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Abstract—Ant colony optimization (ACO) algorithms have
proved to be suitable for solving dynamic optimization problems
(DOPs). The integration of local search operators with ACO
has also proved to significantly improve the output of ACO
algorithms. However, almost all previous works of ACO in
DOPs do not utilize local search operators. In this work, the
MAX -MIN Ant System (MMAS), one of the best ACO
variations, is integrated with advanced and effective local search
operators, i.e., the Lin-Kernighan and the Unstringing and
Stringing heuristics, resulting in powerful memetic algorithms.
The best solution constructed by ACO is passed to the operator
for local search improvements. The proposed memetic algorithms
aim to combine the adaptation capabilities of ACO for DOPs
and the superior performance of the local search operators. The
travelling salesperson problem is used as the base problem to
generate both symmetric and asymmetric dynamic test cases.
Experimental results show that the MMAS is able to provide
good initial solutions to the local search operators especially in
the asymmetric dynamic test cases.

Index Terms—Ant colony optimization, local search, memetic
algorithm, dynamic travelling salesperson problem

I. INTRODUCTION

Ant colony optimization (ACO) algorithms have proved

that they are powerful problem solving tools. They are able

to provide the optimal (or near to the optimal) solution for

difficult combinatorial optimization problems (e.g., the travel-

ling salesperson problem (TSP) [1]). Traditionally, researchers

have focused their attention on static optimization problems,

where the environment of the problem remains fixed during

the optimization process of an algorithm. However, many

real-world applications are subject to dynamic environments.

Dynamic optimization problems (DOPs) are challenging since

the aim of an algorithm is not only to locate the optimum

of the problem quickly, but to efficiently track the moving

optimum when changes occur [2]. A dynamic change may

involve factors like the objective function, input variables,

problem instance, and constraints.

The integration of local search operators with ACO (or other

metaheuristics), resulting to the so-called memetic algorithms,

showed that it significantly improves the output in static [5],

[6] and, recently, in DOPs [14]. This is because ACO-based

memetic algorithms can better explore locally a neighbour-

hood in the search space compared to conventional ACO

algorithms. In addition, ACO-based memetic algorithms take

advantage of the global search capabilities of ACO to guide lo-

cal search in neighbourhoods, leading to high quality solutions.

Furthermore, ACO-based memetic algorithms in DOPs inherit

the adaptation capabilities of ACO when dynamic changes

occur. In this paper, we consider two advanced local search

operators: 1) Lin-Kernighan (LK) [8], and 2) Unstringing and

Stringing (US) [9]. Although the US operator has already been

investigated in the ACO-based memetic algorithm in [7], [14],

in this work the investigation is extended with comparisons

against algorithms based on the advanced LK operator.

TSP is used as the base problem to systematically generate

dynamic test cases [11]. Almost all of the dynamic test

cases considered in the literature focused only on symmetric

dynamic changes [7], [11], [18]. However, the real-world is

often asymmetric [12], [14]. For example, in transportation

routing problems the time when driving in one direction is

not necessarily the same in the opposite direction (e.g., may

be affected by different traffic conditions). Hence, in this work,

we consider both symmetric and asymmetric dynamic changes.

The rest of the paper is organized as follows. Section II

describes the TSP and the construction of the dynamic test

cases. Section III describes the memetic framework based on

one of the best variations of ACO. The core logic of the two

local search operators is also described to make the paper

self-contained. Section IV gives the experimental results and

analysis. Finally, Section V concludes this paper.

II. DYNAMIC TEST ENVIRONMENTS

A. Base Problem Formulation

TSP is used as the base problem to generate dynamic test

cases. Typically, a TSP instance is modelled by a fully con-

nected weighted graph G = (N,A), where N = {1, . . . , n}
is a set of n nodes and A = {(i, j) | i, j ∈ N, i 6= j} is

a set of arcs. For the classic TSP, nodes and arcs represent



the cities and the links between them. Each arc (i, j) ∈ A
is associated with a non-negative value wij ∈ R

+, which for

the classic TSP represents the distance between nodes i and

j. For symmetric TSPs, these distances are independent of the

direction of traversing the arcs, that is, wij = wji for every

pair of nodes. If wij 6= wji for at least one pair of nodes, then

the TSP becomes asymmetric. Every problem instance consists

of a weight matrix, i.e., W = {wij}n×n, that contains all the

weights associated with the arcs of the corresponding graph

G.

B. Generating Dynamic Test Environments

To generate dynamic test cases, the weight matrix of the

problem instance becomes dynamic as follows [11]:

W(T )={wij(T )}n×n, (1)

where T = ⌈t/f⌉ is the period of a dynamic change, t is

the evaluation count and f is the frequency of change. Note

that the introduced dynamic changes are synchronized with the

optimization process of the algorithm. Hence, the parameter

f is expressed in algorithmic evaluations.

A particular dynamic test case can be generated by assigning

an increasing or decreasing factor value to the arc connecting

nodes i and j as follows:

wij(T + 1) =

{

wij(0) +Rij , if arc (i, j) ∈ AS(T ),

wij(T ), otherwise,
(2)

where wij(0) is the initial weight of the arc connecting nodes

i and j (i.e., from the static problem instance when T = 0),

Rij is a normally distributed random number (with zero mean

and standard deviation set to 0.2 ·wij(0) [12]) that defines the

modified factor value of the arc, AS(T ) ⊂ A defines the set

of arcs randomly selected for the change at that period and T
defines the environmental period index as defined in Eq. (1).

The size of the set A is defined by the number of arcs (i.e.,

n(n− 1) for asymmetric cases and n(n− 1)/2 for symmetric

cases). Hence, the size of AS(T ) is defined by the magnitude

of change (i.e., m ∈ [0, 1]) and the size of A. For example,

at period T , exactly ⌈mn(n − 1)⌉ and ⌈mn(n − 1)/2⌉ arcs

will be selected to change their weights in asymmetric and

symmetric cases, respectively. The higher the value of m, the

more arcs will be selected for changes. Note that the arcs for

asymmetric cases are directed whereas for symmetric cases

are undirected. Therefore, if wij changes in symmetric cases,

then wji changes uniformly (i.e., wji = wij ). On the contrary,

when wij changes in asymmetric cases, wji will not change

unless arc (j, i) is selected for a change (but not necessarily

uniformly with wij ).

A particular solution π = [π1, . . . , πn] in the search space

is specified by a permutation of the node indices, and for the

dynamic TSP (DTSP), it is evaluated as follows:

φ(π, t) = wπnπ1
(T ) +

n−1
∑

i=1

wπiπi+1
(T ). (3)

III. ACO-BASED MEMETIC ALGORITHMS

The ACO metaheuristic consists of a colony of ω ants that

construct solutions and share their information among each

other via their pheromone trails. One of the best performing

ACO variations, i.e., theMAX -MIN AS (MMAS) [13], is

used in the memetic framework shown in Algorithm 1. Since

the TSP is used as the base problem to generate dynamic test

cases, it is used as a concrete example to describe the ACO-

based memetic framework.

A. Constructing Solutions

Ants read pheromones to construct solutions and write

pheromones to mark their constructed solutions. The proba-

bility with which ant k, currently at node i, will move to node

j is calculated as follows:

pkij =
[τij ]

α
[ηij ]

β

∑

l∈Nk

i

[τil]
α
[ηil]

β
, if j ∈ N k

i , (4)

where τij and ηij are the existing pheromone trail and the

heuristic information available a priori between nodes i and

j, respectively. The pheromone trails are initialized uniformly

with a value τ0. The heuristic information is calculated as

ηij = 1/wij(T ) where wij(T ) is defined as in Eq. (1). N k
i is

the set of unvisited nodes for ant k adjacent to node i. α and β
are the two parameters which determine the relative influence

of τij and ηij , respectively.

B. Applying Local Search Operator

Stützle and Hoos [13] applied local search operators to the

iteration-best ant of MMAS after every iteration, whereas

in [5], they further applied local search operators to all ants.

Considering that local search operators are computationally

expensive methods, such an extensive usage may not be very

efficient for DTSP because the computation time naturally

increases. As previously discussed, for DTSPs, algorithms

must produce high quality solutions quickly [12]. In [14]

the local search operator is applied to the the best-so-far

ant of MMAS only when a new best solution is found.

This is because local search operators are typically executed

until no further improvement is possible. In case a new best

solution is not found, the local search is not applied because

it will unnecessarily increase the computation time (and waste

evaluations) to potentially “improve” a solution for which

basically no further improvement is possible. In this work we

investigate two powerful local search heuristics designed for

the TSP, i.e., LK and US heuristics, described below.

1) Lin-Kernighan: The LK heuristic performs a series of

λ-opt moves to transform a TSP tour into a shorter one [8].

A λ-opt move consists of the exchange of a set of λ tour

arcs by a set of λ new arcs. The LK heuristic starts with two

empty arc sets: X (i.e., out-arcs) and Y (i.e., in-arcs). At each

step one arc that currently belongs to the tour will be added

to X and a new arc that does not belong to the tour will be

added to Y . After the first step, the LK heuristic will favour

arc insertions that result in a shorter complete TSP tour. When



Algorithm 1 ACO-Based Memetic Framework

1: InitializePheromoneTrails(τ0)

2: while (termination condition not satisfied) do

3: ConstructSolutions

4: πib ← FindIterationBest
5: if (φ(πib, t) < φ(πbs, t)) then

6: πbs ← πib

7: ApplyLocalSearch(πbs)

8: end if

9: PheromoneUpdate
10: end while

11: OUTPUT: πbs %best TSP solution

a new complete tour is achieved, the algorithm will begin a

new phase of arc exchanges and this process will continue

until there is no further improvement.

A set of rules, that each step must follow, was established

in order to enhance the algorithm’s efficiency as follows:

• Each arc removed must share a node with its added

counterpart. After the first arc exchange in each cycle,

each arc being removed must also share a node with the

previously added arc. Fig. 1 illustrates an example, where

on the first step arc (V1,V2) is removed and arc (V2,V4),

which shares the node V2 with its removed counterpart,

is added. On the second step arc (V3,V4), which shares

node V4 with the previously added arc, is removed and

arc (V3,V1) is added, closing the tour.

• No exchanges that result in the tour being broken into

multiple closed circuits are allowed. An example of this

type of exchange is shown in Fig. 2, where arcs (V1,V2)

and (V3,V4) are removed and arcs (V4,V1) and (V3,V2)

are added. In this case, the addition of either of the arcs

would not be accepted because it will result in a segment

of tour forming a cycle.

• Each pair of arcs exchanged must be gainful, meaning

that each arc being added must be shorter than its

removed counterpart.

• Once an arc is removed, until the tour is closed again, it

cannot be added again in subsequent exchanges.

Although LK was originally designed for symmetric prob-

lems [8], it can be also applied to asymmetric problems by

transforming an asymmetric weight matrix to a symmetric

weight matrix (i.e., by doubling the nodes of the graph) [15],

[22].

2) Unstringing and Stringing: The US heuristic is based on

the removal (or unstringing) of nodes from the tour and their

subsequent re-insertion (or stringing) [9]. The main feature

of the algorithm is that the re-insertion of nodes can happen

between non-adjacent nodes, resulting in a tour where both

nodes become adjacent to the node being inserted. Suppose

that we wish to insert Vx between any two nodes Vi and Vj .

For a given orientation of a tour, consider Vk a node in the

subtour from Vj to Vi, and Vl a node in the subtour from Vi

to Vj . We also consider for any node Vh on the tour, Vh+1

Fig. 1: A 2–opt move.

Fig. 2: Closed circuits.

its successor and Vh−1 its predecessor. The re-insertion of Vx

between Vi and Vj can be done in several ways using different

types of insertions and removals. In [7], [9], only symmetric

problem instances were considered and tackled with Type I

and Type II removals (Fig. 3(a) and Fig. 3(b)) and Type

I and Type II insertions (Fig. 4(a) and Fig. 4(b)). In [10],

[14] another two types of removals and another two types

of insertions were considered in order to tackle asymmetric

problem instances: Type III and Type IV removals (Fig. 3(c)

and Fig. 3(d)), and Type III and Type IV insertions (Fig. 4(c)

and Fig. 4(d)).

The unstringing procedure removes a given node from the

tour and repairs the connections with the remaining nodes in

order to have a closed tour. The procedure consists of four

types of removals as follows:

• Type I removal: Assume that Vj belongs to the neigh-

bourhood of Vi+1 and Vk belongs to the neighbourhood of

Vi−1, with Vk being part of the subtour (Vi+1, . . . , Vj−1).

The removal of node Vi results in the deletion of arcs

(Vi−1, Vi), (Vi, Vi+1), (Vk, Vk+1) and (Vj , Vj+1); and the

insertion of arcs (Vi−1, Vk), (Vi+1, Vj) and (Vk+1, Vj+1).
Also, the subtours (Vi+1, . . . , Vk) and (Vk+1, . . . , Vj) are

reversed.

• Type II removal: Assume that Vj belongs to the neigh-

bourhood of Vi+1, Vk belongs to the neighbourhood of

Vi−1, with Vk being part of the subtour (Vj+1, . . . , Vi−2)
and Vl belongs to the neighbourhood of Vk+1, with Vl

being part of the subtour (Vj , . . . , Vk−1). The removal

of node Vi results in the deletion of arcs (Vi−1, Vi),
(Vi, Vi+1), (Vj−1, Vj), (Vk, Vk+1) and (Vl, Vl+1); and the

insertion of arcs (Vi−1, Vk), (Vl+1, Vj−1), (Vi+1, Vj) and

(Vl, Vk+1). As above, the subtours (Vi+1, . . . , Vj−1) and

(Vl+1, . . . , Vk) are reversed.

• Type III removal: Assume that Vj belongs to the neigh-

borhood of Vi+1 and Vk belongs to the neighborhood of



(a) (b) (c) (d)

Fig. 3: (a) Type I removal, (b) Type II removal, (c) Type III removal, and (d) Type IV removal.

(a) (b) (c) (d)

Fig. 4: (a) Type I insertion, (b) Type II insertion, (c) Type III insertion, and (d) Type IV insertion.

Vi−1 with Vk being part of the subtour (Vi+1, . . . , Vj−1).
The removal of node Vi results in the deletion of

arcs (Vi−1, Vi), (Vi, Vi+1), (Vj−1, Vj), and (Vk−1, Vk);
and the insertion of arcs (Vi+1, Vj), (Vi−1, Vk), and

(Vj−1, Vk−1). As above, the subtours (Vj−1, . . . , Vk) and

(Vi−1, . . . , Vj) are reversed.

• Type IV removal: Assume that Vj belongs to the neigh-

borhood of Vi+1, Vk belongs to the neighborhood of

Vi−1 with Vk being part of the subtour (Vl+1, . . . , Vi−2),
and Vl belongs to the neighborhood of Vj−1 with Vl

being part of the subtour (Vj+1, . . . , Vk−1). The removal

of node Vi results in the deletion of arcs (Vi−1, Vi),
(Vi, Vi+1), (Vj−1, Vj), (Vl−1, Vl), and (Vk, Vk+1); and

the insertion of arcs (Vk, Vi−1), (Vj−1, Vl), (Vk+1, Vl−1),
and (Vj , Vi+1). As above, the subtours (Vk+1, . . . , Vi−1)
and (Vj , . . . , Vl−1) are reversed.

The stringing procedure is basically the reverse of the

unstringing procedure and consists of four types of insertions

as follows:

• Type I insertion: Assume that Vk 6= Vi and Vk 6= Vj . The

insertion of Vx results in the deletion of arcs (Vi, Vi+1),
(Vj , Vj−1) and (Vk, Vk+1), and the insertion of arcs

(Vi, Vx), (Vx, Vj), (Vi+1, Vk) and (Vj+1, Vk+1). Also, the

subtours (Vi+1, . . . , Vj) and (Vj+1, . . . , Vk) are reversed.

• Type II insertion: Assume that Vk 6= Vj , Vk 6= Vj+1,

Vl 6= Vi, and Vl 6= Vi+1. The insertion of Vx results in

the deletion of arcs (Vi, Vi+1), (Vl−1, Vl), (Vj , Vj+1) and

(Vk−1, Vk), and the insertion of arcs (Vi, Vx), (Vx, Vj),
(Vl, Vj+1), (Vk−1, Vl−1) and (Vi+1, Vk). As above, the

subtours (Vi+1, . . . , Vl−1) and (Vl, . . . , Vj) are reversed.

• Type III insertion: Basically, this type of insertion can be

seen as the inverse of Type I insertion. When node Vx

is inserted between Vi and Vj , the subtour of nodes is

rearranged in such a way that almost the entire sequence

is inverted. The aim is to explore other promising regions

of the search space. As in Type I insertion, assume

Vk 6= Vi and Vk 6= Vj . The insertion of Vx results in the

deletion of arcs (Vi−1, Vi), (Vj−1, Vj) and (Vk−1, Vk),
and the insertion of arcs (Vi, Vx), (Vx, Vj), (Vk, Vj−1)
and (Vk−1, Vi−1). As above, the subtours (Vi, . . . , Vj−1)
and (Vk, . . . , Vi−1) are reversed.

• Type IV insertion: Similarly, this type of insertion can

be seen as the reverse of Type II insertion. As in Type

II, assume that Vk 6= Vj , Vk 6= Vj+1, Vl 6= Vi, and

Vl 6= Vi+1. The insertion of Vx results in the deletion

of arcs (Vi−1, Vi), (Vl, Vl+1), (Vj−1, Vj) and (Vk, Vk+1),
and the insertion of arcs (Vi, Vx), (Vx, Vj), (Vi−1, Vl),
(Vl+1, Vk+1) and (Vk, Vj−1). As above, the subtours

(Vi, . . . , Vl) and (Vl+1, . . . , Vj−1) are reversed.

C. Updating Pheromones

The pheromone trails in MMAS are updated by applying

evaporation as follows:

τij ← (1− ρ) τij , ∀(i, j) ∈ A, (5)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1,

and τij is the existing pheromone value. After evaporation,

the best ant deposits pheromone as follows:

τij ← τij +∆τbestij , ∀(i, j) ∈ πbest, (6)



where ∆τbestij = 1/φ(πbest, t) is the amount of pheromone that

the best ant deposits. The best ant that is allowed to deposit

pheromone may be either the best-so-far ant1, in which case

πbest = πbs, or the iteration-best ant, in which case πbest =
πib. Both ants are used to deposit pheromones to achieve a

transition from a stronger exploration of the search space early

to a stronger exploitation of the best-so-far solution later. More

precisely, let f bs indicate the frequency the best-so-far ant is

allowed to deposit pheromone. f bs increases as the search

progresses following a pre-defined schedule [5]:

f bs =







































∞, if I ≤ 25,

5, if 26 ≤ I ≤ 75,

3, if 76 ≤ I ≤ 125,

2, if 126 ≤ I ≤ 250,

1, otherwise,

(7)

where f bs is the number of algorithmic iterations between two

updates performed by the best-so-far ant and I is the iteration

counter of the algorithm. In other words, the emphasis from

the iteration-best ant to the best-so-far ant for the pheromone

update is shifted gradually. The schedule is restarted at the

beginning of every dynamic change. It must be noted that

pheromones are updated after the local search improvements

to mark them in the pheromone trails so they can be exploited

in the following iterations.

D. Maintaining Diversity

Maintaining the diversity of the constructed solutions is one

of the key factors when addressing DOPs. This is because

it helps the search to escape from (outdated) solutions of

previously optimized environments and adapt to the new ones

[20].

Since only the best ant is allowed to deposit pheromone,

the search may quickly converge towards the best solution

found in the first iterations. Therefore, the pheromone trails

are occasionally reinitialized to the current τmax value to

increase exploration. For example, whenever the stagnation

behaviour2 occurs or when no improved solution is found for

a given number of iterations, the pheromone reinitialization

mechanism is triggered.

In addition, the lower and upper limits τmin and τmax

of the pheromone trail values are imposed. In this way, the

probability of selecting an arc will always be pkij > 0, and,

consequently, all arcs will have a chance to be selected. The

τmax value is set to τmax = 1/(ρ · φ(πbs, t)), and is updated

whenever a new best-so-far ant is found. The τmin value is

set to τmin = τmax/(2n), where n is the number of nodes.

1The best-so-far ant is a special ant that may not necessarily belong in the
current constructing colony.

2Detected using λ-branching [16] that calculates the statistics regarding the
distribution of the current pheromone trails.

E. Responding to Dynamic Changes

ACO algorithms are able to use knowledge from previous

environments via their pheromone trails and can be applied

directly to DOPs without any modifications [17], [18]. For

example, when the changing environments are similar, the

pheromone trails of the previous environment may provide

knowledge to speed up the optimization process to the new

environment. However, the algorithm must be flexible enough

to accept the knowledge transferred from the pheromone trails,

or eliminate the pheromone trails, in order to adapt well to the

new environment. When a dynamic change occurs, evaporation

eliminates the pheromone trails of the previous environment

from areas that are generated on the old optimum and helps

ants to explore areas for the new optimum.

In case the changing environments are completely different,

then pheromone reinitialization may be a better choice rather

than transferring the knowledge from previous pheromone

trails [17]–[19].

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

In the experiments, we investigate the effects of having ACO

providing its solutions for symmetric and asymmetric dynamic

changes rather than using randomly generated solutions for

local search improvements. Comparisons of two effective local

search operators are performed. In particular, the performance

of the following algorithms is investigated:

• MMAS+US: the US operator is applied in MMAS

whenever a new best-so-far ant is found until there is

no further improvement.

• MMAS+LK: the LK operator is applied in MMAS

whenever a new best-so-far ant is found until there is

no further improvement.

• US: the US operator applied on a random initial so-

lution rather than the best-so-far solution generated by

MMAS.

• LK: the LK operator applied on a random initial so-

lution rather than the best-so-far solution generated by

MMAS.

All algorithmic parameters were set to commonly used values:

α = 1, β = 5, ρ = 0.8 and the number of ants was set

to ω = 50. DTSPs are generated from five static bench-

mark instances obtained from TSPLIB3: pcb442, u574,

pcb1173, rat783, lin318 using the dynamic generator

described in Section II. The first three benchmark instances

arise from the task of drilling holes in printed circuit boards,

the next benchmark instance arise from rattled grid, and

the last benchmark instance from the travel cost between

cities. The frequency of change f was set to change every

10e4 algorithmic evaluations and the magnitude of change

m was set to 0.05, 0.1, 0.2 and 0.4, indicating small to

medium changing environments. Totally, a series of 4 DTSP

test cases were constructed from each stationary instance, for

3Available from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/



symmetric and asymmetric changes, to systematically analyze

the performance of the algorithms (all asymmetric problem

instances have an extension of .atsp at the end of the

problem label). For each algorithm on a DTSP, 30 independent

runs were executed on the same set of random seed numbers.

For each run, 100 environmental changes were allowed and

an observation (i.e., the value of the best-so-far ant after a

dynamic change) was recorded. For a fair comparison, all the

algorithms performed the same number of evaluations. The

proportional evaluations required when applying US and LK

operators are added to the total evaluations of the algorithms.

The offline performance [21] was used to evaluate the

overall performance of the algorithms, which is defined as:

P̄offline =
1

E

E
∑

t=1

φ(πbs, t), (8)

where E is the total number of evaluations and πbs is the

best-so-far solution quality after a change.

B. Experimental Results and Discussion

The experimental results regarding the offline performance

of the investigated algorithms for all DTSPs are presented

in Table I. The corresponding statistical results are presented

in Table II, in which pairwise Mann–Whitney statistical tests

with a significance level of 0.05 were performed. In Table

II, the results are shown as “+”, “−” and “∼” when the

first algorithm is significantly better than the second one,

when the second algorithm is significantly better than the

first one, and when the two algorithms are not significantly

different, respectively. In Fig. 5 and Fig. 6, the dynamic

average offline performance against the algorithmic iterations

of MMAS+US, MMAS+LK, US and LK are plotted for

the last ten environmental changes to better understand the

behaviour of the algorithms in symmetric and asymmetric

dynamic changes, respectively. From the experimental results

the following observations can be drawn.

First, MMAS+US significantly outperforms US in both

symmetric and asymmetric cases (see the comparisons in

Table II). This is because MMAS can provide the US

local search heuristic an initial solution from a promising

neighbourhood (probably the one that contains the global

optimum solution) in the search space, whereas it is less

likely when starting from an initial random solution as in

the US algorithm. On the contrary,MMAS+LK significantly

outperforms LK only in asymmetric DTSPs, but it has no

effect in symmetric DTSPs (since the improvement is not

significant); see the comparisons in Table II. It is well known

that the LK local search heuristic is considered by far the best

heuristic on symmetric cases [22], and, consequently, starting

from a random initial solution (as in the LK) will still result in

good performance. However, it is still interesting to observe

that the guidance provided from MMAS is very effective

for the LK heuristic in asymmetric DTSPs. This is because

the LK heuristic was designed specifically for symmetric

cases, and, thus, loses its effectiveness in asymmetric cases.
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Fig. 5: Dynamic average offline performance of algorithms for

symmetric DTSPs with m = 0.2.
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Fig. 6: Dynamic average offline performance of algorithms for

asymmetric DTSPs with m = 0.2.

However, with the guidance of MMAS it will still explore

some promising neighbourhoods.

Second, MMAS+US significantly outperforms

MMAS+LK in most asymmetric cases whereasMMAS+LK

significantly outperforms MMAS+US in most symmetric

cases. This is because MMAS+US performs a wide range

of alternative untried moves that tend to improve the solution

quality of the tour. However, when the LK heuristic is dealing

with asymmetric cases it performs a very specific set of

moves that preserve the direction of the tour. The moves are

composed by a specific case of 3–opt (i.e., cycle patching)

and non-sequential 4–opt (i.e., the so-called double-bridge

move) moves. On the contrary, when the US heuristic is

dealing with asymmetric cases the segments of the tour in

which their direction is not preserved will be recalculated.

In this way, the set of moves performed by the US heuristic

will not be restricted only to the moves that preserve the

direction of the tour. In addition, Type III and Type IV moves

are designed to cope with asymmetric cases, by performing

moves in the opposite direction of Type I and Type II moves,

hoping that new regions (in the search) with high quality

solutions will be found.

V. CONCLUSIONS

In this paper, we integrate two advanced local search

operators (i.e., LK and US) with the MMAS for dynamic

environments. The aim of the integration is to take advantage

of the adaptation capabilities of MMAS and the solution



TABLE I: Experimental results regarding the average offline performance of algorithms on symmetric DTSPs (upper half) and

asymmetric DTSPs (lower half).

Problem Instance m MMAS+US US MMAS+LK LK

lin318.tsp 0.05 39802.1 39934.9 38541.1 38557.7
0.1 39677.8 39772.2 38435.6 38453.8
0.2 39529.4 39533.8 38174.9 38175.5
0.4 39718.2 39666.2 38271.6 38286.7

pcb442.tsp 0.05 48944.0 49437.6 48228.4 48267.2
0.1 48736.3 49236.6 48021.4 48037.1
0.2 48784.5 49225.7 48012.2 48041.8
0.4 48653.7 49022.0 47872.9 47893.2

u574.tsp 0.05 35882.8 35798.7 34553.6 34564.8
0.1 35429.7 35380.0 34203.7 34211.0
0.2 35332.2 35254.3 34055.4 34065.3
0.4 35173.6 35134.4 33900.1 33911.2

rat783.tsp 0.05 8194.1 8277.4 8024.4 8028.7
0.1 8124.9 8204.9 7955.6 7956.6
0.2 8071.6 8148.8 7900.9 7900.2
0.4 8094.5 8165.1 7914.4 7914.2

pcb1173.tsp 0.05 55827.9 56390.2 54532.4 54569.0
0.1 55520.2 56022.3 54182.9 54203.7
0.2 55118.9 55637.8 53844.5 53833.5
0.4 55275.9 55770.4 53934.4 53950.8

lin318.atsp 0.05 40526.1 45341.6 40930.7 44547.6
0.1 40904.1 45825.3 41256.4 44204.1
0.2 40836.0 45761.4 41123.0 43958.1
0.4 41024.6 45861.7 41208.3 43662.3

pcb442.atsp 0.05 50082.9 55346.8 51402.0 56071.5
0.1 49973.3 55876.8 51170.4 55366.6
0.2 50196.9 56118.0 51429.9 55352.0
0.4 50360.8 56349.9 51307.5 55136.3

u574.atsp 0.05 37446.5 42870.1 37795.9 40794.4
0.1 37527.1 43737.7 37656.7 40299.6
0.2 37644.8 44139.8 37553.0 40412.2
0.4 37703.5 44098.4 37465.9 40106.1

rat783.atsp 0.05 8628.0 10210.5 8880.7 9665.1
0.1 8575.9 10360.7 8754.0 9497.0
0.2 8575.6 10381.2 8727.2 9455.5
0.4 8589.5 10413.6 8691.7 9420.3

pcb1173.atsp 0.05 59529.5 76943.1 61201.9 69814.8
0.1 59466.5 78057.9 61075.6 69118.8
0.2 59240.7 79078.1 60776.9 68675.6
0.4 59543.0 80021.3 60836.5 68712.6

improvement of the local search operators. The travelling

salesperson problem is used as the base problem to generate

dynamic test cases, both with symmetric and asymmetric

dynamic changes. The performance of the resulting memetic

algorithms is investigated on dynamic test cases that are

systematically constructed.

From the experimental results, the following conclusions

can be drawn. First, MMAS provides good initial points in

the search space for both local search operators. Second, the

integration of the local search operators withMMAS is more

effective on asymmetric DTSPs. Third, the US operator is

more effective on asymmetric DTSPs, whereas the LK operator

is more effective on symmetric DTSPs.
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[5] T. Stützle and H. H. Hoos, “MAX –MIN ant system,” Future

Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.
[6] N. Ulder, E. Aarts, H.-J. Bandelt, P. van Laarhoven, and E. Pesch,

“Genetic local search algorithms for the traveling salesman problem,”
in Parallel Problem Solving from Nature, ser. Lecture Notes in Com-
puter Science, H.-P. Schwefel and R. Männer, Eds. Springer Berlin
Heidelberg, 1991, vol. 496, pp. 109–116.

[7] M. Mavrovouniotis, F. M. Müller, and S. Yang, “An ant colony opti-
mization based memetic algorithm for the dynamic travelling salesman
problem,” in Proc. 2015 Genetic and Evol. Comput. Conf., 2015, pp.
49–56.

[8] S. Lin and B. Kernighan, “An effective heuristic algorithm for the
traveling salesman problem,” Operations Research, vol. 21, no. 2, pp.
498–516, 1973.



TABLE II: Statistical results regarding the average offline performance of algorithms on symmetric DTSPs (upper half) and

asymmetric DTSPs (lower half).

Problem Instance m MMAS+US vs

MMAS+LK
MMAS+US vs

US

MMAS+LK vs

LK

US vs LK

lin318.tsp 0.05 − + ∼ −
0.1 − + ∼ −
0.2 − ∼ ∼ −
0.4 − ∼ ∼ −

pcb442.tsp 0.05 − + ∼ −
0.1 − + ∼ −
0.2 − + ∼ −
0.4 − + ∼ −

u574.tsp 0.05 − ∼ ∼ −
0.1 − ∼ ∼ −
0.2 − ∼ ∼ −
0.4 − ∼ ∼ −

rat783.tsp 0.05 − + ∼ −
0.1 − + ∼ −
0.2 − + ∼ −
0.4 − + ∼ −

pcb1173.tsp 0.05 − + ∼ −
0.1 − + ∼ −
0.2 − + ∼ −
0.4 − + ∼ −

lin318.atsp 0.05 + + + −
0.1 + + + −
0.2 + + + −
0.4 + + + −

pcb442.atsp 0.05 + + + +

0.1 + + + −
0.2 + + + −
0.4 + + + −

u574.atsp 0.05 + + + −
0.1 ∼ + + −
0.2 ∼ + + −
0.4 − + + −

rat783.atsp 0.05 + + + −
0.1 + + + −
0.2 + + + −
0.4 + + + −

pcb1173.atsp 0.05 + + + −
0.1 + + + −
0.2 + + + −
0.4 + + + −

[9] M. Gendreau, A. Hertz, and G. Laporte, “New insertion and postop-
timization procedures for the traveling salesman problem,” Operations

Research, vol. 40, no. 6, pp. 1086–1094, 1992.

[10] P. M. França, M. Gendreau, G. Laporte, and F. M. Müller, “A tabu search
heuristic for the multiprocessor scheduling problem with sequence
dependent setup times,” International Journal of Production Economics.,
vol. 43, no. 2–3, pp. 79–89, 1996.

[11] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immi-
grants schemes for the dynamic travelling salesman problem with traffic
factors,” Applied Soft Computing, vol. 13, no. 10, pp. 4023–4037, 2013.

[12] R. Tinós, D. Whitley, and A. Howe, “Use of explicit memory in
the dynamic traveling salesman problem,” in Proceedings of the 2014

Conference on Genetic and Evolutionary Computation. New York, NY,
USA: ACM, 2014, pp. 999–1006.
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