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Abstract—The paper presents an approach to optimise complex
systems in space systems engineering, accounting for epistemic
uncertainty. Uncertainty is modelled with Dempster-Shafer the-
ory of Evidence and the space system as a network of connected
components. A constrained min-max problem is then solved,
with a memetic algorithm, to deliver a robust design point.
Starting from this robust design point a sequence of evolutionary
optimisation steps are used to reconstruct an approximation
of the Belief and Plausibility curves associated to a particular
design solution. The constrained min-max approach and the
evolutionary reconstruction of the Belief and Plausibility curves
are tested on a realistic case study of space systems engineering.

I. INTRODUCTION

Space systems engineering aims at designing, developing
and verifying a system that can operate in space. This system
is made of a number of interconnected components or subsys-
tems, each of which performs a number of tasks, has inputs
and outputs shared with other components and is qualified by
a number of attributes. The failure or under-performance of
one or more components affects the whole system and can
lead to a system failure.

In the early design phase, one main point of concern is
to evaluate the overall performance or attribute of the whole
system. Typically a performance metric is the overall mass of
the system but other attributes can become key performance
indicators, like the data volume or the power output.

One critical aspect in the evaluation of particular systems
engineering solution is the reliability of the value associated
to a given performance metric. In fact, due to the uncertainty
in the requirements, operational conditions, model parameters,
component characteristics, etc. a deterministic design solution
might not provide a reliable result.

The uncertainty introduced at an early design stage is mainly
epistemic and require an appropriate treatment [1][2]. This
paper starts from the concept of Evidence Network Models,
recently introduced in [3], and extends previous work to in-
troduce constraints in the system definition and operations. In
Evidence Network Models, epistemic uncertainty are modelled

as Belief functions and two values (Belief and Plausibility) are
associated to the value of the system performance [4].

The resulting system optimisation under uncertainty process
is composed of the solution of a constrained bi-level min-
max optimisation problem followed by the reconstruction of
the Belief and Plausibility on the value of the performance
metric. The constrained min-max problem is a variation of
the unconstrained approach presented in [5] and its solution is
here addressed with a modification of Inflationary Differential
Evolution [6] implemented in the software code MPAIDEA
[7]. MPAIDEA is then used to provide an approximation to the
Belief curves following the h-decomposition process proposed
in [8]. The paper is structured as follows. After introducing
some fundamentals on Evidence Network Models, the paper
presents the strategy to solve the constrained min-max problem
and the h-decomposition approach. Results on a real-world test
case will then follow.

II. EVIDENCE NETWORK MODELS

A generic complex system can be represented as a network,
where each node is a subsystem and information is shared
through links between subsystems. We can then define a
function F as

F (d,u) =

N∑
i=1

gi(d,ui,hi(d,ui,uij)) (1)

where N is the number of subsystems involved, hi(d,ui,uij)
is the vector of scalar functions hij(d,ui,uij) where j ∈
Ji and Ji is the set of indexes of nodes connected to the
i-th node; ui are the uncertain variables of subsystem i not
shared with any other subsystem and uij are the uncertain
variables shared among subsystems i and j. Please note that
according to our notation uij = uji and the functions gi(·, ·, ·)
represent quantities computed by the governing equations of
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Fig. 1. Evidence Network Model of a generic system F composed of three
sub-systems with coupled variables u12, u13 and u23.

the different subsystems. In a fully connected network as in
Figure 1 the function F is:

F (d,u) = g1(d,u1, h12(d,u1,u12), h13(d,u1,u13))+
g2(d,u2, h21(d,u2,u12), h23(d,u2,u23))+
g3(d,u3, h31(d,u3,u13), h32(d,u3,u23)).

(2)
We then call ui, uncoupled variables because they influence

only one subsystem and uij coupled variables because they
influence two subsystems. Hence, for the example in Figure
1, the uncertain vector can be ordered as

u = [u1,u2,u3,u12,u13,u23]T .

In the following we will study only the case of functions
gi(·, ·, ·) that are always positive semi-definite and monotonic
with respect to each function hik.

Given a design, or decision, value d̃ ∈ D we will call worst
case scenario the vector u that corresponds to the maximum
of F over the space U :

u = argmax
u∈U

F (d̃,u). (3)

Likewise we can call best case scenario the quantity:

ū = argmin
u∈U

F (d̃,u). (4)

We can now define an event in the space U , or a proposition
on the value of F , as the set A such that:

A = {u ∈ U |F (d,u) ≤ ν}. (5)

From this definition it is clear that for every design d ∈ D
the worst case scenario corresponds to A = U , because ν =
maxu∈U F (d,u), and analogously the best case scenario has
zero measure. Each uncoupled uncertain vector ui is defined
over a set of boxes named Θi = ∪kθk,i and each coupled
uncertain vector uij is defined over the set of boxes Θij =
∪kθk,ij . We define the set

Θ =
⋃
i

θi = (×mui=1Θi)× (×mci,j=1Θij)

where mu is the number of uncoupled uncertain vectors (equal
to the number of subsystems) and mc is the number of coupled
uncertain vectors. In this context, the hyperpower set

DΘ = (Θ,∪,∩) (6)

is the set composed of the elements of Θ, their union and
intersection. In the following the space U := DΘ. We can then
define two quantities associated to the belief in the occurrence
of the event A:

Bel(A) =
∑

θ⊂A,θ∈U

bpa(θ) (7)

Pl(A) =
∑

θ∩A6=0,θ∈U

bpa(θ) (8)

where bpa(θ) is the basic probability assignment associated
to θ, an element of the power set [4]. It is important to note
that if the hij functions were known with certainty the nodes
composing the network would be decoupled and statistically
independent. We also note that in order to identify if a θ is
fully included in A we need to find the maximum of F with
respect to u ∈ θ. Likewise an intersection with A requires
computing the minimum of F with respect to u ∈ θ. Given
that the subsets θ, their unions and intersections come from
a cross product, it is clear that the number of maximisation
and minimisation increases exponentially with the number of
dimensions. The computation of the Belief Bel (Plausibility
Pl respectively) in the occurrence of A is, therefore, an
exponentially complex operation. In the following section a
technique is proposed to compute an approximation to (7) by
exploiting some of the properties of the ENM listed above. In
particular we will exploit the following three properties:

1) The contribution of the coupled variable uij to the value
F manifests through the scalar functions hij and hji.

2) All gi functions are positive semi-definite.
3) All gi functions are monotonically increasing with re-

spect to hij for every j.

III. CONSTRAINED MINMAX

The approach to the design of complex systems under
uncertainty proposed in this paper, requires the solution of
one or more constrained min-max optimisation problems. The
solution to this class of problem is here approached with
a constrained variant of MPAIDEA, an adaptive version of
Inflationary Differential Evolution [7]. This section describes
only the strategy to handle constraints in the min-max version
of MPAIDEA. More details on the approach to the solution of
unconstrained min-max problems with Inflationary Differential
Evolution can be found in [9].

A. Memetic Approach

The min-max algorithm proposed in this paper iteratively
solves a bi-level optimisation, first minimising over the design
vector d (outer loop) and then maximising over the uncertainty
vector u (inner loop). The inner loop provides solutions that
satisfy the constraint, while the outer loop maintains the
constraint satisfaction while minimising the cost function F .
The constraint handling procedure, summarised in Algorithm
1, implements the following steps:
• Initialisation of a population of d and u vectors;



• While the number function evaluations is lower than
Nmax
feval function evaluations, do the following
– [Outer Loop] Constrained minimisation of the ob-

jective function over the design space, evaluating
the cost function F over all the uncertainty vectors
stored in an archive A = Au ∪Ac:

mind∈D∧u∈A F (d,u)
s.t.
maxu∈A C(d,u) ≤ 0

(9)

– [Inner Loop] Constrained maximisation of the cost
function F over the uncertain parameters u and
parallel maximisation of the constraint violation over
the uncertainty space:

maxu∈U F (dmin,u)
s.t.
C(d,u) ≤ 0

(10)

max
u∈U

C(dmin,u) (11)

ua,F = argmaxu∈U F (dmin,u) is added to the
archive Au and ua,C = argmaxu∈U C(dmin,u) is
added to Ac if maxu∈U C(d,u) > 0. This approach
pushes the optimiser to find design configurations
that are feasible for all values of the uncertain
variables. If a feasible solution cannot be found, the
constraints are relaxed (line 15), in the Inner Loop,
by computing the new constraint C∗ = C + ε with
ε the minimum constraint violation over U .

In the multi-objective optimisation:

• Cross-check of the final solutions and choice of the best
design;

• Final maximisation over U.

IV. DECOMPOSITION ALGORITHM

In order to reduce the computational complexity of the
calculation of Bel(A) we propose a decomposition technique
that exploits the three properties defined in the previous sec-
tion. The decomposition algorithm aims at decoupling the sub-
systems over the uncertain variables in order to optimise only
over a small sub-set of the Focal Elements (FEs) (Algorithm
2); this procedure requires the following steps:

1) Solution of the optimal worst case scenario problems
(9),(10) and (11).

2) Maximisation over the coupled variables and computa-
tion of mc partial Belc(A) curves.

3) Maximisation over the uncoupled variables.
4) Reconstruction of the approximation B̃el(A).

The result of the solution of problems (9),(10) and (11),
as presented in section III, are the values d̃ and u, thus,
in the following, the decomposition starts once d̃ and u are
available. However, it has to be noted that a Belief curve can
be computed for any arbitrary d.

Algorithm 1 Constrained minmax
1: Initialise d̄ at random and run ua = argmaxF (d̄,u) s.t.
C(dmin,u) ≤ 0

2: Au = Au ∪ {ua}; Ac = ∅; Ad = ∅
3: while Nfval < Nmax

fval do
4: Outer loop:
5: dmin = argmind∈D{maxu∈Au∪Ac F (d,u)} s.t.

maxu∈Au∪Ac C(d,u) ≤ 0
6: Ad = Ad ∪ {dmin}
7: Inner loop:
8: ua,F = argmaxu∈U F (dmin,u) s.t. C(dmin,u) ≤ 0
9: ua,C = argmaxu∈U C(dmin,u)

10: Au = Au ∪ {ua,F }
11: if Nfval < Nrelaxation

fval ∨
∃d ∈ Ad t.c. maxu∈U C(d,u) ≤ 0 then

12: if maxu∈U C(dmin,u) > 0 then
13: Ac = Ac ∪ {ua,C}
14: end if
15: else
16: update ε
17: Ac = {Ac \ ua,C | C(dmin,u) ≤ ε}
18: if maxu∈U C(dmin,u) > ε then
19: Ac = Ac ∪ {ua,C}
20: end if
21: end if
22: end while

A. Maximisation over the coupled variables and evaluation of
the partial Belief curves

For each coupled vector uij a maximisation is run over each
FE θk,ij ⊆ Θij ⊆ U , given d̃ and keeping fixed all the other
components of u. Taking again the example in Figure 1 we
have:

ûk,12 = argmax
u12∈θk,12

F (d̃,u1,u2,u3,u12,u13,u23),∀θk,12 ⊂ Θ12

ûk,13 = argmax
u13∈θk,13

F (d̃,u1,u2,u3,u12,u13,u23),∀θk,13 ⊂ Θ13

ûk,23 = argmax
u23∈θk,23

F (d̃,u1,u2,u3,u12,u13,u23),∀θk,23 ⊂ Θ23

(12)

For the sake of simplicity we will indicate with

F (uij) := F (d̃,u1, ...,uij , ...,ui+1j , ...).

We can then compute the partial belief associated only to the
coupled variables with index ij:

Bel(F (uij) < ν) =
∑

θk,ij |maxuij∈θk,ij F (uij)≤ν

bpa(θk,ij).

(13)
The calculation of the partial belief can be found in Algo-

rithm 2, line 6. Once the partial belief curve, for each coupled
vector, is available, one can sample these curves, by taking
a succession of ν = {ν1, ..., νq, ..., νNS} values, and find



the corresponding values of the coupled vectors ûqk,ij . These
values will be used in the next step to decouple the functions
gi and compute the maxima of each gi with respect to the
uncoupled variables ui.

B. Optimisation over the uncoupled vectors

For each νq , given a fixed value of the coupling functions,
one can study each gi independently of the others. The idea
is to run an optimisation for each function gi over only the
uncoupled vector ui. With the example in Figure 1 in mind,
having

ĥqij(ui) := hij(d̃,ui, û
q
ij)

where ûqij := ûqk∗,ij : k∗ = argmaxk F (ûqk,ij), is one of the
maxima of the maxima attained by the coupled variable uij .
For every FE θk,i ∈ Θi we have:

ûqk,1 = argmax
u1∈θk,1

g1(d̃,u1, ĥ
q
12(u1), ĥq13(u1)),∀θk,1 ⊂ Θ1

ûqk,2 = argmax
u2∈θk,2

g2(d̃,u2, ĥ
q
21(u2), ĥq23(u2)),∀θk,2 ⊂ Θ2

ûqk,3 = argmax
u3∈θk,3

g3(d̃,u3, ĥ
q
31(u3), ĥq32(u3)),∀θk,3 ⊂ Θ3

(14)

with the corresponding values ĝqk,1, ĝqk,2 and ĝqk,3.

C. Complexity Analysis

From the definition of the hyperpower set in (6) it is clear
that the number of focal elements increases exponentially with
the number of dimensions. Even if one limits the U space to
the sole Θ the total number of FEs for a problem with m
uncertain variables, each defined over Nk intervals, is:

NFE =

m∏
k=1

Nk. (15)

In terms of coupled and uncoupled uncertain vectors we can
write:

NFE =

mu∏
i=1

pui∏
k=1

Nu
i,k

mc∏
i=1

pci∏
k=1

N c
i,k

 (16)

where pui and pci are the number of components of the i− th
uncoupled and coupled vector, respectively, and Nu

i,k and N c
i,k

are the numbers of intervals of the k − th components of the
i − th uncoupled and coupled vector respectively. The total
number of focal elements that needs to be explored in the
decomposition is instead:

NDec
FE = Ns

mu∑
i=1

Nu
FE,i +

mc∑
i=1

N c
FE,i (17)

considering the vector of uncertainties ordered as

u = [u1, ...,umu︸ ︷︷ ︸
uncoupled

,u1, ...,umc︸ ︷︷ ︸
coupled

]

where and Ns is the number of samples in the partial belief
curves, N c

FE,i =
∏pci
k=1N

c
i,k and Nu

FE,i =
∏pui
k=1N

u
i,k.

This means that the computational complexity to calculate
the maxima of the function F within the focal elements
is polynomial with the number of subsystems and remains
exponential for each individual uncoupled or coupled vector.

D. Reconstruction

Once all the maxima over the focal elements of the
uncoupled variables are available for each sample q one
can calculate an approximation of Bel(F (d,u) < ν) as
follows. From Eq. (14), for each sample q the maximum
associated to focal element θk = θk1,1 × θk2,2 × θk3,3, for
k = 1, ...NFE,1 ·NFE,2 ·NFE,3, using a positive semi-definite
gi, is:

max
(u1,u2,u3)∈θk

F (d̃,u1,u2,u3, û
q
12, û

q
13, û

q
23) = ĝqk1,1 + ĝqk2,2 + ĝqk3,3

(18)

with associated basic probability assignment:

bpaq(θk) = bpa(θk1,1)bpa(θk2,2)bpa(θk3,3)∆Belq (19)

where ∆Belq =
∏
ij ∆Belqij are the contributions of the

partial belief curves in (13). In other words, the bpa of each θk
is the product of all the bpa’s of the FEs of each uncoupled
variable scaled with the product of the belief values of the
samples drawn from the partial belief curves (Line 18). The
approximation of the belief is then computed as:

B̃el(F (d,u) ≤ ν) =
∑
q

∑
k

bpaq(θk). (20)

If the decomposition drastically reduces the number of
maximisations, the reconstruction still requires an exponential
number of multiplications of bpa’s. Thus, the computational
cost of the reconstruction step would increase exponentially
with the number of sub-systems if the full curve was required.
In this case the number of times that (19) has to be evaluated
is:

Nevals = Ns

mu∏
i=1

Nu
FE,i. (21)

If the decomposition is used to evaluate Bel(F (d,u) < ν),
for a given d and a single threshold ν, then a partial belief
curve could be reconstructed only in a neighbourhood of ν at
a reduced computational cost.

For a given sample q, consider the vector

ĝqi = [ĝqi,1, ..., ĝ
q
i,NuFE,i

]T

of all the maxima of a function gi over all the focal elements
θk,i and the collection of vectors

Γ = [γqik] q = 1, ..., NS
i = 1, ...,mu

k = 1, ..., Nu
FE,i

, γqik = ĝqk,i



organised as in Table I. The approximated belief curve in Eq.
(20) can be computed by taking the sum of the bpa’s for every
row of Γ and then adding up all the rows.

Now, given ν, one can filter out all the components ĝqk,i of
each vector ĝqi that satisfies the relationship:

ĝqk,i +

NU∑
i=1

min
k

ĝqi > ν. (22)

If condition (22) is applied to every vector in Γ we obtain
a new collection ΓL. Symmetrically we can also construct the
collection ΓR by filtering the vectors in Γ with the following
condition:

ĝqk,i +

NU∑
i=1

max
k

ĝqi < ν. (23)

The computation of Bel(F (d,u) ≤ ν) is realised by taking
from each row of the two collections ΓL and ΓR the rows
with the least amount of focal elements, i.e. the ĝq

i vectors
with the lowest number of components, and form the new
collection Γν . We can now calculate the approximated belief
as in Eq.(20) but using the rows and columns of matrix Γν .

TABLE I
INFORMATION USED IN THE RECONSTRUCTION STEP

sub1 sub2 ... subi ... submu
sample1 ĝ1

1 ĝ1
2 ... ĝ1

i ... ĝ1
mu

... ... ... ... ... ... ...
sampleq ĝq

1 ĝq
2 ... ĝq

i ... ĝq
mu

... ... ... ... ... ... ...
sampleNs ĝNs

1 ĝNs
2 ... ĝNs

i ... ĝNs
mu

The reconstruction computational cost after filtering is:

Nevals =

Ns∑
q=1

mu∏
i=1

dim(ĝq
i ), ĝq

i ∈ Γν . (24)

E. Simple example of the decomposition approach

Consider the equation F = g1 + g2 where g1 = 10u2
1 +

|u2|u2
5 +

u4
6

100 +d1|d2| and g2 = |u3|+u2
4
|u5|
10 +u2

6 + |d1| where
there are two uncoupled vectors (u1 = (u1, u2) and u2 =
(u3, u4)) and one coupled vector (u12 = (u5, u6)). The min-
max solution is d̃ = [−5,−5]∧u = [−5,−5,−5,−5,−5,−5]
and the decomposition belief curves are presented in Fig. 2.
Other simple test cases can be found in [3].

V. CASE STUDY

A. Optimal Battery Sizing

The minmax and h-decomposition approaches are here
applied to the sizing of a battery on board a spacecraft during
an orbital transfer from Geo Transfer Orbit to geostationary
orbit (GEO)[11]. The goal is the constrained minimisation of
the mass of the battery under epistemic uncertainty. The mass
of the battery is dependent on the following design, uncertain
and fixed parameters:

Algorithm 2 Decomposition
1: Initialise
2: Uncoupled vectors uu = [u1,u2, ...,ui, ...,umu ]
3: Coupled vectors uc = [u12,u13, ...,uij , ...,umc ]

4: for a given design d̃ do
5: Compute (d̃,uu,uc) = argmaxF (d̃,uu,uc)
6: for all uij ∈ uc do
7: for all FE θk,ij ⊆ Θij do
8: F̂k,ij = maxuij∈θk,ij F (d̃,uu,uij)
9: ûk,ij = argmaxuij∈θk,ij F

10: Evaluate bpa(θk,ij)
11: Evaluate partial Belief curve Bel(F (uij) ≤ ν)
12: end for
13: for number of samples do
14: Evaluate ∆Belq , ûk,ij and F̂k,ij
15: end for
16: end for
17: for all the combinations of samples do
18: for all ui ∈ uu do
19: for all FE θk,i ⊆ Θi do
20: Fmax,k,i = maxui∈θk,i F (d̃, ûc,ui)
21: Evaluate bpa(θk,i)
22: end for
23: end for
24: for all the combinations of FE

θt ∈ Θ1 ×Θ2 × ...×Θmu do
25: Evaluate Fmax,k ≤ ν
26: Evaluate bpak
27: end for
28: Evaluate the Belief for this sample by constructing

collection Γν
29: end for
30: Add up all belief values for all samples
31: end for

TABLE II
DESIGN PARAMETERS FOR BATTERY PROBLEM

variable symbol value
insertion time t [6939.8 7304.8]
battery type γ [0, 1]
Bus voltage ∆VBUS [0, 5]

• 3 design parameters. Time of orbit insertion t, type of
battery γ and bus voltage ∆Vbus:

d =
[
t, γ,∆Vbus

]T
.

Table II shows the design parameters with their associated
range of variability: t is given in Modified Julian Date
(MJD) - for more details see [11] - and can be any day
of 2019 at 7 a.m.; γ ranges in four possible intervals - [0,
0.25) , [0.25, 0.5), [0.5 0.75) and [0.75, 1] - corresponding
to 4 battery types (see Table III).

• 31 uncertain parameters. Orbital parameters of five
orbits α - semimajor axis, a, eccentricity, e, Inclination,
i, right ascension of the ascending node, Ω, Argument



0 50 100 150 200 250 300 350 400 450

objective function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

e
lie

f

exact Belief

1 sample

2 samples

3 samples

4 samples

5 samples

6 samples

Fig. 2. Simple example of application of the decomposition approach

TABLE III
LOOKUP TABLE OF BATTERIES

BATTERY A B C D
Cell capacity Ccell (Ah) 4.5 1.7 1.5 3.7
Cell voltage ∆Vcell (V) 4.1 4.2 4.2 4.1
Cell Mass m(γ) (kg) 0.63 0.2 0.21 0.23
Max DoD DoDmax (%) 80 75 75 75

of Perigee, ω and True Anomaly, θ (for more details see
[11])- and efficiency of the battery η:

u =
[
α, η

]
=
[
a, e, i,Ω,ω,θ, η]

with:
a = [a1, a2, a3, a4, a5]T , e = [e1, e2, e3, e4, e5]T , i =
[i1, i2, i3, i4, i5]T ,Ω = [Ω1,Ω2,Ω3,Ω4,Ω5]T ,ω =
[ω1, ω2, ω3, ω4, ω5]T , and θ = [θ1, θ2, θ3, θ4, θ5]T .

For each uncertain variable, two possible intervals are
given, both with 50% of probability. They are symmet-
rically arranged on either side of the nominal values in
Table V; the interval dimensions are given by Table IV.

TABLE IV
UNCERTAIN INTERVALS

a (km) e (-) i (◦) Ω (◦) ω (◦) θ (◦)
∆u ±20 km ±0.0012 ±0.07◦ ±30◦ ±0.5◦ ±0.025◦

• 10 fixed parameters. Engine ignition time and Liquid
Apogee Engine (LAE) burn time per orbit (Table VI).

TABLE V
NOMINAL VALUE OF THE EPISTEMIC PARAMETERS FOR SSTL PROBLEM

orbit a (km) e (-) i (◦) Ω (◦) ω (◦) θ (◦)
1 68500.3 0.90 22.81 86.63 180.10 0.00
2 73250.2 0.77 9.12 86.79 180.6 180.08
3 86065.5 0.51 1.09 85.96 180.81 180.84
4 49646.4 0.15 0.36 86.85 180.97 4.25
5 42049.0 0.001 0.05 270 0.00 359.95

TABLE VI
FIXED PARAMETERS

orbit Time of Arrival [hrs.] Burn duration [hrs.]
1 0.00 0.0
2 24.7 0.6
3 79.9 0.8
4 114.7 0.6
5 145.2 0.3

u16 u26 u36 u46 u56

g6

h16 h26 h36 h46 h56

Fig. 3. Evidence Network Model of the optimal battery sizing problem.

The minmax problem is the constrained minimisation of the
mass of the battery M under uncertainty:

min
d∈D

max
u∈U

M(d,u) s.t. C(d,u) < 0. (25)

M depends on the mass of the cell (Table III) and on the total
number of cells of the battery:

M = m(γ)Ntot (26)

and Ntot is the product of the number of cells in series Ns
and in parallel Np:

Ntot = NsNp =
∆VBUS
∆Vcell

E

DoDmax∆VBUSCcell
+ 1 (27)

where E, the Energy requirement, depends on the length of the
eclipse periods evaluated from the input data, ∆VBUS is the
Bus voltage, ∆Vcell the cell voltage, DoDmax the maximum
allowed Depth of Discharge, Ccell the Cell Capacity [10].
The constraint is given by the maximum allowed Depth of
discharge for each type of battery (Table III):

C(d,u)

{
> 0 if DoD(d,u) > DoDmax

< 0 if DoD(d,u) < DoDmax

B. Evidence Network Model of the Battery Sizing Problem

The above-described battery sizing problem is modelled
with an ENM assuming that each of the five orbits is a node of
the network and all five nodes are connected to a 6th node, the
battery. The scheme of Fig. 3 illustrates this simple topology:

M(d,u) =

6∑
i=1

gi(d,ui,hi(d,ui,uij)) (28)

• 5 nodes evaluate the energy required by the spacecraft
in the given orbits: Ei(d, ai, ei, ii,Ωi, ωi, θi) and have
gi = 0 for i = 1, 2, ..., 5

• The 6th node sizes the mass of the battery:
g6(d, η, h16, h26, h36, h46, h56) where hi6 = Ei.



The epistemic vector has been organised as:

u = [ u6︸︷︷︸
uncoupled

,u16,u26,u36,u46,u56︸ ︷︷ ︸
coupled

]

where: u6 = η and ui6 = [ai, ei, ii,Ωi, ωi, θi]
T with i =

1,...,5.
Θ6 = ∪kθk,6 3 u6 is the set of all the FE of the uncoupled

vector u6 and Θi6 = ∪kθk,i6 3 ui6 is the set of all the FE of
the coupled vector ui6 for i=1, 2, ..., 5.

In the ENM model of this problem the five orbits indepen-
dently contribute to the mass as the uncertainty on the energy
requirement manifest only through node 6. Furthermore, node
6 is monotone with respect to the energy requirement of each
orbit, independently of the uncertainty in the other orbits.
Finally, the mass of the battery M is proportional to the maxi-
mum energy requirement that depends on the maximum period
of battery discharge. Because of the monotonic dependency
of the discharge period on the uncertainty in each orbit, the
maximum energy demand can be calculated directly from the
minmax solution. Thus:

M ∝ Emax ⇒M ∝ max(Emax1 , Emax2 , Emax3 , Emax4 , Emax5 ).
(29)

With the specific orbital parameters used in this case study, the
minmax algorithm always converges to a solution where the
maximum energy requirement derives from the second orbit;
thus only the second node of the presented ENM influences
the sixth, the battery, through the exchange function h26:
g6(d, η, h26) where h26 = E2.

C. Results

The software MPAIDEA [7] has been used to provide
the solution of both the min-max and the h-decomposition
problems. The inner loop (maximisation over u), the outer loop
(minimisation over d) - explained in Section III - and also each
optimisation for the decomposition approach have been set
with a single population and a maximum number of function
evaluations Nmax

F = 1000 while the total number of function
evaluations for whole the min-max loop is Nmax,tot

F = 105;
the problems have been run multiple times obtaining the same
results.

1) Min-Max: The minmax solution for the optimal battery
sizing is d̃ = [59, D, 36.9]T with a corresponding battery mass
of 126.3 kg. For t = 59 the mission is most affected by
uncertainty, as shown in Figure 4a and Figure 4b. The Figures
show the influence of the uncertainty for all the possible
missions in the year 2019. The blue curves correspond to
the nominal orbits in Table V, while the red ones represent
the maximisation over the uncertain parameters of the energy
requirement (Figure 4a) and time of eclipse (Figure 4b).

From the analysis results that the total required energy is
not affected by the uncertain parameters for a number of dates.
In fact, for a mission that starts on a day ∈ [1, 33] ∪ [90, 225]
∪ [276, 365], nominal energy is equal to the maximum energy
(1540 Wh) and they depend only on the burn duration (LAE).
However, from day 34 to day 89 and from day 226 to 275 the

(a)

(b)

Fig. 4. First analysis: each day of 2019 has been considered for the satellite
launch; for each day, the nominal and worst case scenario have been evaluated
for the energy requirement(Figure 4a) and time of eclipse (Figure 4b).

energy requirement is strongly influenced by the uncertainties
on the orbits and day 59 is certainly the most affected. From
the minmax solution battery D results to be the best one for
all the possible mission times. Figure 5 shows that the mass
(nominal and maximum) of battery D is the lowest for all days
of the year.

Fig. 5. Comparison of the nominal and maximum masses obtained with the
four different batteries for each day of 2019.

2) H-Decomposition: The full Belief curve of the battery
sizing problem requires 231 = 2.1475·109 maximisations (one
for each FE), thus it is intractable. The computational cost of



the decomposition approach, as explained in Section V-B, is:

NDEC
FE = Ns

mu∑
i=1

Nu
FE,i +

mc∑
i=1

N c
FE,i = 320 + 2Ns. (30)

Figure 6a shows the partial Belief curve of the mass M
considering all the FE θk,26 ∈ Θ26 of the coupled variables u26

that influence both sub-systems two and six; the other partial
curves are not significant for the final reconstruction because,
as explained in Section V-B, the uncertainty on the nodes one,
three, four and five (and the corresponding orbits) have no
influence on the value of the objective function M . Finally
Figure 6b shows the reconstructed Belief curve obtained with
the h-decomposition approach with five samples in the space
of the coupled vectors ui6. Thus, according to (30), 330
different optimisation have been run, strongly reducing the
computational cost of the exact evaluation.

For a convergence analysis of the h-decomposition please
refer to [3].

(a)

(b)

Fig. 6. Partial Belief curve, Figure 6a, of the coupled vector u26 and Belief
curves, Figure 6b, of the spacecraft’ mass for the day 59 obtained with 5
samples and then 330 optimisations.

D. Validation

A validation of the correctness of the results can be obtained
in this way. Decompose the min-max problem in three steps:
• Fix a starting day for the mission: t̂;
• Maximise the energy requirement over the orbit uncer-

tainty:

max
u∈U

E(t̂, a, e, i,Ω,ω,θ)

• Minimise the mass over the design parameters (type of
battery and voltage):

min
d∈D
t=t̂

M(d, a, e, i,Ω,ω,θ, η̂)

with η̂ = min(η).
For t̂ = 59 and evaluated argmaxu∈U E (the red curve in
Figure 4a, the minimum Mass of the battery (Figure 5)
corresponds to battery D and it is 126.3 kg.

VI. CONCLUSION

In this paper we proposed a new approach to optimise
complex systems in space systems engineering, affected by
epistemic uncertainty. We used Dempster-Shafer theory of
Evidence to model uncertainty and Evidence Network Model
(ENM) to model the system and its interconnections. From
the battery sizing problem one can see that: the proposed
constrained min-max scheme produces correct results and
the decomposition approach delivers an approximation of the
Belief nearly in polynomial time with a low exponent. Future
work will include a statistical analysis of the robustness of the
constrained minmax algorithm and an accuracy analysis of the
approximated Belief curves.
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