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Abstract—The present study applies a novel two-dimensional
learning framework (2D-UPSO) based on particle swarms for
structure selection of polynomial nonlinear auto-regressive with
exogenous inputs (NARX) models. This learning approach ex-
plicitly incorporates the information about the cardinality (i.e.,
the number of terms) into the structure selection process. Ini-
tially, the effectiveness of the proposed approach was compared
against the classical genetic algorithm (GA) based approach and
it was demonstrated that the 2D-UPSO is superior. Further,
since the performance of any meta-heuristic search algorithm
is critically dependent on the choice of the fitness function,
the efficacy of the proposed approach was investigated using
two distinct information theoretic criteria such as Akaike and
Bayesian information criterion. The robustness of this approach
against various levels of measurement noise is also studied.
Simulation results on various nonlinear systems demonstrate that
the proposed algorithm could accurately determine the structure
of the polynomial NARX model even under the influence of
measurement noise.

Index Terms—Nonlinear system identification, structure selec-
tion, NARX model, particle swarm

I. INTRODUCTION

System identification addresses the issue of constructing
mathematical models from the observed input-output data and
has been a major research concern from diverse fields such
as statistics, control theory, information theory, economics,
ecology, agriculture and others [1], [2]. Although, methods
for linear systems identification are now well established,
the development of nonlinear system identification methods,
which can be valid for a broad class of nonlinear systems, is a
research issue. This is partly due to the well-recognized highly
individualistic nature of nonlinear systems which restricts
the unifying dynamical features that are amenable to system
identification.

The first step in the nonlinear system identification is
the choice of the model amongst various models which are
used to represent the system such as Volterra, Wiener, neural
networks, polynomial models, rational models and others. The
focus of this study is the identification of nonlinear systems
represented by polynomial nonlinear auto-regressive with ex-
ogenous inputs (NARX) models [1]. Although this model
could represent a wide class of nonlinear systems, the number
of possible terms increases exponentially with the increase
in the order of non-linearity and maximum lags of inputs
and outputs. Inclusion of all the terms is not desirable as the
parameter estimation problem may become ill-conditioned for

the consequent complex model [1]. Therefore, determination
of the model structure or which terms to include in the model
is essential if a parsimonious model is to be determined from
the large number of candidate terms.

During the past three decades, researchers have proposed
several algorithms based on orthogonal least squares, evolu-
tionary algorithms such as genetic algorithm, genetic program-
ming to address this issue both in time and frequency domain
identification. The related literature can be found in [1]–[8]
and the references there in.

In this study, a novel 2-D particle swarm algorithm [9] has
been applied for selecting the correct structure of the NARX
model of the nonlinear systems. The proposed algorithm
explicitly include the cardinality (i.e., the number of terms)
information in to the search process by extending the dimen-
sion of classical single dimensional particle swarm algorithm.
This is different from the least squares based orthogonal search
algorithms developed by Billings and co-workers where the
structure selection is carried out using an error-reduction-ratio
(ERR) test which is computed either from the one-step ahead
prediction or simulated prediction of the output [1], [8].

The rest of the article is organized as follows: NARX model
of the non-linear systems and the 2D learning approach are
briefly described in Section II and III. The framework of this
study is described in Section IV. The results are discussed at
length in Section V, followed by the conclusions in Section VI.

II. THE POLYNOMIAL NARX MODEL

A wide class of nonlinear system can be represented by
a polynomial nonlinear auto-regressive moving average with
exogenous (NARMAX) model given by,

y(k) = FNl [ y(k − 1), . . . , y(k − ny), u(k − 1), . . . ,

u(k − nu), e(k − 1), . . . , e(k − ne) ] + e(k)

where y(k), u(k) and e(k) represent the output, input and
noise respectively at time intervals k, ny , nu and ne are
corresponding lags and FNl [.] is some nonlinear function of
degree Nl. The polynomial NARX model is a subclass of
NARMAX model where the noise terms are absent and is
given by,

y(k) = FNl [ y(k − 1), . . . , y(k − ny), u(k − 1), . . . ,

u(k − nu) ] + e(k)
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The total number of possible terms or model size (Nt) of the
NARMAX model is given by

Nt =

Nl∑
i=0

ni, n0 = 1 (1)

ni =
ni−1(ny + nu + ne + i− 1)

i
, i = 1, . . . , Nl (2)

This model is essentially linear-in-parameters and can be
expressed as

y(k) =

Nt∑
i=1

θixi(k) + e(k)

where , x1(k) = 1

xi(k) =

py∏
j=1

y(k − nyj )

qu∏
k=1

u(k − nuk
)

re∏
m=1

e(k − nem)

where, i = 2, . . . , Nt; py, qu, re ≥ 0; 1 ≤ py + qu + re ≤ Nl;
1 ≤ nyj

≤ ny;1 ≤ nuk
≤ nu; 1 ≤ nem ≤ ne; and Nl is the

degree of polynomial expansion. For the polynomial NARX
model, which does not contain any noise terms, re = 0 and
this indicates that xi(k) contains no e(.) terms.

III. TWO-DIMENSIONAL (2D) PARTICLE SWARMS

The Two-Dimensional (2D) learning framework was devel-
oped for the particle swarms to effectively address the feature
selection problem [9]. The core idea of this approach is to
integrate the information about the cardinality (i.e., the number
of features) into the search process. This learning approach has
been applied to address the power quality problems [10] and
has been shown to perform better than some of the existing
approaches [11]–[13]. In this study, it has been shown that this
learning approach can easily be applied to address the model
structure selection problem, as in essence, the main objective
of both the feature selection and the structure detection are
similar, i.e., detect a parsimonious model or remove redundant
features/terms.

The following subsections briefly describe the 2D learning
approach. More details about this approach can be found in [9].

A. Learning Philosophy

The selection of a parsimonious model in the problems such
as feature selection or structure selection involves mainly two
issues : 1) How many attributes (e.g., features or terms) are
required? 2) Which attributes shall be selected? The main
philosophy of the 2D learning approach is to explicitly use
the information about the cardinality (i.e. the number of
attributes/features/terms) as an additional learning dimension
in order to facilitate informed decision on both issues.

To understand the 2D learning approach, consider a struc-
ture selection problem with a total of ‘Nt’ possible terms.
For this problem, a particle position (model), ‘x’, is usually
represented as a Nt-dimensional binary string wherein selected
terms are represented by bit ‘1’.

Further, in the conventional Binary PSO and its variants,
the velocity of a particle is given by,

v =
[
p1 p2 . . . pNt

]
where, {p1, . . . pNt

} represents the selection likelihood of the
corresponding attributes. In other words, in each iteration, a
new position (model) is derived only on the basis of selection
likelihoods of the attributes.

In contrast, in 2D learning, the selection likelihood of
both cardinality and attributes are considered to derive a new
position. This is achieved by extending the learning dimension
and separately storing selection likelihood of cardinality and
attributes in a two-dimensional matrix of size (2 × Nt) as
follows:

v =

[
p11 p12 . . . p1Nt

p21 p22 . . . p2Nt

]
, where, v ∈ R2×Nt

The elements in the first row of v store the selection likeli-
hoods of cardinality. For example, ‘p12’ gives the probability
of selecting 2 attributes in a new model. Similarly, the ele-
ments in the second row give the selection likelihood of the
corresponding attributes, e.g., the selection probability of the
‘3d’ attribute is given by ‘p23’.

B. Velocity Update

The 2D learning approach was developed as a generalized
learning framework to adapt any continuous PSO variant (i.e.,
x ∈ R) for the model selection task (i.e., x ∈ N). However, the
results of comparative analysis of various PSO variants [14] in-
dicate that Unified Particle Swarm Optimization (UPSO) [15]
is more suitable for the problem in the discrete domain (i.e.,
x ∈ N) and therefore it is selected in this study.

In essence, UPSO combines the ‘global’ and ‘local’ variants
of the conventional PSO through the unification factor, ‘u’.
Following the 2D learning approach, UPSO is adapted for the
structure selection task as follows:

vi = (u× vgi) + ((1− u)× vli) (3)
where, vgi = (ω × vi) + (c1r1 × Lcog)

+ (c2r2 × Lsoc,1) + (∆i × Lself ) (4)
vli = (ω × vi) + (c1r1 × Lcog)

+ (c2r2 × Lsoc,2) + (∆i × Lself ) (5)

where, ‘ω’ is inertia weight and [c1, c2] denotes acceleration
constants.

Further, in the 2D learning, a learning set, ‘L’, is derived
from each learning exemplar, e.g., personal best (pbest),
global best (gbest), neighborhood best (nbest). For example,
Lcog , Lsoc,1, Lsoc,2 and Lself are the learning sets derived
from pbest, gbest, nbest and the particle position xi, respec-
tively. Note that the ring topology is being used to define the
neighborhood.

The learning set is a two-dimensional binary matrix of size
(2 × Nt). Similar to the velocity matrix, learning sets store
the learning about cardinality and attribute in separate rows.



Algorithm 1: 2-D learning approach to the position update
of the ith particle

Input : vi
Output: xi

1 Set the new position xi to an n-dimensional null vector, i.e.,
xi = {0 . . . 0}

2 Isolate the selection likelihood of the cardinality and feature
into respective vectors, ‘ρ’ and ‘σ’ using (9)

*/ roulette wheel selection of the
cardinality, (ξi)

3 Evaluate accumulative probabilities,

ρΣ,j =
j∑

k=1

ρk, j = 1 . . . n.

4 Generate a random number, r ∈ [0, ρΣ,n].

5 Determine ‘j’ such that ρΣ,j−1 < r < ρΣ,j , this gives the size
of the subset ξi, i.e., ξi = j.

*/ Selection of the terms
6 Rank the terms on the basis of their likelihood ‘σj’ and store

the term rankings in vector ‘τ ’

7 for j = 1 to n do
8 if τj ≤ ξi then
9 xi,j = 1

10 end
11 end

More details about the learning process and the derivation of
the learning sets can be found in [9].

Note that, in addition to the learning exemplars, the particle
position (x) is used to extract a learning set, referred as a self
learning set. The influence of the self learning set is controlled
by the ‘∆’ which is given by,

∆i =

{
+δi, if

ft
i

ft−1
i

< 1

−δi, otherwise
(6)

where, δi = 1− f ti
max(F t)

where, ‘f ti ’ and ‘F t’ are respectively the fitness of the ith par-
ticle and the vector containing the fitness of the entire swarm
at iteration t. The objective here is to adjust the selection
likelihood of the terms included in the particle position as
per : 1) the relative improvement over other particles and 2)
the relative improvement in the self-fitness over the previous
iteration.

C. Position Update

To understand the position update process, consider the
velocity of an ith particle for a structure selection problem
with Nt = 5 as follows:

vi =

[
pi11 pi12 pi13 pi14 pi15

pi21 pi22 pi23 pi24 pi25

]
(7)

=

[
0.82 2.53 2.22 0.28 0.95
1.61 1.88 0.80 1.33 2.88

]
(8)

Algorithm 2: Pseudo code of 2D-UPSO algorithm for the
model structure selection

Input : System input-output measurement data
Output: Model Structure

1 Set the search parameters: c1, c2, ω, u0, uf & RG

2 Randomly initialize the swarm of ‘ps’ number of particles,
X = {x1 . . . xps}

3 Initialize the velocity ((2× n) matrix) of each particle by
uniformly distributed random numbers in [0,1]

4 Evaluate the fitness of the swarm, pbest and gbest

5 for t = 1 to iterations do
6 Evaluate unification factor, u(t) = u0 +

(uf−u0)×t

Max Iteration

*/ Swarm Update

7 for i = 1 to ps do

*/ Stagnation Check

8 if counti ≥ RG then
9 Re-initialize the velocity of the particle

10 Set counti to zero
11 end

12 Update the velocity of the ith particle as per (3), (4)
and (5)

13 Update the position of the ith particle following
Algorithm-1

14 end
15 Store the old fitness of the swarm in ‘F ’

16 Evaluate the swarm fitness

17 Update personnel and global best position, pbest, gbest

*/ Stagnation Check

18 for i = 1 to ps do
19 if pbestval t

i ≥ pbestval t−1
i then

20 counti = counti + 1
21 end
22 end
23 end

To integrate the information about both the cardinality and
the attributes/terms, the position update is carried out in two
stages. In the first stage, the cardinality of the new position
is determined. Consequently, the beneficial terms are selected
as per the selected cardinality. This procedure is explained in
the following example.

For the sake of clarity, the velocity of the ith particle in (7)
is segregated into two vectors ρ and σ as follows:

vi =
[
ρ σ

]T
(9)

where, ρ =
[
pi11 . . . pi15

]
and σ =

[
pi21 . . . pi25

]
which gives, ρ =

[
0.82 2.53 2.22 0.28 0.95

]
and σ =

[
1.61 1.88 0.80 1.33 2.88

]
The cardinality of the new position is selected following the

roulette wheel approach as outlined in Lines 3-5, Algorithm 1.
For the ith particle considered in (7) the cardinality of the new
position, ξi is derived as follows:

1) Accumulative likelihoods,



TABLE I
TEST NON-LINEAR SYSTEMS

System Known Structure NARX Parameters†

[nu, ny, Nl, Nt]

S1 y(k) = 0.5y(k − 1) + 0.3u(k − 1) + 0.3y(k − 1)u(k − 1) + 0.5u(k − 1)2 [5, 5, 2, 66]

S2 y(k) = 0.5 + 0.5y(k − 1) + 0.8u(k − 2) + u(k − 1)2 − 0.05y(k − 2)2 [5, 5, 2, 66]

S3 y(k) = 0.8y(k − 1) + 0.4u(k − 1) + 0.4u(k − 1)2 + 0.4u(k − 1)3 [3, 3, 3, 84]

S4

y(k) = 0.8833u(k − 1) + 0.0393u(k − 2) + 0.8546u(k − 3) + 0.8528u(k − 1)2 + 0.7582u(k − 1)u(k − 2)

+0.1750u(k − 1)u(k − 3) + 0.0864u(k − 2)2 + 0.4916u(k − 2)u(k − 3) + 0.0711u(k − 3)2

−0.0375y(k − 1)− 0.0598y(k − 2)− 0.0370y(k − 3)− 0.0468y(k − 4)− 0.0476y(k − 1)2 − 0.0781y(k − 1)y(k − 2)

−0.0189y(k − 1)y(k − 3)− 0.0626y(k − 1)y(k − 4)− 0.0221y(k − 2)2 − 0.0617y(k − 2)y(k − 3)

−0.0378y(k − 2)y(k − 4)− 0.0041y(k − 3)2 − 0.0543y(k − 3)y(k − 4)− 0.0603y(k − 4)2

[5, 5, 2, 66]

† ‘nu’, ‘ny’, ‘Nl’ and ‘Nt’ respectively denotes input lag, output lag, degree of non-linearity and total number of terms of NARX model

ρΣ =
[
0.82 3.35 5.57 5.85 6.80

]
2) Let random number r ∈ [0, ρΣ,n] be 3.5, which gives

ξi = 3 as ρΣ,2 < r < ρΣ,3.
The next step is to select 3 most beneficial terms (as ξi = 3).

For this purpose, the steps outlined in Line 6-11, Algorithm 1
are followed.

1) Ranking of the terms,
σ =

[
1.61 1.88 0.80 1.33 2.88

]
which gives, τ =

[
3 2 5 4 1

]
2) Selection of terms as per ξi,

ξi = 3 and τ =
[
3 2 5 4 1

]
which gives, xi =

[
1 1 0 0 1

]
IV. INVESTIGATION FRAMEWORK

The main objective of this study is to evaluate the search
performance of 2D particle swarms on the structure selection
problem. For this purpose, the performance of the 2D-UPSO
has been compared with Binary Genetic Algorithm (GA) over
several known non-linear systems, as shown in Table I.

The other objective is to evaluate the effects of the mea-
surement noise and the choice of the fitness function on the
search performance. For this purpose, the search performance
is quantified using two performance metrics and compared
over two distinct fitness functions at 3 noise levels, SNR=
[50dB, 40dB, 30dB].

The following subsections provide the details about com-
pared algorithms, fitness function and the performance metrics
being used in this investigation.

A. Search Setup

To evaluate the efficacy of 2D particle swarms, the per-
formance of 2D-UPSO has been compared with GA. Both
algorithms were implemented in MATLAB. Due to stochastic
nature of these algorithms, 40 independent runs were carried
out for each system. Each run was set to terminate after 6000
Function Evaluations (FEs). The parameter settings of the
compared algorithms are shown in Table II.

B. Fitness Function

The fitness function is the only link between the search
algorithm and the problem being solved. Hence, the choice of

fitness function is likely to have a significant impact on the
search performance. In this study, to evaluate the ‘fitness’ of
a candidate model (particle position) ‘x’, sum-squared-error
(SSE) with respect to ‘model-predict output’ over validation
data is evaluated,

e =

L∑
k=1

[yk − ŷk]2 (10)

where, ‘L’ denotes the total number of validation data samples
and ‘ŷ’ denotes ‘model-predicted output’ corresponding to x.
For each system shown in Table I, 2000 pairs of input-output
data, (u, y), were generated. Out of these data, 30% data were
used for the validation purposes (i.e., L = 600).

Note that minimization of ‘e’ does not guarantee a parsi-
monious model. It is therefore necessary to assign a penalty
for a higher cardinality (number of terms) to ensure the
removal of the redundant terms. Hence, the structure selec-
tion is essentially multi-objective problem. To balance both
search objectives (i.e., minimizing e and cardinality) several
information theoretic criteria have been proposed over the
years such as Akaike Information Criterion (AIC), Minimum
Description Length (MDL), Bayesian Information Criterion
(BIC) and others [1]. In this study, BIC (11) and AIC (12)
are selected as the fitness function, J(· ),

J(x) = L ln(e) + ln(L)ξ (11)
J(x) = L ln(e) + %ξ (12)

Here, ‘x’ denotes a model structure (particle position) under
consideration, ‘ξ’ gives number of terms included in x (or

TABLE II
SEARCH PARAMETER SETTINGS

Algorithm Search Parameters

GA [16], [17] N = 80, pc = 0.45, pm = 0.01

2D-UPSO [9] ps = 30, ω = 0.729, [c1, c2] = [1.49, 1.49]
u : 0.2→ 0.7, RG = 10

‘N ’ - GA population size, pc, pm - crossover and mutation probability
‘ps’ - swarm size, ‘ω’ - inertia weight, ‘c1, c2’ - acceleration constants
‘u’ - unification factor, ‘RG’ - refresh gap



TABLE III
EFFECT OF THE FITNESS FUNCTION - S1 †

Fitness Function,
J(· ) SNR ν of System Terms ‡ Spurious Terms

T1 T2 T3 T4 r νmax

BIC
50 dB 1 1 1 1 0.15 0.28
40 dB 1 1 1 1 0.21 0.28
30 dB 1 1 1 1 0.20 0.15

AIC
(% = 2)

50 dB 1 1 1 1 0.33 0.53
40 dB 0.98 1 1 1 0.44 0.45
30 dB 0.98 1 1 1 0.52 0.50

AIC
(% = 23)

50 dB 1 1 1 1 0.14 0.20
40 dB 1 1 1 1 0.17 0.23
30 dB 1 1 1 1 0.24 0.30

AIC
(% = 26)

50 dB 1 1 1 1 0.15 0.30
40 dB 1 1 1 1 0.12 0.28
30 dB 0.98 1 1 1 0.24 0.25

AIC
(% = 28)

50 dB 1 1 1 1 0.06 0.10
40 dB 1 1 1 1 0.06 0.10
30 dB 1 1 1 1 0.08 0.10

† ‘r’ denotes the ratio of number of redundant terms to the total number of terms
‡ {T1, . . . T4} ∈ Tsystem denote the system terms and are given in Appendix A

TABLE IV
EFFECT OF THE FITNESS FUNCTION - S2 †

Fitness Function,
J(· ) SNR ν of System Terms (Tsystem)‡ Spurious Terms

T1 T2 T3 T4 T5 r νmax

BIC
50 dB 1 0.98 1 1 1 0.38 0.45
40 dB 1 0.98 1 1 1 0.36 0.38
30 dB 1 1 1 1 1 0.48 0.50

AIC
(% = 2)

50 dB 1 0.88 1 1 1 0.53 0.83
40 dB 1 0.90 1 1 1 0.61 0.50
30 dB 1 0.78 1 1 1 0.68 0.65

AIC
(% = 23)

50 dB 1 0.98 1 1 1 0.39 0.38
40 dB 1 0.95 1 1 1 0.47 0.33
30 dB 1 1 1 1 1 0.41 0.58

AIC
(% = 26)

50 dB 1 0.93 1 1 1 0.38 0.33
40 dB 1 1 1 1 1 0.36 0.40
30 dB 1 0.95 1 1 1 0.30 0.38

AIC
(% = 28)

50 dB 1 1 1 1 1 0.08 0.10
40 dB 1 1 1 1 1 0.09 0.08
30 dB 0.98 0.95 1 0.90 1 0.20 0.10

† - ‘r’ denotes the ratio of number of redundant terms to the total number of terms
‡ {T1, . . . T5} ∈ Tsystem denote the system term and are given in Appendix A

cardinality of x). Further, % in AIC (12) is a constant and
requires a careful tuning. In this study, four distinct values of
% have been used, % = [2, 23, 26, 28].

C. Performance Metrics

The stochastic nature of the compared algorithm requires a
multiple independent runs (40 in this study) for each system.
Since, it is likely that each run provides a different model
structure, a usual approach is to select the model structure
with the best fitness out of all runs. In contrast, in this study
a comprehensive approach is followed. For a given system, a
model structure (selected terms) and its cardinality are stored
at the end of each run of the algorithm. The objective is to
evaluate the frequency of selection of each term (‘ν’) over 40
runs. The final model structure is obtained by including terms
with ν over certain fixed threshold. The details are discussed
in the following.

Let us define the following sets to quantify the search
performance,
• Tmodel : set of all possible terms present in the search

domain, i.e., it contains the complete possible model
terms.

• Tsystem : set of the terms which are present in the actual
system, Tsystem ⊂ Tmodel

• Talgorithm : set of terms selected by a search algorithm,
Talgorithm ⊂ Tmodel

• Tspur : set of spurious terms which are selected by the
search algorithm but which are not present in the actual
system, i.e., Tspur = Talgorithm − Tsystem

In order to quantify the search performance, selection fre-
quency, ν (13), of system (Tsystem) and spurious (Tspur) terms
is observed over 40 runs. It is desirable to have a higher
selection frequency of the system terms and fewer spurious
terms.

νi =
selection frequency of the ithterm

total number of runs
(13)

To extract the final structure, a threshold can be fixed at any
suitable value in [0, 1], e.g. with threshold at 0.9, only the
terms ν ≥ 0.9 are included in the final structure.

Further, to account the spurious terms selected by the
algorithm, the following two metrics are used:

νmax = max
j

νj , jth term ∈ Tspur (14)

r =
nspur
Nt

(15)

where, ‘nspur’ denotes the number of spurious terms identified
by the search algorithm; ‘Nt’ denotes the model size which is
given by (1). The metric νmax gives the maximum selection
frequency of the spurious terms. A lower value νmax is
desirable, as it ensures that ν of the spurious terms will be less
than selection threshold. Similarly, a lower value of metric ‘r’
is desirable, as it indicates that a small number of spurious

TABLE V
EFFECT OF THE FITNESS FUNCTION - S3 †

Fitness
Function, J(· )

SNR ν of System Terms (Tsystem)‡ Spurious Terms

T1 T2 T3 T4 r νmax

BIC
50 dB 1 1 1 1 0.24 0.38
40 dB 1 1 1 1 0.26 0.40
30 dB 0.95 1 1 1 0.48 0.50

AIC
(% = 2)

50 dB 1 1 1 1 0.64 0.90
40 dB 0.95 1 1 1 0.62 0.70
30 dB 0.95 1 1 1 0.85 0.78

AIC
(% = 23)

50 dB 1 1 1 1 0.24 0.23
40 dB 1 1 1 1 0.19 0.30
30 dB 0.98 1 1 1 0.31 0.45

AIC
(% = 26)

50 dB 0.98 1 1 1 0.18 0.20
40 dB 1 1 1 1 0.15 0.15
30 dB 1 1 1 1 0.07 0.13

AIC
(% = 28)

50 dB 1 1 1 1 0.05 0.13
40 dB 1 1 1 1 0.05 0.08
30 dB 1 1 1 1 0.07 0.13

† - ‘r’ denotes the ratio of number of redundant terms to the total number of terms
‡ {T1, . . . T5} ∈ Tsystem denote the system term and are given in Appendix A



TABLE VI
EFFECT OF THE FITNESS FUNCTION - S4 †

Fitness
Function,
J(· )

SNR Selection Frequency (ν) of System Terms (Tsystem)‡ Spurious Terms

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 r νmax

BIC
50dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.88
40dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.65 0.95
30dB 0.98 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98 1 1 1 1 1 1 1 1 0.62 0.90

AIC
(% = 2)

50dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.98
40dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.98
30dB 0.93 1 1 1 1 0.98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98 1 1 0.64 0.98

AIC
(% = 23)

50dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.93
40dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.62 0.93
30dB 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98 1 1 0.64 0.93

AIC
(% = 26)

50dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.90
40dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.90
30dB 0.85 0.98 0.98 1 1 0.95 1 1 1 1 1 1 1 1 0.85 1 1 1 1 1 0.95 1 0.9 0.62 0.80

AIC
(% = 28)

50dB 0.05 0.63 0 0.33 1 0 0.20 0 0 0 0 0 0 0 0 0 0 0.35 0.35 0 0 0 0 0 0
40dB 0.08 0.48 0.10 0.35 1 0 0.28 0 0 0 0 0 0 0 0 0 0 0.43 0.43 0 0 0 0 0 0
30dB 0.20 0.38 0.05 0.38 1 0 0.15 0 0 0 0 0 0 0 0 0 0 0.60 0.43 0 0 0 0 0 0

† ‘r’ denotes the ratio of number of redundant terms to the total number of terms
‡ {T1, . . . T23} ∈ Tsystem denote the system terms and are given in Appendix A

terms are selected by the search algorithm.

V. RESULTS

The main objective of this study is to investigate the search
performance of 2D particle swarms on the structure selection
problem. Further, we are also interested in evaluating the
effects of measurement noise and the choice of the fitness
function on the search performance. For this purpose, two
well-known information theoretic criteria such as AIC and BIC
have been used as a fitness function. In the first stage of the
investigation, we compare these criteria for structure selection
problem in the presence of various levels of measurement
noise. The results indicate that BIC is more suitable for
this task (as discussed in Section V-A). Consequently, the
search performance of 2D-UPSO and GA is compared with
BIC as the fitness function during the second stage of the
investigation.

A. Stage-1 : Choice of the fitness function

Following the procedure described in Section-IV, the effects
of fitness function on structure selection in the presence of
various levels of noise was investigated as follows:

The search performance of 2D-UPSO was recorded for each
combination of test system and fitness function in the presence
of 3 distinct noise levels in the input-output data. For a given
system, 40 independent runs of 2D-UPSO were carried out
for each combination of fitness function (i.e. AIC or BIC)
and noise level. The objective here is to examine the change
in the selection frequency of system and spurious terms with
different fitness function. For this purpose, the performance
metrics outlined in Section IV-C are determined. Note that,
AIC requires the selection of constant % (as seen in 12). To
explore the effects of %, four different value of % have been
used.

The results of this test are shown in Table III-VI, which
indicate that in most of the cases the system terms are
identified with the frequency ν ≥ 0.95, irrespective of the
fitness function. However, the fitness function has a significant

impact on the spurious terms. For example, for system S1,
(Table III), the ratio and maximum frequency of the spurious
terms are reduced significantly from [0.33, 0.53] to [0.06, 0.10]
when % in AIC is changed from 2 to 28. Similar effects are
observed for system S2 (change in [r, νmax] from [0.53, 0.83]
with % = 2 to [0.08, 0.10] with % = 28, Table IV) and
S3, (change in [r, νmax] from [0.64, 0.90] with % = 2 to
[0.05, 0.13] with % = 28, Table V). These observations further
underline the role of the fitness function.

Note that the structure selection is essentially a multi-
objective problem and the aim of both information criteria,
AIC and BIC, is to balance search objectives, i.e., reduction
in e and cardinality of the model. The selection of % in (12) is
equivalent to guiding a search towards a particular region of
the Pareto front. Although this gives the freedom to decision
maker to guide the search as per requirement, it is quite
challenging to properly tune %.

This is evident from the results shown in Table III-VI. These
results indicate that % = 28 is suitable for systems S1, S2
and S3, as this value of % leads to significant reduction in
the spurious terms (Table III-V). In contrast, for system S4,
even the system terms are not identified with % = 28 whereas
desirable results are obtained with % = 2, as seen in Table VI.
This can be explained as follows: a higher value of % assigns
a high penalty to model structures with higher cardinality (as
seen in (12)) and hence drives the search toward a smaller
structures.

From these observations, it is apparent that a proper
value of % depends on the structure of the system, i.e., a
higher % is effective for the systems with smaller number of
terms/cardinality while a lower % is desirable for the system
with higher cardinality structures. Given that in practice only
the input-output measurement data pairs , (u, v), are available
and the cardinality of the structure is not known, it is quite
challenging to judiciously select %.

Further, it is interesting to note that, with BIC, all the
system terms are identified with ν ≥ 0.95 irrespective of the



(a) S1 and S2 (b) S3 and S4

Fig. 1. Convergence plots averaged over 40 runs at SNR= 30dB

(a) S1 + GA (b) S1 + 2D-UPSO

(c) S2 + GA (d) S2 + 2D-UPSO

(e) S3 + GA (f) S3 + 2D-UPSO

Fig. 2. Frequency of the terms identified by GA and 2D-UPSO over 40 independent runs at SNR= 30dB. The system terms for each system are shown in
Appendix A. The results for system S4 are not shown here due to space constraints.

structure cardinality of the corresponding systems, as seen in
Table III-VI. In addition the maximum selection frequency
of the spurious terms, νmax, is always less than minimum
selection frequency of the system terms. Consequently, the
spurious terms can easily be removed from the final model
structure through a simple thresholding. For this reason, BIC
is preferred as the fitness function for the structure selection
problem.

B. Stage-2 : Comparative Evaluation of Search Algorithms

To benchmark the search performance of 2D particle
swarms, 2D-UPSO and GA were applied to the test non-linear
systems shown in Table I. For this test, BIC (11) was used as
the fitness function. For all the systems, 40 independent runs
of each algorithm were carried out and the results are shown
in Fig. 1, 2 and Table VII.

The search performance of GA and 2D-UPSO is captured
through run-length distribution graphs shown in Fig. 1. These
results indicate that the search process in GA quickly stagnates
for all the systems which could be explained by the premature
convergence. On the contrary, for the same systems, 2D-UPSO
could maintain continual improvement in the fitness function,
J(· ), throughout the search.

The selection frequency of the terms, ν, identified by GA
and 2D-UPSO is shown in Fig. 2. It is observed that even-
though GA could identify the system terms, a higher number
of spurious terms is present for the systems S1-S3. In contrast,
2D-UPSO could identify the correct structure of each system
with comparatively fewer spurious terms.

The results of comparative evaluation on S4 are shown in
Table VII. For this system, 2D-UPSO could identify all system
terms with ν ≥ 0.98, irrespective of the noise level. In contrast,



TABLE VII
COMPARATIVE EVALUATION ON S4 : GA VS. 2D-UPSO †

Algorithm SNR Selection Frequency (ν) of System Terms (Tsystem)‡ Spurious Terms

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 r νmax

2D-UPSO
50dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 0.88

40dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.65 0.95

30dB 0.98 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98 1 1 1 1 1 1 1 1 0.62 0.90

GA
50dB 0.60 0.50 0.50 0.53 1 0.58 1 0.55 0.68 0.60 0.50 0.50 0.55 0.48 0.48 0.58 0.78 1 1 0.75 0.55 0.83 0.55 0.65 0.68

40dB 0.58 0.63 0.45 0.63 1 0.50 1 0.60 0.68 0.48 0.58 0.50 0.63 0.53 0.50 0.53 0.70 1 1 0.73 0.63 0.85 0.63 0.65 0.73

30dB 0.58 0.50 0.48 0.58 1 0.63 1 0.38 0.55 0.50 0.73 0.35 0.68 0.48 0.43 0.55 0.85 1 1 0.85 0.58 0.95 0.53 0.65 0.63

† ‘r’ denotes the ratio of number of redundant terms to the total number of terms
‡ {T1, . . . T23} ∈ Tsystem denote the system terms and are given in Appendix A

GA could not identify the structure of S4 as the selection
frequency of many system terms is less than νmax, i.e., it is
not possible to remove spurious terms with thresholding as
their selection frequency is higher than the system terms. For
example, at SNR= 50dB, νmax is higher than the selection
frequency of 15 (out of 23) system terms, as seen in Table VII.

VI. CONCLUSION

A new two-dimensional learning framework (2D-UPSO)
for particle swarms has been applied to address the structure
selection problem for a class of non-linear systems which
are represented by nonlinear auto-regressive with exogenous
inputs (NARX) models. One of the important and advanta-
geous feature of the proposed approach is that it explicitly
incorporates the knowledge about the cardinality into the
search process. The performance of this approach has been
compared with the classical GA based structure selection. For
the structure selection, two of the well-known information
theoretic criteria such as AIC and BIC have been used as
the fitness function. Several non-linear systems have been
identified through the proposed approach under various levels
of measurement noise using both criteria. First, it was estab-
lished that BIC criteria is often consistent compared to AIC.
Further, it has been established that 2D-UPSO could accurately
determine the structure of the systems with significantly less
number of spurious terms.

APPENDIX A
SYSTEM TERMS

• System S1 : {T1, . . . T4} ∈ Tsystem, where, T1 → y(k − 1),
T2 → u(k−1), T3 → u(k−1)∗y(k−1) and T4 → u(k−1)2

• System S2 : {T1, . . . T5} ∈ Tsystem, where, T1 → 5, T2 →
y(k − 1), T3 → u(k − 2) ∗ y(k − 1), T4 → y(k − 2)2 and
T5 → u(k − 1)2

• System S3 : {T1, . . . T4} ∈ Tsystem, where, T1 → y(k − 1),
T2 → u(k − 1), T3 → u(k − 1)2 and T4 → u(k − 1)3

• System S4 : {T1, . . . T23} ∈ Tsystem, where, T1 → u(k − 1),
T2 → u(k − 2), T3 → u(k − 3), T4 → u(k − 1)2, T5 →
u(k−1)∗u(k−2), T6 → u(k−1)∗u(k−3), T7 → u(k−2)2,
T8 → u(k− 2) ∗ u(k− 3), T9 → u(k− 3)2, T10 → y(k− 1),
T11 → y(k − 2), T12 → y(k − 3), T13 → y(k − 4), T14 →
y(k−1)2, T15 → y(k−1)∗y(k−2), T16 → y(k−1)∗y(k−3),
T17 → y(k − 1) ∗ y(k − 4), T18 → y(k − 2)2, T19 → y(k −
2) ∗ y(k − 3), T20 → y(k − 2) ∗ y(k − 4), T21 → y(k − 3)2,
T22 → y(k − 3) ∗ y(k − 4), T23 → y(k − 4)2
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