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Abstract—The effectiveness of evolutionary algorithms have
been verified on multi-objective optimization, and a large number
of multi-objective evolutionary algorithms have been proposed
during the last two decades. To quantitatively compare the per-
formance of different algorithms, a set of uniformly distributed
reference points sampled on the Pareto fronts of benchmark
problems are needed in the calculation of most performance
metrics. However, not much work has been done to investigate
the method for sampling reference points on Pareto fronts, even
though it is not an easy task for many Pareto fronts with
irregular shapes. More recently, an evolutionary multi-objective
optimization platform was proposed by us, called PlatEMO,
which can automatically generate reference points on each Pareto
front and use them to calculate the performance metric values. In
this paper, we report the reference point sampling methods used
in PlatEMO for different types of Pareto fronts. Experimental
results show that the reference points generated by the proposed
sampling methods can evaluate the performance of algorithms
more accurately than randomly sampled reference points.

I. INTRODUCTION

Since the vector evaluated genetic algorithm (VEGA) was
proposed in 1985 [1], a large number of evolutionary algo-
rithms have been proposed and demonstrated high effective-
ness in solving multi-objective optimization problems (MOPs),
which are collectively known as multi-objective evolutionary
algorithms (MOEAs) [2], [3]. In order to compare the perfor-
mance of existing MOEAs, some multi-objective test suites
with various types of Pareto sets, Pareto fronts, and landscapes
have been proposed. For example, ZDT [4] is one of the
first test suites which contains six MOPs with two objectives;
DTLZ [5] and WFG [6] are the two most popular test suites,
which are scalable with respect to both decision variables and
objective; UF [7] contains ten bi- and three-objective MOPs
with complicated linkages between decision variables, which
pose tough challenges to MOEAs to obtain a set of well-
converged solutions; LSMOP [8] is the first test suite designed
for large-scale multi-objective optimization, and MaF [9] is a
recently proposed test suite for many-objective optimization.

Since each solution for an MOP has multiple objective
values, it is difficult to evaluate the performance of MOEAs
by directly comparing the objective values of the solutions.
Therefore, some performance metrics have been proposed
to quantitatively evaluate the outcomes of MOEAs, such as

generational distance (GD) [10], inverted generational distance
(IGD) [11], and hypervolume (HV) [12]. It should be noted
that, a set of uniformly distributed reference points sampled
on the Pareto front (PF) is needed as the ground-truth for the
calculation of some performance metrics. For instances, the
IGD is calculated by

IGD(P,R) =

∑
r∈R minp∈P ∥p− r∥

|R|
, (1)

where P is the objective values of a solution set, R is the
reference point set, and ∥ · ∥ is the L2-norm. In short, IGD
calculates an average minimum distance from each point in R
to those in P , where a smaller IGD value indicates a better
convergence and diversity of P .

However, it is not an easy task to sample a set of uniformly
distributed reference points on various PFs, and only few work
has been done to investigate the reference point sampling
method [13], [14]. To address this issue, this paper system-
atically presents the reference point sampling methods used
in PlatEMO [15], which is an evolutionary multi-objective
optimization platform recently proposed by us. PlatEMO can
automatically generate a set of uniformly distributed reference
points on each PF, and use them to calculate the performance
metric values of the solutions obtained by MOEAs.

The rest of this paper is organized as follows. Section
II reviews three methods for sampling reference points on
unit simplex, which is the prerequisite for sampling reference
points on most PFs. Section III introduces the reference point
sampling methods for several types of PFs. Section IV presents
the experimental results of five popular MOEAs on five
MOPs, to verify the effectiveness of the proposed reference
point sampling methods in performance metric calculation.
Conclusions are drawn in Section V.

II. SAMPLING REFERENCE POINTS ON UNIT SIMPLEX

The uniformly distributed reference points on most PFs can
be obtained by transforming the points uniformly sampled on
unit simplex. Among many others [16], [17], three represen-
tative methods for sampling reference points on unit simplex
are reviewed in the following.



Fig. 1. Example of generating reference points by Das and Dennis’s method.

A. Das and Dennis’s Method

The Das and Dennis’s method [18] is the most popular
systematic approach for sampling uniformly distributed ref-
erence points on unit simplex, which is commonly employed
by decomposition based MOEAs [19]. A reference point on
M -dimensional unit simplex generated by Das and Dennis’s
method can be defined by s = (s1, s2, . . . , sM ), where

sj ∈
{

0

H
,
1

H
, . . . ,

H

H

}
,

M∑
j=1

sj = 1 (2)

and H is the number of divisions in each objective.
Fig. 1 illustrates the procedure for generating all the points

satisfying (2) with M = 3 and H = 5. Specifically, we
can find all the combinations of a and b that satisfy a, b ∈
{0, 0.2, . . . , 1} and a ≤ b, then let s1 = a − 0, s2 = b − a,
and s3 = 1 − b. Therefore, the above issue is equivalent to
finding all the 2-multicombinations of {0, 0.2, . . . , 1}, which
can be further converted to finding all the 2-combinations of
{0, 0.2, . . . , 1.2}. To summarize, the procedure of Das and
Dennis’s method is:

1) Let X be all the (M − 1)-combinations of { 0
H , 1

H ,
. . . ,H+M−2

H };
2) For each xij ∈ X (i.e., the j-th element of the i-th

combination in X), xij = xij − j−1
H ;

3) Let S be the reference point set, for each sij ∈ S and
xij ∈ X , sij = xij − 0, j = 1

sij = xij − xi(j−1), 1 < j < M
sij = 1− xi(j−1), j = M

. (3)

Fig. 2 plots the reference points generated by Das and
Dennis’s method with M = 3,H = 13 and M = 10,H = 3.
From Step 1), it is known that the number of reference
points generated by Das and Dennis’s method is CM−1

H+M−1,
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Fig. 2. The reference points sampled by Das and Dennis’s method on 3-
and 10-objective unit simplexes.
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Fig. 3. The reference points sampled by Deb and Jain’s method on 3- and
10-objective unit simplexes.

hence the numbers of reference points shown in Fig. 2 are
C3−1

13+3−1 = 105 and C10−1
3+10−1 = 220, respectively.

B. Deb and Jain’s Method

As reported by Deb and Jain [20], no intermediate point will
be generated by Das and Dennis’s method as long as H < M .
Therefore, at least C10−1

10+10−1 = 92378 points on 10-objective
unit simplex are required to have at least one intermediate
point. To avoid such a situation, they suggested to use two
layers of reference points, which are generated as follows:

1) Generate S1 by Das and Dennis’s method as the point
set on boundary layer;

2) Let S2 be the point set on inside layer, for each s′ij ∈ S2

and sij ∈ S1,

s′ij =
1

2
sij +

1

2M
; (4)

3) The reference point set S = S1 ∪ S2.
Fig. 3 depicts the reference points generated by Deb and

Jain’s method with M = 3, H = 13 and M = 10,H =
3, where the numbers of reference points are 210 and 440,
respectively. It can be seen from the figure that the reference
points on boundary layer are the same to those generated by
Das and Dennis’s method, while the reference points on inside
layer are shrunk to the center of the simplexes. So there can
exist intermediate point even if H < M . In practice, the Das
and Dennis’s method is used when M ≤ 5, and the Deb and
Jain’s method is used in other cases.

C. Mixture Uniform Design

A drawback of the above two sampling methods is that the
number of reference points is restricted by the parameters M
and H . By contrast, the mixture uniform design [21] provides a
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Fig. 4. The reference points sampled by mixture uniform design on 3- and
10-objective unit simplexes.

more flexible sampling method, where the number of reference
points can be an arbitrary number. In short, it generates
N points uniformly distributed in an (M − 1)-dimensional
hypercube, then transforms them to the M -dimensional unit
simplex. Specifically, the procedure of mixture uniform design
consists of the following four steps:

1) Let W1 be a row vector of all the positive integers
that are coprime to and smaller than N ; let W2 =
(1, 2, . . . , N);

2) Let W = mod (WT
2 W1 − 1, N) + 1;

3) Let X be a matrix consisting of M − 1 columns from
W , find the X having the largest CD2 value;1

4) Let S be the reference point set, for each sij ∈ S and
xij ∈ X , sij = 1

N
[1− (xij)

1
M−j ]

∏j−1
k=1(xik)

1
M−k , 1 ≤ j < M

sij = 1
N

∏j−1
k=1(xik)

1
M−k , j = M

.

(5)

In Step 3), the CD2 (i.e., centered L2-discrepancy) is used to
measure the diversity of a point set X with N points filling a
hypercube, which can be calculated by

CD2(X) =
[(

13
12

)M−1 − 22−M

N

∑N
i=1

∏M−1
j=1

(
2 + |xij − 0.5|−

|xij − 0.5|2
)
+ 1

N2

∑N
i,k=1

∏M−1
j=1

(
1 + 0.5|xij−

0.5|+ 0.5|xkj − 0.5| − 0.5|xij − xkj |
)] 1

2 .
(6)

Assume that the matrix W contains K columns, the calcu-
lation of CD2 should be performed for CM−1

K times, hence
the computational complexity of mixture uniform design is
obviously larger than those of Das and Dennis’s method and
Deb and Jain’s method.

Fig. 4 presents 100 and 101 reference points generated by
mixture uniform design with M = 3 and M = 10. It is

1Step 1) – Step 3) is called the good lattice point method, other methods
such as the Latin hypercube sampling can also be adopted for generating X .
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Fig. 5. Reference points for 3-objective DTLZ1, which are generated by
uniformly sampling decision variables.

obvious from the figure that the number of reference points
can be an arbitrary number; however, the obtained reference
points distribute less uniformly than those generated by Das
and Dennis’s method, and many extreme points are missed.

III. SAMPLING REFERENCE POINTS ON PARETO FRONTS

In this section, we give the reference point sampling meth-
ods for several types of PFs. The Das and Dennis’s method is
adopted to generate the uniformly distributed reference points
on unit simplex, unless otherwise specified.

A. Sampling Reference Points on Linear PF (DTLZ1)

The PF of M -objective DTLZ1 [5] is defined by
f1 = 0.5x1x2 . . . xM−1

f2 = 0.5x1x2 . . . (1− xM−1)
. . .
fM = 0.5(1− x1)

, (7)

where 0 ≤ xj ≤ 1. As shown in Fig. 5, if we uniformly
generate xj and calculate the reference points by (7), the ob-
tained reference points will distribute nonuniformly. Therefore,
it needs to sample the reference points in objective space
directly. In fact, the PF of M -objective DTLZ1 [5] can be
written as

f1 + f2 + . . .+ fM = 0.5, (8)

where 0 ≤ fj ≤ 0.5. So the reference points can be obtained
by halving the objective values of the points on unit simplex,
i.e.,

1) Uniformly sample a set of points S on unit simplex;
2) Let R be the reference point set, for each rij ∈ R and

sij ∈ S,
rij = 0.5sij . (9)

Fig. 6 plots 120 reference points sampled on 3-objective
DTLZ1.

B. Sampling Reference Points on Concave and Convex PFs
(DTLZ2 and Its Variants)

This subsection introduces the reference point sampling
methods for DTLZ2 [5] and three of its variants, namely,
convex DTLZ2 [20], C2-DTLZ2 [22], and DTLZ2BZ [23].
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Fig. 6. 120 reference points sampled on 3-objective DTLZ1.

The reference points sampled on the PFs of these four MOPs
are plotted in Fig. 7.

The PF of M -objective DTLZ2 can be written as

f2
1 + f2

2 + . . .+ f2
M = 1, (10)

where 0 ≤ fj ≤ 1. The reference points for DTLZ2 can
be obtained by mapping the points from unit simplex to unit
sphere, i.e., calculating the intersection of the line connecting
each point and the origin on unit sphere:

1) Uniformly sample a set of points S on unit simplex;
2) Let R be the reference point set, for each rij ∈ R and

sij ∈ S,

rij =
sij
ti

, (11)

where ti can be obtained by solving(si1
ti

)2
+
(si2
ti

)2
+ . . .+

(siM
ti

)2
= 1, (12)

i.e.,

ti =

√√√√ M∑
k=1

s2ik. (13)

The PF of M -objective convex DTLZ2 is

f0.5
1 + f0.5

2 + . . .+ f0.5
M−1 + fM = 1, (14)

where 0 ≤ fj ≤ 1. Similar to DTLZ2, the procedure of
sampling reference points on the PF of convex DTLZ2 is

1) Uniformly sample a set of points S on unit simplex;
2) Let R be the reference point set, for each rij ∈ R and

sij ∈ S,
rij =

sij
ti

ti =
δi+2siM+

√
δ2i+4δisiM

2

δi =
(∑M−1

k=1

√
sik

)2 . (15)

The PF of M -objective C2-DTLZ2 is the same to DTLZ2,
except that a constraint is introduced

min
{
minMj=1

[
(fj − 1)2 +

∑M
k=1,k ̸=j f

2
k − a2

]
,[∑M

j=1(fj − 1/
√
M)2 − a2

]}
≤ 0,

(16)

where a = 0.4 for M = 3 and 0.5 otherwise. Obviously, the
reference points for C2-DTLZ2 can be obtained by sampling

0
00

0.5

DTLZ2

0.5 0.5

1

1 1

0
0

0.5

Convex DTLZ2

0.5 0.5

1

1 1

0
00

0.5

C2-DTLZ2

0.5 0.5

1

1 1

0
0

0.5

DTLZ2BZ

0.5 0.5

1

11

Fig. 7. Reference points sampled on 3-objective DTLZ2, convex DTLZ2,
C2-DTLZ2, and DTLZ2BZ.

reference points on the PF of DTLZ2 and eliminating those
do not satisfy the constraint, i.e.,

1) Generate a set of reference points R for DTLZ2;
2) For each point (ri1, ri2, . . . , riM ) in R, eliminate it if

(16) is not satisfied, where f1, f2, . . . , fM are replaced
by ri1, ri2, . . . , riM in (16).

The PF of M -objective DTLZ2BZ is
f1 = cos(θ1) . . . cos(θM−2) cos(θM−1)
f2 = cos(θ1) . . . cos(θM−2) sin(θM−1)
. . .
fM = sin(θ1)

, (17)

where θj =
π
2 (

xj

2 + 1
4 ) and 0 ≤ xj ≤ 1. Similar to C2-DTLZ2,

the PF of DTLZ2BZ is also a part of the PF of DTLZ2, but the
constraint cannot be represented by f1, f2, . . . , fM like (16).
Considering that the value of each θj is always between 1

8π
and 3

8π, for each reference point sampled on the PF of DTLZ2,
we can calculate the values of θ1, θ2, . . . , θM−1 according to
(17), and eliminate the reference point if any θj < 1

8π or
θj > 3

8π. As a result, the procedure of sampling reference
points for DTLZ2BZ is

1) Generate a set of reference points R for DTLZ2;
2) For each point (ri1, ri2, . . . , riM ) in R, successively

solve the values of θM−1, θM−2, . . . , θ1 by2

sin(θM−1)
cos(θM−1)

= ri2
ri1

sin(θM−2)
cos(θM−2)

= ri3
ri2

sin(θM−1)

. . .
sin(θ1)
cos(θ1)

= riM
ri(M−1)

sin(θ2)

, (18)

and eliminate the point if any θj <
1
8π or θj > 3

8π.

2For simplicity, rij = 0 can be replaced by a tiny value, e.g., 1e-6.
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Fig. 8. 120 reference points sampled on 3-objective DTLZ5.

C. Sampling Reference Points on Degenerate PF (DTLZ5)

The PF of M -objective DTLZ5 [5] is{
fj = ( 1√

2
)M−max(j,2) cos(π2x), j < M

fj = sin(π2x), j = M
, (19)

where 0 ≤ x ≤ 1. Since the PF of DTLZ5 is always a one-
dimensional curve independent of the number of objectives,
the reference points for DTLZ5 can be obtained by sampling
points on one-dimensional curve and extending them to the
other objectives, i.e.,

1) Let X be the set of a number of linearly equally spaced
points between 0 and 1;

2) For each x ∈ X , calculate the objective values of the
corresponding reference point by (19).

Fig. 8 shows 120 reference points sampled on the PF of
3-objective DTLZ5. It is worth to note that as pointed out in
[6], [24], the PF of DTLZ5 with many objectives and decision
variables is not totally a one-dimensional curve, which has an
unknown non-degenerate part.

D. Sampling Reference Points on Disconnected PF (DTLZ7)

The PF of M -objective DTLZ7 [5] is:

fM = 2M −
M−1∑
j=1

fj
[
1 + sin(3πfj)

]
, (20)

where 0 ≤ fj ≤ 1 except for fM . Note that DTLZ7 does
not have a simplex-like PF; by contrast, the first M − 1
objectives of the PF of DTLZ7 fill an (M − 1)-dimensional
unit hypercube, while the last objective is determined by (20).
As a result, the procedure of sampling reference points for
DTLZ7 is:

1) Replicate the vector ( 0
H , 1

H , . . . , H
H )T to produce an

(M − 1)-dimensional point set X , i.e., the number of
points in X is (H + 1)M−1;3

2) Let R be the reference point set, for each rij ∈ R and
xij ∈ X ,{

rij = xij , j < M

rij = 2M −
∑M−1

k=1 xik

[
1 + sin(3πxik)

]
, j = M

; (21)

3In order to obtain an arbitrary number of points in X , the good lattice
point method or the Latin hypercube sampling can be adopted.
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Fig. 9. 121 reference points sampled on 3-objective DTLZ7.
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3) Delete the dominated points from R.
Fig. 9 plots 121 reference points sampled on the PF of 3-

objective DTLZ7. It is worth noting that the PF of DTLZ7
is disconnected, which means that there are many dominated
points in R. For example, if R contains 1024 points with 3
objectives, only 289 of which will be non-dominated. In fact,
according to the PF of 2-objective DTLZ7 shown in Fig. 10,
it is obvious that only the points between the origin and a or b
and c are non-dominated. According to (20), the first objective
values of a, b and c are approximately 0.2514, 0.6316 and
0.8594, respectively, hence the ratio of non-dominated points
in R for M -objective DTLZ7 is (a1−b1+c1)

M−1 ≈ 0.48M−1.
In order to increase the ratio of non-dominated points in R,

we can map the elements in each column of X from [0, 1] to
[0, a1]∪ [b1, c1] before Step 2), so that all the points in R are
non-dominated and Step 3) can be eliminated.

E. Sampling Reference Points on Highly Irregular PF (WFG2)

The PF of WFG2 [6] is defined by
f1 = 2(1− cos(π

2
x1))(1− cos(π

2
x2)) . . . (1− cos(π

2
xM−1))

f2 = 4(1− cos(π
2
x1))(1− cos(π

2
x2)) . . . (1− sin(π

2
xM−1))

. . .
fM−1 = 2(M − 1)(1− cos(π

2
x1))(1− sin(π

2
x2))

fM = 2M(1− x1 cos2(5πx1))

,

(22)
where 0 ≤ xj ≤ 1. Although the PF of WFG2 is simple-
like, it cannot be defined as an equation represented by
f1, f2, . . . , fM , hence the reference points cannot be mapped
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Fig. 11. 381 reference points sampled on 3-objective WFG2.

from unit simplex to the PF of WFG2 by the method used in
DTLZ2 and convex DTLZ2. On the contrary, the mapping of
reference points can be achieved by solving xj , i.e.,

1) Uniformly sample a set of points S on unit simplex;
2) For each point (si1, si2, . . . , siM ) in S, successively

solve the values of xM−1, xM−2, . . . , x1 by4

1−sin(π
2 xM−1)

1−cos(π
2 xM−1)

= si2
si1

1−sin(π
2 xM−2)

1−cos(π
2 xM−2)

= si3
si2

(1− sin(π2xM−1))

. . .
1−x1 cos2(5πx1)

1−cos(π
2 x1)

= siM
si(M−1)

(1− sin(π2x2))

, (23)

and calculate the objective values of the corresponding
reference point by (22).

3) Delete the dominated points from the reference point
set.

Fig. 11 depicts 381 reference points sampled on the PF of
3-objective WFG2.

F. Sampling Reference Points for MOPs Whose PFs are
Unknown

The above reference point sampling methods are applicable
to most existing multi-objective test suites. However, so far
the PFs of some MOPs are still unknown (e.g., WFG3 [6]
and most combinatorial MOPs [25], [26], [27]), hence it is
impossible to obtain reference points on their PFs. In order
to calculate the performance metric values of the solutions
obtained on these MOPs, an alternative sampling method is to
combine all the non-dominated solutions obtained in multiple
runs, and truncate the solutions by the truncation method used
in SPEA2 [28].

For example, Fig. 13 plots 100 reference points sampled
for 3-objective WFG3. It is worth to note that although the
reference points generated by this method may not be on the
true PF, it has been evidenced that they are suitable to reflect
the difference in performance between MOEAs [14].

IV. EMPIRICAL EVALUATIONS

To verify the effectiveness of the proposed reference point
sampling methods in performance assessment, five selected

4According to the definition of Pareto front, in the case that x1 has multiple
solutions, the one minimizing fM is chosen.
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Fig. 13. 100 reference points sampled on 3-objective WFG3.

MOEAs (i.e, NSGA-II [29], RVEA [30], KnEA [31], NSGA-
III [20], and AR-MOEA [32]) are tested on five popular MOPs
(i.e., DTLZ1, DTLZ5, DTLZ7, C2-DTLZ2, and WFG2),
where the results are analyzed by IGD based on the reference
points generated by the proposed sampling methods.

For RVEA, the penalty parameter is set to 2 and the
frequency of reference point adaption is set to 0.1. For KnEA,
the rate of knee points is set to 0.5. The population size of
all the five MOEAs is set to 105, and the maximum number
of generations is set to 500. The simulated binary crossover
[33] and polynomial mutation [34] are employed as the genetic
operators, where the probabilities of crossover and mutation
are set to 1 and 1/D (D denotes the number of decision
variables), respectively, and the distribution index is set to 20.
All the tests are run for 30 times independently.

Table I lists the IGD values obtained by the five MOEAs,
where roughly 10000 reference points are generated on each
PF by the proposed sampling methods. It can be seen from the
statistical results that RVEA, NSGA-III, and AR-MOEA have
the best IGD values on DTLZ1 and WFG2, while AR-MOEA
has significantly better IGD values than the others on DTLZ5,
DTLZ7, and C2-DTLZ2. Fig. 12 plots the results with the
median IGD among 30 runs, from which it is obvious that the
IGD results based on the proposed reference point sampling
methods are consistent with the visual conclusion.

For comparison, Table II presents the IGD values based
on randomly sampled reference points, where some of the
results are clearly counter-intuitive. For example, according
to Table II, NSGA-III has better IGD value than KnEA
on DTLZ5; however, the solutions obtained by NSGA-III
distribute obviously less widely than those obtained by KnEA
as shown in Fig. 12. Similar inconsistencies can also be found
between the IGD values of NSGA-II and RVEA on C2-DTLZ2
and WFG2. Therefore, the randomly sampled reference points
are unsuitable for the calculation of performance metrics.

V. CONCLUSIONS

Sampling uniformly distributed reference points on PFs is
an important but neglected issue. In order to fill this gap,
this paper first details three popular methods for sampling
reference points on unit simplex, then introduces several
methods for sampling reference points on different types of
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Fig. 12. The non-dominated solution sets with the median IGD among 30 runs obtained by NSGA-II, RVEA, KnEA, NSGA-III, and AR-MOEA on
3-objective DTLZ1, DTLZ5, DTLZ7, C2-DTLZ2, and WFG2.

TABLE I
IGD VALUES BASED ON UNIFORMLY SAMPLED REFERENCE POINTS OBTAINED BY NSGA-II, RVEA, KNEA, NSGA-III, AND AR-MOEA ON

3-OBJECTIVE DTLZ1, DTLZ5, DTLZ7, C2-DTLZ2, AND WFG2.

Problem NSGA-II RVEA KnEA NSGA-III AR-MOEA

DTLZ1 2.6500e-2 (1.11e-3) 1.9012e-2 (3.01e-5) 4.5373e-2 (1.79e-2) 1.9057e-2 (1.09e-4) 1.9038e-2 (5.57e-5)

DTLZ5 5.5807e-3 (3.24e-4) 6.9232e-2 (1.14e-2) 1.7279e-2 (1.19e-2) 1.8106e-2 (2.37e-3) 4.2931e-3 (7.23e-5)

DTLZ7 7.4402e-2 (3.86e-3) 1.0457e-1 (4.34e-3) 6.7288e-2 (4.55e-3) 7.0937e-2 (2.14e-3) 6.2788e-2 (1.09e-3)

C2-DTLZ2 5.5011e-2 (1.88e-3) 5.2301e-2 (1.04e-3) 7.9084e-2 (4.06e-2) 4.8558e-2 (5.98e-4) 4.4312e-2 (5.94e-4)

WFG2 2.1386e-1 (9.25e-3) 1.4977e-1 (1.47e-3) 1.8477e-1 (1.10e-2) 1.6366e-1 (3.35e-3) 1.4923e-1 (9.86e-4)

TABLE II
IGD VALUES BASED ON RANDOMLY SAMPLED REFERENCE POINTS OBTAINED BY NSGA-II, RVEA, KNEA, NSGA-III, AND AR-MOEA ON
3-OBJECTIVE DTLZ1, DTLZ5, DTLZ7, C2-DTLZ2, AND WFG2. THE RESULTS INCONSISTENT WITH FIG. 12 IN EACH ROW ARE FRAMED.

Problem NSGA-II RVEA KnEA NSGA-III AR-MOEA

DTLZ1 2.4647e-2 (1.07e-3) 1.9008e-2 (3.25e-5) 5.9984e-2 (1.98e-2) 1.9063e-2 (1.32e-4) 1.9035e-2 (6.84e-5)

DTLZ5 5.4692e-3 (2.63e-4) 6.8352e-2 (6.75e-3) 2.0950e-2 (1.52e-2) 1.9120e-2 (2.46e-3) 4.2935e-3 (5.52e-5)

DTLZ7 7.3551e-2 (3.13e-3) 1.0276e-1 (4.55e-3) 6.7255e-2 (4.06e-3) 7.1555e-2 (2.27e-3) 6.2552e-2 (9.64e-4)

C2-DTLZ2 5.0972e-2 (1.41e-3) 5.1628e-2 (3.95e-4) 8.5015e-2 (4.71e-2) 4.9519e-2 (8.12e-4) 4.3762e-2 (5.24e-4)

WFG2 1.6601e-1 (1.41e-2) 1.8192e-1 (8.22e-3) 2.6463e-1 (8.32e-2) 1.9448e-1 (6.62e-3) 1.9260e-1 (8.57e-3)



PFs. Experimental results demonstrate that the reference points
generated by the proposed sampling methods can evaluate the
performance of MOEAs accurately.

As mentioned before, the proposed reference point sampling
methods can cover most of the existing multi-objective test
suites. This is because existing benchmark MOPs contain
only a few types of PFs, where most of these PFs are very
similar to those presented in this paper. Therefore, in order to
better evaluate the comprehensive performance of MOEAs, it
is desirable to design new MOPs with more complex PFs to
pose stiffer challenges to MOEAs in the future.
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