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Abstract—For multi-scenario airfoil shape optimization prob-
lems, an evaluation of a single airfoil is based on its full-scenario
drag landscape. To obtain the full-scenario drag landscape, a
large number of computational fluid dynamic simulations for
different operating conditions must be conducted. Since a single
computational fluid dynamic simulation is often time-consuming,
evaluations for multi-scenario airfoil shape optimization will
be computationally highly intensive. Although surrogate-assisted
evolutionary algorithms have been widely applied to expensive
optimization problems, existing surrogate-assisted evolutionary
algorithms cannot be directly applied to multi-scenario airfoil
shape optimization. Instead of using surrogate models to directly
approximate the multi-scenario evaluations, we employ a hierar-
chical surrogate model consisting of a K-nearest neighbors clas-
sifier and a Kriging model to approximate the full-scenario drag
landscape for each candidate design during the optimization.
Then, the fitness of the candidate design is evaluated based on
the approximated drag landscape to reduce the computational
cost. The proposed hierarchical surrogate model is embedded in
the covariance matrix adaptation evolution strategy and applied
to the RAE2822 airfoil design problem. Our experimental results
show that the proposed algorithm is able to obtain an airfoil
design with limited computational cost that perform well in
different operating conditions.

I. INTRODUCTION

Due to the uncertainty of the operating scenario (or envi-
ronmental condition), it is common that more than one fixed
operating scenario should be considered for engineering design
problems [1]. The performance of a design varies in different
operating scenarios. A design is meaningless if it is optimal
in one single scenario but performs badly in other scenarios.
Taking a car design as an example, various scenarios (road
conditions) may occur during driving and result in different
performance, thus a well-designed car is expected to achieve
relatively satisfactory performance in possible scenarios.

In the community of evolutionary computation (EC), a few
studies for multi-scenario optimization have been reported,
focusing on formulating a multi-scenario optimization prob-
lem. The existing formulation of multi-scenario optimization
problems can be classified into two categories [2]: aggregation
and multi-criterion methods. Although it is straightforward to
aggregate scenarios as the objective function [3], assigning
the weights to different scenarios is very hard when the
uncertainty in the scenario space cannot be quantitatively
estimated [4]. Therefore, formulating a multi-scenario opti-
mization problem as a multi-objective optimization problem

[5], [6], [7], where each scenario is considered as an objective,
is another formulation. When the number of the considered
scenarios is more than three, the problem becomes a many-
objective optimization problem, whose optimum is a large set
of solutions [8]. It is hard to choose one optimal solution from
the set without any preference of scenarios.

The scenario space can be multi-dimensional and con-
tinuous. A large number of discrete scenarios need to be
specified and are involved in every single evaluation during the
optimization process, which increases the computational cost.
The situation becomes even worse if the evaluation for each
scenario is driven by expensive simulations like computational
fluid dynamic (CFD) simulations which take hours for a single
run. Additionally, both existing formulations of multi-scenario
optimization are generic, neither taking any domain knowledge
into account. They cannot be directly applied to specified
engineering design problems.

The operating scenarios of an airfoil varies with different
lifts and speed (termed as mach coefficient). Those different
scenarios result in different aerodynamic performance. The
airfoil shape design problem is a typical multi-scenario opti-
mization problem. Therefore, the challenges of multi-scenario
airfoil shape optimization problems are two-fold. Firstly, since
its 2D continuous scenario space has a wide range, a large
number of scenarios are considered for a full-scenario evalu-
ation. Secondly, one full-scenario drag landscape is needed
for a single evaluation, which costs too many expensive
CFD simulations, thus the optimization process becomes even
more expensive [9]. To reduce the high computational cost,
cheap surrogate models [10] are used to approximate the
full-scenario drag landscape of a given airfoil. With the
approximated full-scenario drag landscape, the airfoil can be
further evaluated for the optimization process. In this work,
we choose covariance matrix adaptation evolution strategy
(CMA-ES) [11] to search the optimal airfoil based on the
approximated drag landscape, due to its fast convergence
speed.

In the remainder of this paper, we firstly introduce multi-
scenario airfoil design in Section II, where the disadvantages
of single-scenario airfoil design, the challenges of multi-
scenario airfoil design, and the problem formulation are dis-
cussed. Then, in Section III, the proposed algorithm, a hierar-
chical surrogate-assisted multi-scenario evolution strategy, is



described in detail. To validate its performance, we apply the
proposed algorithm to the RAE2822 airfoil design problem in
Section IV. Section V concludes the paper.

II. MULTI-SCENARIO AIRFOIL DESIGN

Generally, an aircraft operates in various scenarios from
take-off to landing, which results in very different aerodynamic
performance. It is very often that the performance of a found
optimal airfoil is evaluated in the whole scenario space.
Since single-scenario evaluations based on CFD simulations
are already expensive for designers to process optimization
algorithms, full-scenario evaluations are even more expensive.
To the best of our knowledge, no research on airfoil design
using full-scenario evaluations has been reported.

A. Drawback of Single-Scenario Airfoil Design

Single-scenario optimization methods have widely been
used for airfoil design, where the optimizer searches for
solutions according to the performance for a scenario (a fixed
lift CL and a fixed velocity M ). Although the resulting designs
perform optimally for the given scenario, their performance in
other scenarios might seriously degrade.

Take the RAE5225 airfoil design problem as an example.
The operating conditions of the airfoil can be defined by
CL ∈ [0.3, 0.75] ×M ∈ [0.5, 0.76]. We use a single-scenario
method and multi-scenario optimization method, respectively,
to search for optimal designs. The single-scenario optimization
method minimizes the drag in one scenario (CL = 0.7,M =
0.725), and the multi-scenario optimization method minimizes
the average drag of five different scenarios (CL = 0.65,
M = 0.725; CL = 0.7, M = 0.72; CL = 0.7, M = 0.725;
M = 0.7, CL = 0.73; and CL = 0.75,M = 0.725.) The full-
scenario drag landscape CDw of the baseline design, the design
obtained the single-scebnario optimization method, and one
obtained by the optimizer considering five scenarios are shown
in the top, middel and bottom panels of Fig. 1, respectively.
Compared with the baseline design, the geometry obtained by
the single-scenario optimization method has a small drag in the
scenario of CL = 0.7,M = 0.725, but the drag in the adjacent
scenarios rapidly increases, resulting in poor performance in
the whole scenario space [9]. From Fig. 1, we can also see
that the full-scenario drag landscape of the design obtained by
the multi-scenario optimization method is better than that of
the single-scenario optimization method.

The above illustrative example demonstrates that multi-
scenario optimization can overcome the disadvantage of
single-scenario optimization. The more scenarios are con-
sidered during the optimization, the better the full-scenario
performance will be. Since five scenarios, which is only
a small part of the entire scenario space, are considered
in the above example, its full-scenario performance remains
unsatisfactory. Note, however, that the computational cost for
quality evaluations will dramatically increase when the number
of the considered scenarios increases. Therefore, the main
obstacle that prevents multi-scenario airfoil shape optimization
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Fig. 1. Wave drag coefficient distribution of an RAE5225 airfoil designed
by single- and multi-scenario optimization methods.

from being employed in expensive optimization such as airfoil
design is the prohibitive computational cost.

B. Problem Formulation for Multi-Scenario Airfoil Design

Ideally, airfoil design should be formulated as a multi-
scenario optimization problem to take all main operating
conditions into account. In the following, we discuss the
problem formulation of multi-scenario airfoil design, including
geometry parameterization (coding of decision variables) and
definition of the objective function.
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Fig. 2. Geometry parameterization using Henne-Hicks functions

1) Geometry Parameterization: The airfoil geometry is
defined in a two-dimensional space with x and y coordinates,
as shown in Fig. 2 where a baseline design is depicted. The
geometry of the baseline design can be modified by using the
Henne-Hicks functions [12] as follows.

f1 =
x0.5(1− x)

x15x
(1)

f2 = sin (πx0.25)3 (2)

f3 = sin (πx0.757)3 (3)

f4 = sin (πx1.357)3 (4)

f5 =
x0.5(1− x)

x10x
(5)

Fig. 2 illustrates how a new airfoil geometry can be generated
by adding the weighted sum of the above five functions to the
baseline design, which can be described by Equations (6) and
(7):

yu = ybu +

5∑
i=1

aifi, (6)

yl = ybl +

5∑
i=1

bifi, (7)

where yu and yl are the upper and lower surfaces of the
geometry, ybu and ybl are the upper and lower surfaces of
the baseline design, and ai and bi are weights. Thus, ten pa-
rameters (a1,...,a5 and b1,...,b5) determining the shape are the
decision variables of the airfoil design optimization problem.

2) Objective Function: Multiple criteria can be used to
evaluate the performance of a given airfoil if its full-scenario
wave drag landscape (CDw(M,CL)) is available. The drag
divergence boundary BDD is defined as the boundary at which
the drag begins to increase rapidly as M keeps increasing.
The location of BDD in the two-dimensional scenario space
(M×CL) is an effective evaluation criterion [9], which can be

identified according to the partial derivatives of CDw(M,CL)
with respect to M , as shown in Equation (8).

∂CDw
∂M

= 0.1 (8)

Fig. 3 is a full-scenario landscape CDw(M,CL) for an exam-
ple airfoil, where the drag divergence boundary is shown by
a line in pink based on Equation (8).
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Fig. 3. Drag divergence boundary in the full scenario space.

Beyond the boundary BDD, i.e., the scenario area to the
right side of the drag divergence boundary (Fig. 3), the airfoil
tends to operate at a higher speed (mach coefficient) requiring
a larger amount of thrust (due to larger drag), which is
undesired. Ideally, the drag divergence boundary BDD should
be pushed to the extreme scenario (Mmax, CLmax), i.e., the
area to the right of BDD in the scenario space should be
minimized, resulting in an airfoil design that can efficiently
operate at a high speed with small drag.

Thus, the location of the boundary BDD is able to quan-
titatively evaluate the full-scenario performance of airfoil.
Therefore, in this study, the objective function for multi-
scenario optimization aims to minimize the area between the



boundary and the extreme point (Mmax, CLmax). Let the
scenario parameters M and CL vary in [Mmin,Mmax] and
[CLmin, CLmax], the objective function can be expressed as
follows:

min fBDD (a,b) = S(BDD(a,b), r)

a = [a1, ..., a5]

b = [b1, ..., b5]

r = (Mmax, CLmax),

(9)

where a and b are the decision variables representing the
airfoil geometry, BDD(a,b) is the location of the drag di-
vergence boundary of the airfoil, r is the extreme scenario
(Mmax, CLmax), and function S is the area between the
boundary and the extreme scenario. It is worth noting that
function S calculates a normalized area according to the ranges
of M and CL, i.e., the area equals to 1 when BDD(a,b)
locates on (Mmin, CLmin).

III. HIERARCHICAL SURROGATE-ASSISTED
MULTI-SCENARIO EVOLUTION STRATEGY

A. Overall Framework

To perform multi-scenario airfoil design, the entire 2D
scenario space is firstly discretized into NM × NCL evenly
distributed scenarios. Then, CFD simulations are performed
for each of the scenarios to calculate the objective defined in
Equation (9). Thus, NM ×NCL CFD simulations need to be
conducted for each airfoil design, resulting in extremely high
computational cost for multi-scenario optimization.

Since multi-scenario airfoil design optimization using CFD
simulations is computationally extremely expensive, this work
proposes a hierarchical surrogate modelling technique to ap-
proximate the full-scenario drag landscape, based on which the
objective value of in Equation (9) is calculated to reduce the
computational cost. The proposed algorithm employs a CMA-
ES assisted by the hierarchical surrogate for multi-scenario
airfoil optimization, which is termed HSA-MSES in short.

The overall diagram of HSA-MSES is provided in Fig. 4,
from which we can see that HSA-MSES consists of three
main components, i.e., the CMA-ES, the hierarchical surrogate
for approximating the full-scenario drag landscape, and the
calculation of the fitness.

B. CMA-ES

CMA-ES is well known for its fast convergence using a
relatively small population size [11]. In CMA-ES, λ offspring
solutions are generated in each generation g from an n-
dimensional multivariate normal distribution N(mg, σg2Cg),
where mg is the mean, σg is the standard deviation, and Cg

is the covariance matrix between decision variables. Then the
best µ individuals are selected as the parents of next generation
(g + 1) and the distribution will be updated accordingly as
follows:

mg+1 =
∑u

i=1
wixi

wi =
ln(µ+ 0.5)− ln i∑u
j=1 ln(µ+ 0.5)− ln j

(10)

The standard deviation and the covariance matrix are up-
dated as described below:

Cg+1 = (1− 2

n2
− 0.3λ

n2
)Cg +

2

n2
pc

g+1(pc
g+1)T+

0.3λ

n2

∑u

i=1
wi

xi −mg

σg
(
xi −mg

σg
)T

(11)

σg+1 = σg × exp(
4/n

1 +
√

0.3λ/n
(

∥∥pσg+1
∥∥

E ‖N(0, I)‖
− 1)) (12)

where, pc
g+1 and pσ

g+1 are known as evolution paths and
can be adapted according to the following equations:

pc
g+1 = (1− 4

n
)pc

g+

1{‖pσg‖<1.5
√
n}

√
1− (1− 4

n
)
2√

0.3λ
mg+1 −mg

σg
,

(13)

pσ
g+1 = (1− 4

n
)pσ

g+√
1− (1− 4

n
)
2√

0.3λ(Cg)−0.5
mg+1 −mg

σg
,

(14)

where 1{‖pσg‖<1.5
√
n} is an indicator function that evaluates

to 1 when ‖pσg‖ < 1.5
√
n or otherwise 0.

C. Hierarchical Surrogate Modeling and Infill Sampling Cri-
terion

Surrogates such as Kriging models (Gaussian processes),
polynomial regression, and radial basis function networks have
widely been employed to assist evolutionary algorithms (EAs)
for solving expensive engineering optimization problems [13].
A central challenge in surrogate-assisted evolutionary algo-
rithms (SAEAs) is to manage the surrogates properly so
that the EA is able to find a near-optimum with limited
computational budget [14].

In this work, the surroagte is supposed to approximate
the full-scenario drag landscpe for fitness estimation The
approximation of the full-scenario drag landscape for a given
airfoil can be seen as a two-dimensional regression problem.
In this work, we adopt a Kriging model [15] to approximate
the drag scenario, which is trained using CFD simulation
results collected from 22 scenarios. This is based on the
recomendation in [16] suggesting that a minimum of 11d
samples should be generated for constructing Kriging models,
where d is the dimension of the function to be approximated.

Taking a closer look at the drag landscape as shown in Fig.
3, we find that the drag equals 0 in most of the lower-left
region of the drag landscape. Thus, additional cheap training
data can be generated for scenarios in the zero drag region if
the boundary between the zero drag and non-zero drag can be
estimated using the 22 CFD simulations. To this end, we build
a K-nearest neighbors (KNN) classifer [17] using the training
data from 22 scenarios to predict whether a given scenario is
a zero or non-zero drag scenario. Then, new training data will
be generated for the zero drag scenarios. After that, a Kriging
model is constructed. The drag divergence boundary BDD will
then be detected according to the approximated drag landscape
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ĈDw(M,CL)), based on which the fitness of the candidate
design can be calculated. The main steps for constructing the
hierarchical surrogate are shown in Fig. 5, where D denotes
the training data collected from NM × NCL scenarios and
additional training data generated generated from the zero drag
region are denoted by D0. Finally, the Kriging model is trained
using D∪D0 to approximate the full-scenario drag landscape
of the given airfoil.

Predict

Predict

Train KNN

Kriging 
model

D D0

Drag 
landscape

Train

Fig. 5. Hierarchical surrogate modeling in HSA-MSES. A KNN classifier is
trained based on D (training data generated using CFD simulations) to identify
the zero-drag scenarios (D0) among the NM × NCL candidate scenarios.
Then, the Kriging model is trained using D ∪ D0 to approximate the full-
scenario drag landscape.

The 22 scenarios for performing CFD simulations are deter-
mined using two different criteria: 10 scenarios are randomly
chosen from those NM × NCL candidate scenarios and the
rest 12 are selected according to a new infill sampling criterion
aiming to improve the approximation accuracy around the drag
divergence boundary.

The lower confidence bound (LCB) criterion [18] is an
infill sampling criterion widely used for Kriging assisted
optimization algorithms. However, LCB is not best suited
for the drag landscape approximation, because we are mainly
concerned about the approximation accuracy around the drag
divergence boundary rather than the optimum (the minimal
drag) of the drag landscape. Therefore, we modify the original
LCB criterion as follows:

argmin
(M,CL)

flcb = |
∂ĈDw(M,CL)

∂M
−0.1|−wσDw(M,CL), (15)

where ĈDw(M,CL) and σDw(M,CL) are the mean and stan-
dard deviation of the predicted drag coefficient, respectively.
In Equation (15), the first term is to detect the boundary rather
than the optimum, while the second term is the uncertainty of
the Kriging model, and w is a weigh to balance the two terms



defined as follows.
w =

α1

α2
, (16)

where α1 and α2 are the mean |∂ĈDw(M,CL)
∂M − 0.1| and

σDw(M,CL) of NM ×NCL candidate scenarios.
After performing CFD simulations for the 10 randomly

chosen scenarios, 12 scenarios are successively selected ac-
cording to the flcb value of NM ×NCL candidate scenarios.
The successive selection using the infill criterion consists of
three steps. Firstly, the scenario with the minimal flcb value
among NM×NCL candidate scenarios is selected. Then, CFD
simulations for the selected scenario is conducted and the
resulting data is added to D. Finally, both KNN and Kriging
model are updated. When CFD simulations for all 22 scenarios
have been performed, the objective value of a candidate airfoil
design is estimated using the kriging model approximating the
drag landscape.

Fig. 6 illustrates the process of the hierarchical surrogate
modeling. In sub-figure (A), 10 scenarios are randomly chosen
as the initial training data and 12 scenarios are sequentially
selected using the infill sampled criterion. The drag coefficient
for these 22 scenarios are calculated using CFD simulations.
Then, in sub-figure (B), a KNN classifier is trained from
the data from from the 22 scenarios to identify the zero
drag region. Finally, in sub-figure (C), the Kriging model is
constructed based on 22 CFD simulation data and additional
data predicted in the zero drag region.

D. Drag Divergence Boundary Detection and Objective Func-
tion Calculation

Given the approximated full-scenario drag landscape
ĈDw(M,CL), we can detect a number of scenarios satisfying
Equation (8). A linear function can then be identified to
describe the drag divergence doundary BDD using the least-
squares method [19]:

CL = kM + d, (17)

where k and d are two parameters to be estimated. Note,
however, that BDD is not exactly linear and therefore the linear
model in Equation (8) will result in an approximation error E
(measured by mean absolute error). Thus, the divergence drag
boundary taking the approximation error into account can be
rewritten as follows:

CL = kM + d− E (18)

Fig. 7 is an example illustrating the process of objective
calculation in the proposed algorithm. Firstly, the scenarios on
the boundary BDD (denoted by stars in Fig. 7) are detected
based on the predicted drag landscape. Then, a linear function
for BDD is built using the detected scenarios (denoted by the
solid line). The drag divergence boundary BDD compensated
by the approximation error in Equation (18) is denoted by
the dotted line. Finally, the objective value of the candidate
design can be obtained by calculating the area between the
compensated drag divergence boundary BDD and the extreme
scenario on the top right of the scenario space.

IV. EXPERIMENTAL RESULTS

In this section, we empirically examine the performance of
the proposed HSA-MSES on using RAE2822 airfoil design as
an example. As shown in Section II-B1, the shape an airfoil
can be represented by (a,b) and the search space is defined
in [−0.01, 0.01]10. The 2D scenario space of RAE2822 airfoil
is defined by M ∈ [0.6, 0.76] × CL ∈ [0.5, 0.85] and divided
into 35 × 15 even grid [9] for multi-scenario optimization.
Therefore, an exact full-scenario evaluation of a single airfoil
needs 525 CFD simulations.

For the KNN classifier in the proposed algorithm, we set
the number of neighbors K to 2 and use the Mahalanobis
distance as the distance metric. For the Kriging model, we use
a simple Kriging model [20] with a Gaussian kernel, which
is implemented by DACE toolbox [21] using the Hooke &
Jeeves method [22] to optimize its hyperparameters.

As discussed before, 22 CFD simulations needs to be
performed for a single shape in HSA-MSES. Considering
the high computational cost, we use a relatively fast CFD
simulation tool, VGK [23], [24] for evaluating the drag, each
simulation taking about one minute. Finally, the parent and
offspring population sizes of CMA-ES are set to be 6 and 11,
respectively, and the maximum number of generations is set
to 50.

A. Approximation Accuracy of Surrogate Models

To evaluate the accuracy of the hierarchical surrogate model
in HSA-MSES, 35×15 CFD simulations are performed on the
baseline design to obtain its full-scenario drag landscape. The
drag divergence boundary is then detected as the ground truth.
We first compare approximation performance of the proposed
hierarchical surrogate model with a plain Kriging model
trained using 22 CFD data only. The approximation error
is measured by the average distance from the approximated
drag divergence boundary to the true boundary. the results are
repeated independently for 20 times.

Our results show that the hierarchical surrogate model
achieves an approximation error of 0.0028±0.0005 while
the Kriging model achieves an approximation error of
0.0100±0.0118. These results demonstrate that the additional
data generated from the KNN classifier improves the accuracy
of the Kriging model in approximating the drag divergence
boundary.

B. Application to RAE2822 Airfoil Design

Because of the extremely high computational cost, we are
able to run the proposed algorithm on the RAE2822 airfoil
design problem for only once. The convergence profile of
HSA-MSES is shown in Fig. 8, from which we can see that
HSA-MSES is able to converge very quickly within less than
20 generations.

Figs. 9 and 10 show the full-scenario drag landscape of the
baseline design and that of the optimal design obtained by
HSA-MEES based on 35 × 15 CFD simulations, where each
full-scenario evaluation takes about 40 minutes. Comparing
the drag divergence boundaries of the baseline design and the
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Fig. 7. Illustration of drag divergence boundary detection and objective
calculation.

obtained design, we can clearly see that the boundary of the
optimal design has moved towards the extreme scenario and
the objective value is reduced from 0.248873 to 0.032607,
indicating a significantly improved full-scenario performance
of the airfoil.

The optimization run of RAE2822 airfoil using HSA-MSES
consumes 13,200 CFD simulations and a total amount of 14.5
hours, which allows for approximately 25 CFD simulation
based full-scenario evaluations. In other words, only two
generations of full-scenario optimization using CMA-ES can
be run. It is conceivable that CMA-ES will not be able improve
the performance a lot within only two generations.
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Fig. 8. Convergence profile of HSA-MSES on the RAE2822 airfoil design
problem.

V. CONCLUSION

This paper addresses multi-scenario airfoil design optimiza-
tion, which is challenging due to extremely high computational
cost. To solve the problem, we first give a problem formulation
for multi-scenario airfoil optimization that minimizes the area
between the drag divergence boundary and extreme point on
the drag landscape. To reduce the needed number of expensive
CFD simulations as much as possible, a hierarchical surrogate
consisting of a KNN and a Kriging model is proposed to assist
the covariance matrix adaptation evolution strategy. Our ex-
perimental results on the RAE2822 airfoil design demonstrate
that the proposed algorithm is able to find an optimal design
having much improved aerodynamic performance compared
to the baseline design using limited amount of computational
budget.

Our future work will consider multi-scenario airfoil opti-
mization taking both drag and lift into account. Robustness
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in multi-scenario design will also be considered, which is
even more challenging. Thus, new surrogate management tech-
niques are highly in demand. Finally, it is of interest to extend
the proposed method to full-/multi-scenario optimization of
other engineering design problems such as design of turbine
engines.
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