corresponding optimal linear parameters (e.g. output weights

in the RBF-NN) are given below using the least square

algorithm (LS).

θ̂i = (ΦT
i Φi)

−1ΦT
k y (3)

Thus the cost function with the optimal output weights can be

formulated as

Ji = yTRiy (4)

where Ri = I −Φi[Φ
T
i Φi]

−1ΦT
i is called the residue matrix.

Then, the net contribution of a new model term ϕi+1 at the

i+ 1th iteration is expressed as

∆Ji+1(ϕi+1) = ((y(i))T · ϕ
(i)
i+1)

2/(ϕ
(i)
i+1)

T · ϕ
(i)
i+1

(5)

where ϕi+1 is the reordered one, y(i) = Riy, ϕ
(i)
i+1 =

Riϕi+1, k = 0, · · · , n− 1.

If the kth term is selected to construct the compact model,

the intermediate matrices A = [ai,j ]k×n, Ay = [ayi]
T
n×1 and

B = [bi]n×1 are defined as

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(8)

Therefore, the net contribution of the k + 1th node can be

expressed as

∆Jk+1(ϕi+1) =

(yTϕi+1 −
k
∑

h=1

(ayhah,i+1/ah,h))
2

(ϕi+1)Tϕi+1 −
k
∑

h=1

a2h,i+1/ah,h

k ≤ i ≤ n

(9)

b) Stage 2: Backward Refinement: The backward refine-

ment stage is used to re-examine the model constructed by

the forward selection approach. The insignificant ones are

replaced by the more significant nodes using the recalculated

net contributions through the changes of the nodes position in

regression matrix. In brief, the unselected items in the initial

set of nodes which have more significant contributions will



be adopted in the new compact RBF-NN model after the

backward refinement.

The forward regression matrix comprising kth selected

nodes is denoted as Pk = [p1, · · · , pk], and the adjacent

terms are interchanged (p̂q = pq−1 & p̂q−1 = pq). Therefore,

some changes occur in the corresponding residue matrix and

intermediate matrices which constitute the regression context

defined in [10]. The residue matrix R̂q is rewritten as

R̂q = R(p1, · · · , pq−1, p̂q)

= Rq−1 −Rq−1 · p̂q · p̂
T
q ·RT

q−1/(p̂
T
q ·Rq−1 · p̂q)

(10)

then the interchanged Ai,q:q+1 are given by
{

Â(1 : q − 1, q) = A(1 : q − 1, q + 1)

Â(1 : q − 1, q + 1) = A(1 : q − 1, q)
(11)

and the position interchanging in the row is described as

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Â(q, q)=A(q+1, q+1)+A2(q, q+1)/A(q, q)

Â(q, q+2:n)=A(q+1, q+2 : n)+
A(q, q+1)A(q, q+2:n)

A(q, q)

Â(q+1, q+1)=A(q, q)−A2(q, q+1)/Â(q, q)

Â(q+1, q+2:n)=A(q, q+2 : n)−
A(q, q+1)Â(q, q+2:n)

Â(q, q)
(12)

and B(q : q + 1) can be reformulated as

B̂(q) = Â(q, q), B̂(q + 1) = Â(q + 1, q + 1) (13)

Similarly, Ay(q : q + 1) is updated as
{

Ây(q) = Ay(q + 1) +A(q, q + 1)Ay(q)/A(q, q)

Ây(q + 1) = Ay(q)−A(q, q + 1)Ây(q)/Â(q, q)
(14)

The remaining candidates will be shifted to the kth position,

i.e. p̂k = ϕi, of which the net contribution is calculated as

follows

∆Jk(ϕi) =

(yTϕi −
k−1
∑

h=1

âyhâh,i/âh,h)
2

(ϕi)Tϕi −
k−1
∑

h=1

â2h,i/âh,h

(15)

where R̂k−1, â·, · and ây
·

are the (k − t)th updated values

in Step 1, and t is the initial position index of the reviewed

elements.

Subsequently, the corresponding weights will be estimated

as

θ̂j = (aj,y−

k
∑

h=j+1

θ̂haj,h)/aj,j , j = k, k − 1, · · · , 1 (16)

III. JAYA ALGORITHM

The selection of centers and the widths of the hidden nodes

directly determine the performance of the RBF-NN model.

Due to the highly non-linear nature of the zincnickel batteries

model, the optimal centers and the widths of the hidden nodes

should be identified. Jaya algorithm is a recently proposed

meta-heuristic algorithm with no parameters to tune and high

competitive performance [11]. The evolutionary process is

fairly straightforward: approaching the best and departing from

the worst. The both ideas are merged within a single phase

denoted as

Xnew
j,k,i =Xj,k,i + rand1,j,i(Xj,best,i − |Xj,k,i|)

− rand2,j,i(Xj,worst,i − |Xj,k,i|)
(17)

where Xj,k,i is the jth variable of kth particle in the

ithiteration. Xj,best,i and Xj,worst,i denote the best and worst

candidates of corresponding position. X ′

j,k,i is the updated

value of Xj,k,i and rand1,j,i and rand2,j,i are the two

random numbers ranging within (0, 1). It could be observed

that the term ’(Xj,best,i − |Xj,k,i|)’ denotes the tendency

of the solution to approach the best solution and the term

’−(Xj,worst,i−|Xj,k,i|)’ indicates the tendency of the solution

to disembarrass the worst solution. X ′

j,k,i is accepted if it gives

better function value.

The algorithm has been well adopted in solving engineering

problems [13], [14] and achieved good results. In this paper,

the non-linearparameters in the RBF-NN model formulated

in (1) is optimized by Jaya, and the detailed procedure is

demonstrated in the following section.

IV. MODELLING USING A COMPACT RBF NEURAL

NETWORK OPTIMIZED BY JAYA

Due to the highly nonlinear nature of the ZNB electrical

behavior, a method combining the procedures of the TSS

and Jaya algorithm is employed to build the RBF-NN model

(TSS Jaya RBF). In this model, a dynamic optimizer of

the nonlinear parameters and a dynamic structure selector is

designed.

To build the electrical behavior of the ZNB, according to

[7], the past terminal voltage measurements V (t−1), V (t−5),
V (t− 10) at time instants t− 1, t− 5, t− 10 and the current

measurements I(t) and I(t − 7) at time instants t, t − 7 are

selected as the model inputs. The present voltage V (t) at time

instants t is the model output. A compact RBF-NN model

below is used to capture their nonlinear relationships

V (t) =
∑k

i=1
θiexp(−‖u(t)− uci‖

2/(2σi)
2
) (18)

where u(t) = [V (t − 1), V (t − 5), V (t − 10), I(t), I(t −
7)] is the model input vector, the Gaussian function

exp(−‖u(t)− uci‖
2/(2σi)

2
) is the output of the ith hidden

nodes with the center vector uci and the width vector σi, k is

the selected number of hidden nodes in the RBF neural model,

and θi is the hidden output weights.

To identify the model described in (18), the number of the

hidden nodes (k) and the weights θi is determined using TSS

method, and the center vector uci and the width vector σi is

optimized using Jaya algorithm. Thus the procedures of the

TSS Jaya RBF model is described as follows:

Step 1. Initialization:



a) collect the data samples and generate the candidate

RBF regression matrix Φ = [Φ1, · · · , ΦM ] , M =
N .

b) set the desired number of model terms k, the

size of the population, the initial population, the

upper/lower bounds and the iteration number l.

Step 2. Forward selection:

a) Set the model size k = 0.

b) At the kth, 1 ≤ k ≦ M step, calculate aj,j
and ayj (j = 1, · · · ,M ) using (6) and (7). Then

compute their net contributions to the cost function

using (9) based on the widths and centers selected

by Jaya.

c) Find the candidate regression terms with the max-

imum net contribution and the minimal net contri-

bution, then update the widths and centers using

(17).

d) If the iteration number l is reached, move to 2(e).

Otherwise, set k = k + 1, and go back to 2(b).

e) Construct the candidate RBF regression vector ϕnn

using the selected widths and centers based on Jaya

algorithm and save it into the regression matrix P.
f) If the desired number of model terms (k) is

reached, move to Step 3. Otherwise, set nn =
nn+ 1, and go back to 2(b).

Step 3. Backward model refinement:

a) Interchange the positions of pnn and pnn+1 (nn =
n−1, · · · , 1), and update the related terms in A,Ay

and B using (11), (12), (13) and (14).

b) Repeat 3(a) until the regressor pnn shifted to the

kth position.

c) Calculate the new net contribution of the reviewed

term and the term (φi, i = n+1, · · · ,m) remain-

ing in the candidate pool.

d) Find the candidate regression terms with the max-

imum net contribution and the minimal net contri-

bution, then update the widths and centers using

(17).

e) If the iterative l is reached, move to 3(f). Other-

wise, set nn = nn+ 1, and go back to 3(c).

f) Construct the candidate RBF regression vector φi

using the selected widths and centers based on the

Jaya algorithm.

g) If the net contribution of the shifted term is less

than that of a candidate, replace pnn with φi , and

move pnn back to the candidate pool. Otherwise,

set nn = nn− 1, if nn > 1, then go to step 3(a),

and if nn = 1, go to the next step.

Step 4. calculate the weights:

a) Estimate the weights using (16).

The schematic is illustrated in Fig.1.

Fig. 1. Modeling flowchart diagram for ZNBs using Jaya trained compact
RBF neural network

Fig. 2. Schematic diagram of single ZNB system.

V. SIMULATION AND ANALYSIS

In this paper, a ZNB flow battery system includes a stack,

an electrolyte reservoir, several positive electrodes with nickel

oxides and several negative electrodes with zinc as illustrated

in Fig.2. The electrolyte employing the concentrated solutions

of ZnO is circulated from the reservoir by a pump to the

electrode cell.

Based on the ZNB battery system shown in Fig. 2, sam-

ple data was collected from a bench-scale 1.85 Ah ZNB
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Fig. 3. Training Voltage using the compact RBF-NN model optimized by
Jaya

using 0.5C charging/discharging current to test the electrical

behavior of the system. The battery tests were performed

using a battery testing system CT-3008W (ShenZhen Neware

Corp., China). During the testing procedure, the temperature

was fixed as the room temperature. In order to capture and

demonstrate the non-linear relationship, 10 intervals represent-

ing different state of charge (SOC) points were used in the

experiments. Eight points between SOC 10% and 90% were

evenly chosen during charging processing. In the charging

cycle, a duration period of relaxation was up to 15 min after

each 10 min pulse current charging.

The maximum number of generations and the population

size of the Jaya method are set as 10 and 60 respectively.

Moreover, the upper/lower bounds of the center is the 1.5 times

of the input maximum/minimum, and the upper and lower

bounds of the width is 0.1 and 8 respectively.The simulation

test using the optimized compact RBF-NN is shown in Fig. 3.

The absolute errors range from 0.03 to 0.03, with the majority

of them falling within ±0.01 as shown in Fig. 4. Besides, the

number of the hidden nodes is selected as 6. It is clear that a

highly accurate model is built using the proposed method.

In addition, another set of ZNB test data is collected for

model validation under the same testing environments and the

same charging current. The validation results are illustrated in

Fig. 5, and it is noted that the majority of absolute errors are

within ±0.02 as shown in Fig. 6.

In order to illustrate the effectiveness of Jaya method,

we compare the compact RBF-NN model optimized by the

conventional PSO method [15], with the same maximum

iteration and number of particles. The results are illustrated in

Fig. 7. It is shown that the compact RBF-NN model optimized

by Jaya is more accurate, in particular outperforms the PSO

in the charging process.

VI. CONCLUSION AND FUTURE WORKS

In this paper, an accurate ZNBs black box model to capture

the electrical dynamics has been built using an compact RBF-

NN algorithm. The two stage selection method is adopted to
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Fig. 5. Validation Voltage using the compact RBF-NN model optimized by
Jaya

determine the network structure and establish a compact RBF-

NN with limited number of hidden nodes. In order to improve

the accuracy of the model, an elegant optimizer Jaya method

is employed to adjust the non-linear parameters in the radial

basis functions. The simulation result demonstrates that both

the modelling performance and computational efficiency are

significantly improved with the TSS selected structure and

Jaya optimized nonlinear parameters. Future work will be

addressing the SOC estimation based on the model proposed

in this note.
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