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Abstract— Designing efficient learning models capable of
dealing with tons of data has become a reality in the era of big
data. However, the amount of available data is too much for
traditional data mining techniques to be applicable. This issue is
even more serious when evolutionary algorithms are a key part
of the learning algorithm. In this scenario, one typical approach
is to follow a divide-and-conquer strategy, where data is divided
into different chunks that are individually and independently
addressed. Afterwards, the partial knowledge obtained from
each chunk of data is combined in order to give a solution
to the problem. Nevertheless, these kinds of local approaches
do not look at data as a whole, missing a global view of the
problem, which may result in less accurate models that also
depend on how data is split.

In this work, we focus on evolutionary feature selection algo-
rithms. A divide-and-conquer approach to handle evolutionary
feature selection in big data was already developed. We aim
at designing its global counterpart, which looks at the feature
selection problem from a global perspective, making use of the
data as a whole to select the most appropriate features. In order
to do so, we consider Apache Spark as a big data technology
where our algorithm is implemented. We design a genetic
algorithm capable of dealing with big datasets by selecting
the proper parameters for our base algorithm (the well-known
CHC) and adapting the evaluation procedure to take all the
distributed data into account. Several preliminary results are
discussed to study the feasibility of global evolutionary feature
selection methods for big datasets.

I. INTRODUCTION

Machine learning algorithms are supposed to improve
their performance as long as more data is considered.
However, in practice, several challenges are found when
learning algorithms are applied to big datasets due to memory
and time limitations [1]. In order to tackle these issues,
parallelization technologies have spread out providing us
with powerful frameworks easing the processing of large
distributed datasets [2]. In this scenario, the problem is how
to design effective machine learning algorithms using these
kinds of technologies and taking into account the problems
arising when working with distributed data such as the
communication overhead.

Hadoop [3] was the first alternative to make working
with big datasets accessible. Data-intensive applications were
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translated to the MapReduce paradigm [4] in order to be
run in Hadoop. This way, one was able to work with large
datasets distributed across a cluster of computing nodes via
Hadoop Distributed File System (HDFS) in a transparent
and fault-tolerant way [5], [6]. However, the MapReduce
programming paradigm implemented in Hadoop had several
limitations to make machine learning algorithms capable
of working on top of it [7]. The main drawback was the
fact that the batch-oriented data processing was unable
to quickly handle iterative algorithms while most of the
machine learning algorithms require a number of iterations
to learn a model. For this reason, new frameworks, such
as Spark [2] or Flink [8], arose to further improve the
characteristics of Hadoop. These frameworks are built upon
MapReduce paradigm and extend its capabilities providing
one with new kind of high throughput in-memory distributed
datasets, making the implementation of iterative processes
easier and its running times much faster.

When designing machine learning algorithms for big
datasets, there are two main approaches that can be followed.
Local approaches [9] are based on taking advantage of
how data is distributed in MapReduce to learn a model
for each chunk of data. Obviously, these models are partial
and approximate because they are learned only considering
a part of the data and without interacting with the rest.
Then, all the models learned are combined, which can be
simply done by considering all of them together to form an
ensemble or other specific aggregations can be developed.
Hence, local approaches are dependent on the number of
partitions considered and may degrade their performance
when the number of partitions is too high with respect to
the number of examples. Otherwise, global approaches [10],
[11] consider the data as a whole. Therefore, the learning
model should be capable of working with all the distributed
data. Global solutions achieve the same performance and
model regardless of the number of partitions considered and
hence, they obtain the same model as the one that would be
obtained if the method could be run in a single machine. The
main disadvantage of global approaches is that their design
is much more complex. All the machine learning algorithms
developed in Spark’s MLlib library [12] are global models.

Data preprocessing is a key part of data mining, required
for machine learning algorithms to obtain meaningful mod-
els. Among data preprocessing techniques, feature selection
methods [13] try to reduce the original number of features of
the problem by discarding those irrelevant or redundant ones.
Evolutionary algorithms have shown to be a great alternative
to address feature selection [14]. However, they suffer from



scalability issues when dealing with big datasets. For this
reason, previous works have overcome this problem by de-
veloping a local evolutionary feature selection model [15]. In
this model, the CHC evolutionary algorithm [16] is used for
feature selection with each chunk of data. As a result, several
sets of selected features are obtained, which needs to be
aggregated. To do so, the number of times a feature appears
as selected in each selected subset is counted and a user
predefined threshold is applied to finally select those features
with more counts. Nevertheless, this approach inherits all the
drawbacks of local models such as the dependence on the
number of partitions and the possible loss of performance
with greater degrees of parallelism.

In order to avoid these drawbacks, in this work we focus
on the design and study of feasibility of a global evolutionary
feature selection (global EFS) model. This is possible thanks
to technologies such as Apache Spark, which allows us to
take multiple iterations over the same data without much
overhead. However, there are some key points that need to
be cautiously designed. Among them, the evaluation function
is the most critical part, because it is the one with the
greatest effect in the final runtime of the algorithm. For
this reason, we will consider a fast alternative to evaluate
each chromosome in the fitness function. The rest of the
evolutionary algorithm is based on CHC [16] and on the
optimizations introduced in [17] for big data problems. Our
aim is to analyze whether this kind of global EFS is feasible
to work with big datasets or not. To do so, we will carry out
a preliminary experimental study with two big datasets with
631 and 2000 features, respectively. Our first results indicate
that global EFS is viable if the appropriate characteristics are
considered.

The remainder of this paper is as follows. Section II
provides background information about big data frameworks
and evolutionary feature selection for big data classification.
Section III introduces our proposal for a global EFS model.
Section IV empirically analyzes the feasibility of our pro-
posal. Finally, Section V concludes this work.

II. BACKGROUND

In this section, we describe the big data technologies used
for the development of our global EFS model (Section II-A)
and the feature selection problem together with the existing
solutions for evolutionary big data feature selection (Section
II-B).

A. Frameworks for Big Data processing

The MapReduce programming paradigm [4] was initially
designed by Google in 2003 aiming at making data process-
ing scalable to an arbitrary number of computing nodes. Even
though it was designed to be a part of the most popular search
engine, it rapidly became one of the most commonly used
paradigm for data intensive applications due to its usefulness.

Apache Hadoop [18] is the most popular open-source
implementation of MapReduce. Hadoop is composed of two
main parts. The first one is the distributed file system, HDFS,
which allows us to easily distribute the storage of data in

a cluster of computing nodes. The second one is the im-
plementation of MapReduce algorithm, the processing part,
which allows one to take advantage of the already distributed
data and process it following a data locality approach. This
means that data is processed as near as possible to the node
in which it is stored. Nonetheless, MapReduce is not the
solution for every problem because of the overhead existing
in the execution of each job. For this reason, reusing data
in iterative algorithms is too costly and several frameworks
aiming at improving this issue have been developed.

Among them, Apache Spark [2] is one of the most
established frameworks. Spark aims at overcoming the main
drawbacks of Hadoop, but it does not completely substitute
Hadoop. With Spark, we only change the data process-
ing engine, but one usually continues taking advantage of
HDFS storage or uses any other kind of distributed storage
system. Spark improves Hadoop MapReduce by extending
the number of operations that can be performed over data.
Moreover, its in-memory computation ability allows us to
reuse cached distributed data in such a way that iterative
computations become feasible. The main data abstraction of
Spark is named as Resilient Distributed Datasets (RDDs).
This distributed data structure is fault tolerant and allows the
developer to easily and transparently implement a number of
operations over data. Since they can be cached, they can
be reused without added cost. Another key characteristic
of Spark is that it follows a lazy evaluation strategy in
such a way that consecutive transformations can be chained
up together to make the computation faster without any
intervention of the user. Recently, Spark is developing even
more efficient APIs such as DataFrames and Datasets, which
are always based on RDDs. These new APIs make use of
the capabilities offered by Catalyst optimizer and Tungsten
memory management, which allows data to be stored outside
the Java Virtual Machine (JVM) making both the storage and
computation more efficient.

B. Feature Selection in the Big Data context

Feature selection is a preprocessing technique used to
reduce the dataset size by eliminating irrelevant or redundant
features, which also usually seeks to improve the perfor-
mance of the learning algorithms [13]. Hence, its main objec-
tive is to obtain a minimum set of features from the original
dataset that allows one to obtain the same or even a better
result with the posterior learning algorithm than considering
the whole set of features. Moreover, having less features
the knowledge represented in the model becomes easier to
interpret and understand. Likewise, with less features, less
data need to be stored and algorithms are able to run faster.

There are three clearly established categories of feature
selection methods in the literature [13]:

• Filtering methods: The feature selection is based on
measures that relate each feature or subset of features
with the target variable so as to measure their degree of
usefulness.

• Embedded methods: The learning algorithm itself has



the ability of selecting the optimal subset of features
during its training phase.

• Wrapper methods: The features selected are optimized
via a search algorithm whose fitness function is based
on using a learning algorithm to evaluate the quality of
each solution.

Working with big datasets, feature selection methods are
not free of challenges. A proposal for feature selection in
big datasets was presented in [19]. The authors developed
a algorithm capable of efficiently dealing with ultra-high
dimensional datasets. The main drawback of this approach
is that it is designed to be executed in a single machine,
which makes it not scalable to arbitrarily large datasets. To
overcome this problem, in [20] a Spark-based information
theoretic feature selection was developed.

With respect to evolutionary algorithms for feature selec-
tion, they have already shown their usefulness both in stan-
dard problems [14] and big data ones [15]. These algorithms
fall in the Wrapper category of feature selection methods,
where an evolutionary algorithm is used for the search, while
the fitness evaluation is performed via a learning algorithm.
As we have already stated, evolutionary algorithms for big
data problems need to be carefully designed to make their
execution feasible. In [15], the authors developed a first
approach for EFS in big data problems. To do so, they
designed a local model, where a EFS model was executed
in each chunk of data (that was already distributed by
HDFS). Afterwards, the features selected in all chunks where
aggregated, and those being selected more times than a
threshold were finally considered for the subsequent learning
process. From our point of view, this local view of the
problem has several disadvantages such as the fact that the
solution depends on the degree of parallelism and that the
data is not considered as a whole. This is why in this work
we develop a first attempt on a global EFS for big datasets.
Our main focus is to study its feasibility with the current
frameworks for big data processing.

III. A GLOBAL EVOLUTIONARY FEATURE SELECTION
WITH APACHE SPARK

In this section we describe our proposal for a global EFS
for big datasets based on Apache Spark. To develop a sensi-
ble global EFS using Spark, we have made several decisions
that differ from the standard EFS models. Moreover, our
model also has some key differences with respect to the local
approach presented in [15].

In order to explain how our distributed EFS works, we
need to detail every component of the evolutionary algo-
rithm, including its distributed implementation for big data
processing. As an evolutionary model for feature selection
we have selected the CHC algorithm [16]. This algorithm
has been previously applied for this purpose with success
both in standard classification problems and also in Big data
classification [15] but with a local implementation (with all
the drawbacks mentioned in previous sections). Moreover,
our previous experience on evolutionary algorithms for Big

Data preprocessing [21], [22] encourages us to think of CHC
as good candidate for this purpose.

CHC is a binary-coded elitist genetic algorithm with some
specific properties:
• Elitist Selection: In each generation, the best chromo-

somes among the current population and the offspring
are selected for the new population. In the case of equal
fitness, chromosomes from the current population have
preference over the offspring. This kind of selection puts
a lot of selective pressure into the search, since only best
chromosomes survive in each generation.

• Incest prevention: This is a mechanism for maintaining
diversity in the population. Parents are not allowed to
be crossed unless they are sufficiently different. How
different two parents are is computed by their Hamming
distance. Two parents are only crossed if their Hamming
distance divided by two is greater than a threshold d,
which is commonly initialized to d = L/4, L being the
length of the chromosome. The threshold is decreased
by one when none of the offspring becomes a member
of the population (that is, either because no parents are
crossed or none of the offspring improves the fitness of
the parents).

• Restarting mechanism: When the crossover threshold d
is equal to 0, all the chromosomes in the population
except for the best are reinitialized by taking the best
chromosome as a template and randomly flipping a
certain percentage of its genes. This mechanism is
required due to the high selective pressure introduced
by the elitist selection and it will be applied when the
population becomes stagnated.

• Half Uniform Crossover (HUX): This operator com-
bined with the incest prevention mechanism aims at
enforcing a high diversity, avoiding the premature con-
vergence of the algorithm. In HUX, exactly half of
the different genes between two chromosomes are ex-
changed. These genes are randomly selected and allow
the algorithm to assure that the offspring are maximally
different from the parents.

Therefore, CHC usually has a fast convergence. In our
scenario, this is a desirable characteristic because each eval-
uation requires a distributed algorithm to be run, which is
expensive and the main problem when aiming at developing
a global EFS method.

Regarding the fitness function, we have considered a
combination between classification performance and feature
reduction. We aim at maximizing both objectives. To do so,
we have considered the following fitness function:

fitness = g-mean + α

(
1.0− f

F

)
, (1)

where f is the number of selected features, F is the total
number of features, α is a weight measuring the importance
of feature reduction over classification performance (in this
work α = 0.05) and g-mean is the geometric mean of the
True Positive Rates (TPRi) for i = 1, . . . ,M (M being the



number of classes in the problem) computed as follows.

g-mean = n
√

TPR1 · TPR2 · . . . · TPRM . (2)

Recall that the TPRi stands for the percentage of correctly
classified examples from class i. We are not considering
the accuracy rate as a performance measure but the g-mean
of the TPRs over each class to properly guide the feature
selection in such a way that all the classes in the problem
are recognized. This fact is important when dealing with big
datasets because there are many problems where classes are
imbalanced and accuracy rate is no longer meaningful in that
case.

Anyway, these are the standard components of any genetic
algorithm and of EFS in general. In fact, we could consider
these components to run a genetic algorithm for selecting
the features in different chunks of data, which can be then
fused as in the case of the local approach [15]. However,
in our model we want to evaluate the quality of each
chromosome considering the entire dataset to obtain a global
feature selection model that does not need to deal with
approximations. Hence, we need to learn and classify from
distributed data. Distributed learning algorithms for Big data
exist and some of them are included in Apache Spark MLlib
library [12]. In this work we aim to analyze whether it is
feasible or not to develop a genetic algorithm using this kind
of models in the feature selection evaluation procedure.

In the evaluation of the chromosome we can no longer
consider k-Nearest Neighbors to measure the g-mean as it
is done in the local approach. Doing so for millions of
instances in a global manner is possible for evaluating one
individual but not for a population throughout a number of
generations. A much faster learning model is required for
making global feature selection feasible. For this reason, our
proposal consists of evaluating each chromosome quality (g-
mean) by learning a Decision Tree from Apache Spark MLlib
library. This algorithm can be fast enough if it is adequately
parameterized. Thus, we need to establish its parameters to
be as fast as possible. For this reason, we will set the depth of
the tree as small as possible so that each evaluation becomes
tractable to be repeated hundreds of times (more details
are given in Section IV). Moreover, in order to make the
convergence of the CHC algorithm even faster, we propose to
modify HUX as it is done in instance selection methods [17].
We will introduce a probability to set a gene to 0 each time
the crossover has caused it to become 1. This way, we force
the search to reduce the number of features quickly, which
also makes the decision tree construction, and therefore the
evaluation, faster as long as the number of features selected
are reduced.

In summary, we mainly consider Spark for the evaluation
of each chromosome by learning a decision tree with the
selected features. Then, the g-mean over the training set
is considered to compute the final value of the fitness
function. Notice that for the evaluation of each chromosome
a distributed decision tree is learned and the instances used to
learn the decision tree are classified in a distributed manner.

Algorithm 1 Global EFS based on CHC algorithm
Require: trainFile; PopSize, #Maps; #Windows
1: trainRDD ← textFile(trainFile, #Maps).toLabeledPoint().cache()
2: nFeatures = trainRDD.first().getNumFetures()
3: d = nFeatures / 4
4: nReInit = 0; bestFitR = 0; actualWindow = 0
5: nFeaturesInit = nFeatures · 0.5
6: {Initialisation}
7: for i = 1 to PopSize do
8: {population(i) is a HashSet of selected features (without repeated values)}
9: population(i) = Randomly take nFeaturesInit indexes in the range [0,nFeatures-

1].
10: end for
11: windowsRDDs = generateWindows(trainRDD, #Windows)
12: evaluate(population, trainRDD, windowsRDDs(actualWindow), nFeatures)
13: population.sorted { Sorted in descending order by fitness }
14: while eval < MAX EVAL and nReInit < MAX REINITIALISES do
15: offspring = crossover(population)
16: if offspring.size > 0 then
17: evaluate(offspring, trainRDD, , windowsRDDs(actualWindow), nFeatures)
18: offspring.sorted
19: end if
20: if offspring.size == 0 or offspring(0).fitness < population(0).fitness then
21: d = d - 1
22: else
23: population = (offspring ++ population).sorted.take(PopSize)
24: end if
25: if d <= 0 then
26: re-initialize(population) # All except the best are reinitialized
27: evaluate(population.tail, trainRDD, , windowsRDDs(actualWindow), nFea-

tures)
28: population.sorted
29: d = nFeatures / 4
30: if population(0).fitness == bestFitR then
31: {Without improvement from last reinitialization}
32: nReInit += 1
33: else {Improved after reinitialization}
34: bestFitR = population(0).fitness
35: nReInit = 0
36: end if
37: end if
38: actualWindow = (actualWindow + 1) mod #Windows
39: end while

Algorithm 2 Global EFS: Parallel fitness function evaluation
using Spark
Require: population; trainRDD; nFeatures {trainRDD can be the whole RDD or a

window}
1: for i = 1 to population.size do
2: newTrainRDD = trainRDD.map{e → selectedFeatures(e, population(i)) }
3: model = LearnGlobalDecisionTree(newTrainRDD)
4: predictions = model.predict(newTrainRDD)
5: gm = ComputeGmean(newTrainRDD.map(e → e.label), predictions)
6: population(i).fitness = gm + α · (1.0− population(i).size

nFeatures ) {with α = 0.05}
7: end for

The pseudo-code for the whole CHC algorithm proposed
together with the evaluation of the population are presented
in Algorithm 1 and 2, respectively.

With respect to the actual implementation of our solution,
we have followed our previous implementation of CHC
for evolutionary undersampling [17], which was specifically
designed for very large chromosomes. This way, we are able
to easily cope with a large number of features in terms of
the codification without added overhead in terms memory
and communication. In feature selection, the most commonly
employed codification is to consider a binary array where
each position indicates whether the corresponding feature is
selected or not. In our implementation, instead of codifying
each chromosome as an array, we take advantage of HashSet
structure to develop a sparse representation of the chromo-
some where the indexes of the selected features are stored.



This characteristic slightly affects the HUX operator as well
as the computation of the Hamming distance but the final
result is totally equivalent. We refer the reader to [17] for
more details.

Regarding the initial population, all the chromosomes
except one are randomly initialized by randomly selecting
(with replacement) half of the features. Notice that the fact
that we are using a HashSet will avoid the same feature to
be considered twice. The last chromosome is initialized with
all the features as a reference in terms of performance.

Finally, aiming at accelerating the fitness function evalu-
ation, we have also considered a windowing scheme [21].
Windowing consists of assessing the chromosomes with a
subset of the training set (called window). The whole dataset
is divided into a number of disjoint windows prior to the
execution of the evolutionary algorithm and the window used
to evaluate the chromosomes in each iteration is sequentially
changed in each iteration of the evolution process. Therefore,
in our global EFS, the windowing scheme affects both the de-
cision tree used to evaluate each chromosome (because only
the examples in the window are used for its construction) and
the estimated performance (because only the examples in the
window are taken into account for the g-mean computation).
Obviously, if only one window is considered, all the training
set is used for the evaluation of every chromosome.

IV. EXPERIMENTAL STUDY

In this section we present a number of experiments to
evaluate the proposed approach. Section IV-A will present
the details of the experimental framework. Then, Section IV-
B will show the obtained results and a discussion around
them. Finally, in Section IV-C, we will analyze the behavior
of the EFS approach in terms of convergence.

A. Experimental set-up

In these preliminary experiments, we have selected two
binary classification datasets with a large number of features
to assess the correctness of the proposed global EFS ap-
proach. The first dataset, named as epsilon, is composed
of 500 000 instances and 2000 numerical features. This
dataset was artificially generated for the Pascal Large Scale
Learning Challenge1. The second dataset comes from the
Evolutionary Computation for Big Data and Big Learning
competition2 (we refer to it as ECBDL14). This classification
dataset contains 631 features (including both numerical and
categorical attributes), and it is originally comprised of
approximately 32 million instances. For this study, we will
consider a subset of the 25% of the instances. Moreover,
this dataset is highly imbalanced, containing 98% of the
instances belonging to a single class (the majority class). To
handle the imbalanced problem in this study, we have applied
an undersampling approach that randomly removes instances
for that majority class in order to obtain a balanced number
of instances of both classes. We have focused on random

1http://largescale.ml.tu-berlin.de/instructions/
2http://cruncher.ncl.ac.uk/ bdcomp/

undersampling (RUS) for simplicity and good results shown
in previous experiments [22].

TABLE I: Parameters used for all the algorithms involved in
the experiments

Algorithm Parameters

Global EFS (CHC) Population Size = 50, Number of Evaluations = 1000,
Probability of 1 to 0 in HUX = 0.25,
Evaluation Measure = g-mean + α· reduction (α = 0.05)
Partitions = [64,192]
Windows [1, 5]
Max. Depth for internal Decision Tree: [5, 9]

Decision Tree Max Depth = 9, maxBins = 100
Minimum number of item-sets per leaf = 2

SVM Iterations: 100
StepSize: 1.0
miniBatchFraction: 1.0
Regularization parameter: 0.5

Logistic Regression StepSize: 1.0
miniBatchFraction: 1.0
Regularization parameter: 0.01

In our experiments, we follow a 5-fold stratified cross-
validation scheme, meaning that we build 5 random partitions
of each dataset maintaining the prior probabilities of each
class. Each fold is composed of 20% of the data, is used once
as test set, evaluating a model trained with the union of the
4 remaining folds. The reported results are taken as averages
of the five partitions. To evaluate our model, we will consider
different performance measures. As we are dealing with an
imbalanced classification problem, we will use AUC and g-
mean measures to assess classification performance [23]. The
g-mean was previously defined in Eq. (1). The AUC (Area
Under the ROC-Curve) provides a scalar value measuring
how well a classifier trades off true positive (TPR) and false
positive rates (FPR). A popular approximation [23] of this
measure is given by:

AUC =
1 + TPR − FPR

2
. (3)

We will also account for the final number of features
selected as an important aspect to determine the reduction
factor of the proposed EFS approach. In addition, we also
measure the total runtime spent to preprocess the dataset.

Table I collects the parameters of all the algorithms
involved in this experiment. For the proposed EFS algorithm,
we have used standard parameters for the CHC algorithm.
Similarly to [15], we have limited the number evaluations
to 1000. As explained before, the proposed EFS uses a
distributed Decision Tree (from Apache Spark) to evaluate
the fitness function. We will investigate two key param-
eters regarding the fitness function: (1) the influence of
the maximum depth of the created tree, and (2) the use
of a windowing scheme. Finally, the configuration for the
distributed execution in Spark slightly varies from one dataset
to the other due to their properties (number of instances).
We have considered 64 and 192 partitions for epsilon and
ECBDL14, respectively.

After applying the EFS phase, we measure the quality of
the resulting preprocessed datasets using three classical clas-



sification algorithms that are available in the Mllib library of
Spark [12] for large-scale processing, including the Decision
Tree (DT) (used in the fitness function evaluation), as well
as a linear Support Vector Machine (SVM), and Logistic
Regression (LR). We have used the default parameters for
these algorithms in Spark, except for SVM, in which we have
explored a number of regularization parameters. However, for
sake of clarity, we will only report the best results that were
found with a regularization parameter of 0.5 for SVM. Note
that for the correct application of SVM and LR, the resulting
preprocessed datasets are properly normalized.

The experiments have been carried out in a cluster com-
posed of 14 computing nodes managed by the master node.
Each one of these nodes has 2 Intel Xeon CPU E5-2620
processor, 6 cores (12 threads) per processor, 2 GHz and
64 GB of RAM. The network is Infiniband 40Gb/s. This
hardware was configured to provide a maximum number
of current tasks to 256. In terms of software, every node
runs on Cent OS 6.5, and uses Cloudera’s open-source
Apache Hadoop distribution (Hadoop 2.6.0-cdh5.8.0) and
Spark 2.2.1.

B. Preliminary results and discussion

To evaluate the success of the feature selection process we
have first evaluated the quality of the classifiers considered
without feature selection. Table II presents the results of
applying the three used classifiers on both datasets without
any preprocessing. This table includes the average learning
time, AUC and g-mean of each model. As such, these results
should serve of baseline to compare the performance of the
proposed EFS algorithm in these datasets.

Tables III and IV gather the results of applying our pro-
posal without using windowing on ECBDL14 and epsilon,
respectively. Note that for ECBDL14 we have used a total
of 192 partitions, and for epsilon we limited it to 64. These
tables focus on the comparison of the results using a different
maximum depth for the fitness function evaluation. In both
tables, we report learning times of the classifiers, AUC and
g-mean results as well as the average preprocessing time
(i.e. runtime of our EFS algorithm) together with the average
number of resulting selected features.

TABLE II: Classification performance of base classifiers
without applying Feature Selection

Classifier Learn. Time (s) AUC g-mean

RUS-ECBDL14 (25%) DT 15.6231 0.7187 0.7186
SVM 8.6990 0.6972 0.6970
LR 10.1379 0.7108 0.7098

Epsilon DT 50.9893 0.6895 0.6894
SVM 11.5918 0.5353 0.5332
LR 12.4540 0.7922 0.7907

Observing the results for the ECBDL14 dataset, the num-
ber of features have been drastically reduced from 631
to approximately 7 and 23 features with depth 5 and 9,
respectively. Hence, the depth of the tree in the evolutionary

TABLE III: Results of applying EFS on RUS-ECBDL14
(25%) dataset without windowing

EFS-DT Depth Prep. Time (s) #Features Classifier Learn. Time (s) AUC g-mean

5 2217.85 7.6 DT 3.6642 0.7207 0.7207
SVM 0.7402 0.6877 0.6858
LR 7.3811 0.6922 0.6887

9 4926.69 23.4 DT 4.1633 0.7229 0.7229
SVM 0.7849 0.6863 0.6850
LR 7.3849 0.6961 0.6932

TABLE IV: Results of applying EFS on Epsilon dataset
without windowing

EFS-DT Depth Prep. Time (s) #Features Classifier Learn. Time (s) AUC g-mean

5 4576.5 13.2 DT 3.1748 0.6829 0.6829
SVM 0.5657 0.706 0.7060
LR 5.7422 0.7099 0.7099

9 10901.77 46.8 DT 4.6289 0.6928 0.6927
SVM 0.6414 0.7709 0.7709
LR 5.7659 0.7791 0.7791

TABLE V: Results of applying EFS on RUS-ECBDL14
(25%) dataset using windowing

EFS-DT Depth Prep. Time (s) #Features Classifier Learn. Time (s) AUC g-mean

9 2240.60 26.6 DT 4.0205 0.7191 0.7190
SVM 0.7606 0.6849 0.6836
LR 7.3896 0.6945 0.6913

9 4814.36 62.4 DT 4.7427 0.7183 0.7180
SVM 0.8276 0.6845 0.6836
LR 7.4826 0.6968 0.6941

process has an influence in the number of selected features.
This can be expected as more features are required to
construct a deeper decision tree. The processing time is also
increased and almost doubled when depth 9 is considered. In
terms of performance, both AUC and g-mean are positively
affected by the increase in the depth, but the improvement
is low in absolute terms. Compared with the performance
over the original dataset, the AUC and g-mean of DT are
slightly improved, whereas SVM and LR slightly decrease
its performance (by less than 0.1). In any case, this points
out the fact that the DT algorithm is being used as learning
algorithm in the EFS process. Hence, it should be further
studied whether considering the corresponding classifier for
the EFS allows us to also improve the performance in the
case of SVM and LR.

Looking at the epsilon dataset, the conclusions drawn with
respect to the depth of the tree in terms of processing time
and number of features remain the same. The processing
time is more than the double and the number of features is
three times bigger. However, in this case, this change results
in a greater difference in terms of performance, mainly for
SVM and LR, which increase both AUC and g-mean in 7
points, on average. In this case, SVM has largely improved
the result over the original dataset. DT is also able to give
better results with much less features, whereas LR slightly
decreases its performance but using 44 times less features.
Again, it remains to be studied whether considering, e.g.,
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Fig. 1: Global EFS: Convergence of the algorithm with different settings in one partition of RUS-ECBDL14 (25%) dataset.
These plots show the g-mean and number of selected feature for the best individual at each generation

Fig. 2: Average fitness evaluation per generation

LR for the EFS procedure the final results would be better
or not.

To analyze the behavior of the windowing mechanism,
Table V shows the results obtained on the ECBDL14 dataset
when this mechanism is activated. There are three main
points that can be highlighted from this table. First, the
windowing mechanism is supposed to ease the cost of fitness
evaluations, so that, the total runtime should normally be
smaller. However, this behavior is not really appreciated in
this table. In addition, we can also observe that the average
number of selected features using the windowing mechanism
is significantly higher than the number obtained with the
same depth of 5 for the DT. Having a higher number of
selected features in the chromosomes will increase the cost
of every fitness function evaluation, explaining why the total
runtime is eventually very similar. In terms of precision, the
results in this dataset are fairly similar to the ones obtained
in Table III without windowing. We will deepen into the
analysis of the windowing in the following subsection.

Although a more thorough comparison analysis is re-

quired, we can observe that a global EFS is not only possible,
but it is actually able to perform well compared to the results
obtain in [15] with the local approach (for the epsilon dataset
that is the one is shared between the experimental studies).

C. Analysis of the behavior of global EFS

In this subsection, we aim to analyze the behavior of the
proposed evolutionary model and check whether the method
is properly evolving towards more promising solutions as the
algorithm runs. Figure 1 depicts a convergence plot in which
every time we evaluate a new bunch of chromosomes we
provide the g-mean and number of selected features of the
best chromosome obtained so far. This experiment has been
carried out for a single partition of the ECBDL14 dataset
to illustrate the convergence process. Both plots compare
the algorithm using windowing or not, as well as using
different maximum depths for the internal decision tree. Note
that the number of the final number of generations of the
CHC algorithm may differ depending on the number of
chromosomes that are being evaluated (i.e. the Hamming
distance may prevent some chromosomes from being tested).
Using the same partition of the ECBDL14 dataset, Figure 2
plots the average fitness evaluation cost (in seconds) for each
generation of the CHC algorithm.

From these figures, we can observe that the algorithm
clearly evolves towards a better solution in all cases and
therefore, the global selection seems to be working as ex-
pected. Note that Figure 1a shows ups and downs for all the
settings because we are representing the actual g-mean value
for evaluating the training data (and not the fitness value,
which is progressively higher due to the elitist selection),
but overall, the g-mean goes uptrend.

Nevertheless, there are differences in the behavior of the
model with or without windowing, or using a different depth
for the DT. When the windowing mechanism is applied, it
is clear that the number of generations performed is much
smaller than the number of generations that are carried out



without windowing. That shows that the chromosomes must
be more different among themselves when using windowing.
This might also indicate that with the windowing mechanism,
the proposed approach could have used a higher number
of evaluations to converge, as it does not use all the data
at each evaluation. In Figure 2, we can appreciate that the
overall fitness evaluation is certainly performed faster when
the windowing is activated although it does not improve
proportionally with the number of windows.

In Figure 1b, we can also see how the EFS tends to quickly
decrease the number of selected features. This is mainly
due to the parameter configuration we have followed in this
preliminary study. In particular, this is related to probability
in which the modified HUX operator sets a gene to 0 each
time the crossover has caused it become 1.

V. CONCLUDING REMARKS

In this contribution we have presented a first approach to
perform global evolutionary feature selection in big datasets.
To do so, we have made use of Apache Spark as a big data
technology. The main advantage of the proposed scheme in
comparison to existing local approaches is that it analyzes
all the data as a whole, providing a more effective use of
the existing data. Our preliminary results have shown that
the proposed approach is able to handle very big datasets
with a large number of instances and features. However, we
still need to extend our experiments to get more insights.
As future work, we consider different mechanisms to fur-
ther accelerate the fitness function evaluation that becomes
imperative to deal with big data problems from a global
perspective.
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