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Abstract—Web services are basic functions of a software system
to support the concept of service-oriented architecture. They
are often composed together to provide added values, known as
web service composition. Researchers often employ Evolution-
ary Computation techniques to efficiently construct composite
services with near-optimized functional quality (i.e., Quality of
Semantic Matchmaking) or non-functional quality (i.e., Quality
of Service) or both due to the complexity of this problem.
With a significant increase in service composition requests, many
composition requests have similar input and output requirements
but may vary due to different preferences from different user
segments. This problem is often treated as a multi-objective service
composition so as to cope with different preferences from different
user segments simultaneously. Without taking a multi-objective
approach that gives rise to a solution selection challenge, we
perceive multiple similar service composition requests as jointly
forming an evolutionary multi-tasking problem in this work. We
propose an effective permutation-based evolutionary multi-tasking
approach that can simultaneously generate a set of solutions, with
one for each service request. We also introduce a neighborhood
structure over multiple tasks to allow newly evolved solutions to
be evaluated on related tasks. Our proposed method can perform
better at the cost of only a fraction of time, compared to one
state-of-art single-tasking EC-based method. We also found that
the use of the proper neighborhood structure can enhance the
effectiveness of our approach.

I. INTRODUCTION

Web service Composition has been widely adopted in web
service based systems as a computing paradigm for rapidly
building up cost-efficient and integratable enterprise applica-
tions [1]. This composition is achieved by loosely coupling
web services into execution workflows to provide added values
for service users. Since these workflows are often unknown
or not given by users, many researchers have been working
on automatically constructing composition workflows with an
aim to optimizing the overall quality of composite services
[2], [3], [4], [5], [6]. The overall quality refers to Quality
of Semantic Matchmaking (QoSM) and Quality of Service
(QoS) that are simultaneously optimized for functional and non-
functional attributes of composite service respectively [2].

Service composition problem is NP-hard and cannot be
solved in polynomial time [7]. Due to this reason, Evolutionary
computation (EC) techniques have been proposed to efficiently
find near-optimal solutions that satisfy users’ requirements
reasonably well [2], [3], [4], [6], [8], [9], [10], [11], [12], [13].
These EC-based service composition approaches are mainly
classified into two groups based on the number of objectives

to be optimized: single-objective [2], [3], [4], [6], [8], [9],
[10], [11] or multi-objective approaches [12], [13]. The first
group optimizes only one objective by combining all quality
criteria into one (e.g., one combined quality that measures
QoSM and QoS [2]); the second group has an aim to identify a
group of composite services with varied trade-offs over multiple
objectives (e.g., two trade-off objectives: one combines time and
cost, the other combines availability and reliability [12]).

Recently, Gupta et al. [14] introduced a new EC comput-
ing paradigm, namely, multifactorial evolutionary algorithm
(MFEA) [14] with a unified random-key representation to
search solutions for multiple tasks (or optimization problems)
simultaneously. MFEA transfers implicit knowledge of promis-
ing solutions through the use of simple genetic operators across
multiple tasks. These genetic operators allow two randomly
selected parents to undergo crossover or mutation with certain
conditions on the tasks. This genetic mechanism is called
assortative mating [14]. Besides, the offspring is only evaluated
on one selected task determined by its parents based on vertical
cultural transmission. MFEA has shown its efficiency and
effectiveness in several problem domains [15], [16], [17], [18].

Existing service composition algorithms are designed primar-
ily to solve each service composition request independently by
using either single-objective [3], [8], [9], [11] or multi-objective
approaches [12], [13], ignoring similarities between different
requests that could be dealt with collectively. For example,
many service composition requests have similar input and
output requirements but may vary due to different preferences
on their quality. These requests are handled repetitively without
meeting efficiency and time requirements.

In a market-oriented environment, a service composer often
strategically groups all the users (i.e., service requesters) into
several segments, e.g., platinum, gold, silver and bronze user
segments. Composition tasks for users in one segment are
packaged as one service composition task according to users’
preferences. One segment offers (i.e., one published composite
service) will serve each user in this segment separately and
uniquely. Therefore, before computing a composition solution
for any incoming request from scratch (which is expensive) we
will check whether we have solved a similar request, and we
can reuse the segment offer. For example, TripPlanner (an imag-
inary composite service used by travel agencies) provides travel
planning support by coupling many external existing services,
such as airline booking, hotel reservation, and payment services.
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The platinum segment (e.g., large international travel compa-
nies) has high QoSM requirements as their loyal customers
often demand reliable and accurate information. In contrast, the
bronze segment (e.g., small local travel companies), may care
more about service cost than QoSM. Therefore, we can provide
one segment offer to any incoming request for TripPlanner
immediately by identifying the respective user segment.

The problem discussed above could be treated as multi-
objective service composition so as to cope with different
preferences from different user segments, though this is likely
to result in a solution selection challenge. As an alternative,
we perceive multiple similar service composition requests from
segments as jointly forming an evolutionary multi-tasking prob-
lem in this work. Our goal is to evolve simultaneously a set of
composition solutions, one for each composition task.

Very recently, [15] reported the first attempt to search optimal
solutions for two unrelated composition tasks concurrently
using MFEA, outperforming some basic single-objective EC
techniques. Despite this recent success, this work [15] can only
handle semi-automated service composition problems, i.e., a
specific service workflow must be given in advance and strictly
obeyed. QoSM with segment preferences is not studied at all.
Besides that, the number of composition tasks that are opti-
mized concurrently is very small (e.g., 2 tasks in [15]), and the
test cases used for the experiments are small (e.g., each test case
only contains 2507 atomic web services in [15]). Furthermore,
the findings of their experiments are based on comparisons
with some basic EC techniques, overlooking state-of-art service
composition approaches. To address these limitations above, we
propose a novel Permutation-based Multifactorial Evolutionary
Algorithm (henceforth referred to as PMFEA) to solve the fully
automated semantic service composition problem for diverse
user segments with different QoSM preferences. We aim to
optimize the overall quality of the composition solutions (i.e.,
QoSM and QoS). The contributions of this paper are as follows:

1) We model multiple service requests for diverse user seg-
ments with different QoSM preferences as a multi-tasking
problem. This is the first time in literature to formulate
such a multi-tasking and fully automated service compo-
sition problem. We also propose PMFEA to effectively
and efficiently handle this problem with a permutation-
based representation, using crossover and mutation [10] to
support our presentation in assortative mating.

2) We further introduce a neighborhood structure over mul-
tiple tasks to allow newly evolved solutions to be ad-
ditionally evaluated on the neighboring tasks. The use
of this neighborhood structure has a severe impact on
the effectiveness as well as the efficiency of PMFEA for
optimizing more than two tasks concurrently.

3) We conduct experiments to explore the performance of
PMFEA and two of its variations: PMFEA with evalu-
ations on Neighboring Tasks (henceforth referred to as
PMFEA-NT), and PMFEA with evaluations on All Tasks
(henceforth referred to as PMFEA-AT) and to compare
them against a state-of-the-art fully automated service

composition approach [10]. For the experiments we use
a large benchmark dataset with multiple test cases of
different sizes. The evaluation shows that all PMFEA
approaches perform better at the cost of only a fraction
of time. In particular, PMFEA-NT achieves the best per-
formance in terms of effectiveness and efficiency.

II. RELATED WORK

EC has been widely used in fully automated service compo-
sition problems to find near-optimal solutions efficiently, where
QoSM or QoS, or both are optimized [2], [3], [4], [6], [8],
[9], [10], [12], [13], [15]. Based on the number of tasks to be
optimized, those approaches can be classified into two main
groups: evolutionary single-tasking and multi-tasking.

Evolutionary single-tasking approaches can be divided into
two subgroups: single-tasking single-objective and single-
tasking multi-objective approaches based on the number of ob-
jectives to be optimized. The first subgroup is well studied with
algorithm-dependent representations and breeding operators.
Genetic programming has been employed to evolve tree-based
composite solutions [3], [8], [9], [11]. For example, a recent
GP-based approach [3] proposed a tree-like representation for
composite services. This representation allows better scalability
by eliminating the replicas of subtrees based on the tree-based
representations in [8], [9], [11]. Apart from evolving trees,
graph evolution techniques are employed to evolve graph-based
composite solutions, such as GraphEvol [19]. On the other
hand, Particle Swarm Optimization, Genetic Algorithm, and
Estimation of Distribution Algorithm have been employed to
solve the single-tasking service composition problem [2], [4],
[6], [10]. For example, [6] samples permutation-based solutions
from learning the distribution models of promising solutions in
each generation. The second subgroup only reported two recent
attempts on single-tasking multi-objective fully automated web
service composition [12], [13]. For example, a hybrid approach
[12] was proposed to decompose the multi-objective problem
into single-objective subproblems, producing a set of Pareto
solutions with trade-offs. In practice, an indispensable decision
must be made to choose a small number of solutions, which
satisfy users’ preferences. When there are many solutions in the
Pareto front for more than two objectives, selecting a solution is
a challenging task because users have to evaluate the trade-offs
among the compositions manually.

Evolutionary multi-tasking is a new optimization paradigm,
which has been proposed to solve combinatorial optimization
problems [15], [16], [17], [18] and produces multiple solutions,
with one for each task. For example, Yuan et al. [17] employed
MFEA to concurrently handle four optimization problems with
different local search operators. The success of this work is
attributed to the use of permutation-based representations and
the expensive local search. Compared to the default random-key
representation in MFEA, permutation-based representations are
often effective for dealing with permutation-based problems,
such as TSP, QAP, LOP, and JSP [17]. It is due to that decoding
random-key representation to permutations is inefficient and
can be highly lossy since only information on the relative



order is derived [17]. Apart from that, existing studies in
evolutionary multitasking have not considered a neighborhood
structure over tasks (or optimization problems) to allow newly
evolved solutions to be evaluated on related tasks. In this
paper, we will employ a permutation-based representation and
introduce a neighborhood structure over a set of composition
tasks. It should be noted that very few service composition
works employ evolutionary multi-tasking. To the best of our
knowledge, [15] reported the first attempt to optimize just
two composition tasks concurrently for semi-automated service
composition. We have addressed the limitations of that work in
Section I above. In particular, it cannot handle the fully auto-
mated service composition problem studied in this paper. The
motivation for our research is to overcome these limitations.

III. PRELIMINARIES

In this section, we first present the concepts of multifactorial
optimization. We then formulate our web service composition
problem as a multitasking problem.

A. Multifactorial Optimization
Different from the single-tasking evolutionary paradigm,

MFEA is a new evolutionary paradigm, considering K op-
timization tasks concurrently, where each task contributes a
factor affecting the evolution of a single population. In MFEA,
a unified representation allows a unified search space made of
the search spaces of all the K tasks. This unified representation
can be decoded into solutions of the individual tasks. The
following definitions are also defined in [14] and capture the
key attributes associated with each individual Π. For simplicity,
we assume all the tasks are maximization problems (see details
in Section III-B).

Definition 1: The factorial cost fΠ of individual Π measures
the fitness value with respect to the K tasks.

Definition 2: The factorial rank rΠ
j of individual Π on task

Tj , where j P t1, 2, . . . ,Ku, is the index of Π in the population
sorted in descending order according to their factorial cost with
respect to task Tj .

Definition 3: The scalar fitness ϕΠ of individual Π is
calculated based on its best factorial rank over the K tasks,
which is given by ϕΠ “ 1

min
jPt1,2,...,KurΠ

j

.

Definition 4: The skill factor of individual Π denotes the
most effective task among the K tasks, and is given by τΠ “

argminjtr
Π
j u, where j P t1, 2, . . . ,Ku.

Based on the scalar fitness, evolved solutions in a population
can be compared across the K tasks. In particular, an individual
associated with a higher scalar fitness is considered to be better.
Therefore, multifactorial optimality is defined as below:

Definition 5: An individual Π‹ associated with factorial cost
tf‹

1 , f
‹
2 , . . . , f

‹
Ku is optimal iff Dj P t1, 2, . . . ,Ku such that

f‹
j ě fpΠq, where Π denotes any solution on task Tj .

B. Web Service Composition Problem
In this paper, we study the semantic Web Service

Composition problem for Multiple user segments with dif-
ferent QoSM Preferences (henceforth referred to as WSC-
MQP). This problem has not been explicitly studied before. We

perceive our problem as an evolutionary multitasking problem
that aims to optimize K composition tasks concurrently with
respect to the K user segments for better evolving high-quality
solutions.

We extend the concept composition task defined in [2], [3],
[4], [6] for supporting QoSM preferences of K user segments.
The preferences of one user segment is defined as an interval,
such as QoSM P p0.75, 0.1s. Therefore, a composition task
(also called service request) over a given service repository
is a tuple Tj “ pIT , OT , consjq where IT is a set of task
inputs, and OT is a set of task outputs. The inputs in IT and
outputs in OT are parameters that are semantically described
by concepts in a ontology O. consj is a QoSM preference,
where consj P pQoSM

a
j , QoSM

b
j s, j P t1, 2, . . . ,Ku and

QoSMa
j , QoSM

b
j are lower and upper bounds of QoSM that

are decided by data analytical techniques for each user segment.
Due to the page limit, some concepts related to the web
service composition problem, such as semantic web service,
service repository, composite service, QoSM, and QoS are not
introduced in further details in this paper, please refer to [2],
[3], [4], [6].

It is essential to include infeasible individuals (i.e., solutions
that violate the preference of one task) into each population
since infeasible composite solutions may help to find optimal
solutions of other tasks. For example, one solution is infeasible
for T1 as it violates cons1, but it is feasible to T2 as it complies
with cons2. This solution should be included for finding optimal
solutions for T2. Therefore, we allow infeasible individuals in
the population, but their fitness must be penalized (see details in
Eq. (1)). According to the fitness function in Eq. (1) with respect
to Tj , we guarantee that FitnesspΠq of an infeasible individual
falls below 0.5 while FitnesspΠq of a feasible individual falls
above 0.5. Eq. (2) measures six quality criteria in an overall
quality (i.e., QoSM and QoS) for a solution Π. Eq. (3) measures
two quality criteria in QoSM for a solution Π. Eq. (4) is the
violations of consj by measuring how far it is from QoSMpΠq
in Eq. (3). In particular, an infeasible individual that violates
consj more should be penalized more.

FitnesspΠq “

#

0.5` 0.5 ˚ F pΠq if QoSMpΠq P consj ,
0.5 ˚ F pΠq ´ 0.5 ˚ V pΠq otherwise.

(1)

F pΠq “ w1M̂T `w2
ˆSIM`w3Â`w4R̂`w5p1´ T̂ q`w6p1´ĈT q (2)

QoSMpΠq “ w7M̂T ` w8
ˆSIM (3)

V pΠq “

#

QoSMa
j ´QoSMpΠq if QoSMpΠq ď QoSMa

j ,
QoSMpΠq ´QoSMb

j otherwise.
(4)

with
ř6
k“1 wk “ 1 and

ř8
k“7 wk “ 1. We can adjust the

weights according to the preferences of user segments. M̂T ,
ˆSIM , Â, R̂, T̂ , and ĈT are normalized values calculated

within the range from 0 to 1 using Eq. (5). To simplify the
presentation we also use the notation pQ1, Q2, Q3, Q4, Q5, Q6q

“ pMT,SIM,A,R, T,CT q. Q1 and Q2 have minimum value



0 and maximum value 1. We refer to [2], [3], [6] for details on
the calculation of each quality criteria.

Q̂k “

$

’

’

&

’

’

%

Qk´Qk,min

Qk,max´Qk,min
if k “ 1, . . . , 4 and Qk,max ´Qk,min ‰ 0,

Qk,max´Qk

Qk,max´Qk,min
if k “ 5, 6 and Qk,max ´Qk,min ‰ 0,

1 otherwise.
(5)

To find the K best possible solutions with one for each task, our
goal is to maximize the objective function in Eq. (1) concerning
the K tasks.

IV. OUR NEW METHOD PMFEA

In this section, we present our new method to solve WSC-
MQP. We begin with an overview of PMFEA, and afterwards
we discuss some critical components of PMFEA in more detail.

A. An overview of PMFEA

Our proposed PMFEA is characterized by three novel as-
pects. Firstly, we employ a permutation-based representation for
composite solutions to establish a common search space over
K composition tasks (see details in IV-C). This permutation-
based representation has shown its promises in single-objective
EC-based service composition approaches [6], [10]. Meanwhile,
permutation-based crossover and mutation operators can be ef-
fectively used to search optimal solutions in assortative mating
(see details in IV-D).

Secondly, we introduce a neighborhood structure over multi-
ple tasks for more effectively evolving solutions in PMFEA for
finding high-quality solutions. By evaluating evolved solutions
on neighboring tasks, we increase the chance for a solution
evolved for one inherited task (determined through vertical
culture transmission) to participate in building the solutions of
related tasks. In our problem, the related tasks are tasks whose
QoSM preferences are adjacent to that of the inherited task. It is
through this way that knowledge can be exchanged effectively
across multiple tasks, enabling our algorithm to effectively cope
with a problem with more than two concurrent composition
requests (see details in Section IV-E).

Thirdly, we show that fitness evaluations of a solution on
neighboring tasks are fairly lightweight in WSC-MQP because
once the calculation of F pΠq in Eq. (1) (which is very time-
consuming) is completed for the inherited task and not required
to be calculated again for the neighboring tasks. Moreover,
we expect the execution time of PMFEA can be reduced
further. Due to the effective knowledge transformation across
different tasks through the introduced neighborhood structure,
we increase the chances of evolving effective solutions through
assortative mating. Therefore, the process of the graph-building
could be accelerated by the better knowledge transformation,
i.e., the order of services in a permutation for composition. In
particular, redundant services, such as S4 in Fig. 1 will not be
checked before End is returned (see details in Section IV-C).

B. Outline of PMFEA

The overview of PMFEA is summarized in ALGORITHM 1:
we initially randomly generate m permutations Πg

k, where

ALGORITHM 1. PMFEA for WSC-MQP
Input : Tj , K, and gmax
Output: A set of solutions

1: Randomly initialize population Pg of m permutations
Πg
k as solutions (where g “ 0 and k “ 1, . . . ,m);

2: Decode each Πg
k into DAG Ggk using a forward

graph-building technique;
3: Evaluate fΠg

k , rΠg
k

j , ϕΠg
k and τΠg

k of Πg
k over Tj ,

where j P t1, 2, . . . ,Ku;
4: while g ă gmax do
5: Apply assortative mating to the randomly selected

individuals to generate offspring population Pg`1
a ;

6: Assign offspring in Pg`1
a to the selected tasks and

evaluate fΠg`1
k on the tasks;

7: Pg`1 “ Pg Y Pg`1
a ;

8: Update rΠg`1
k

j , ϕΠg`1
k and τΠg`1

k of offspring in
Pg`1;

9: Keep top half the fittest individuals in Pg`1 based
on ϕΠg`1

k ;

10: Return the best Π‹
j over all the generations for Tj ;

0 ď k ă m and g “ 0. Each permutation will be decoded
into a DAG-based solution, Ggk , see the details in Section IV-C.
Subsequently, the following steps (Step 3 to 9) are repeated until
a maximum generation gmax is reached. During the iteration,
we evaluate fΠg

k , rΠg
k

j , ϕΠg
k and τΠg

k of Πg
k over Tj , where j P

t1, 2, . . . ,Ku. Afterward, we apply assortative mating to breed
offspring population Pga . In particular, crossover and mutation
operators in assortative mating will be employed (see details
in Section IV-D). Once Pga is generated, individuals in Pga will
be assigned to tasks based on vertical cultural transmission in
ALGORITHM 3 and identified neighbouring tasks (see details
in Section IV-E) for evaluations. Consequently, we produce the
next population Pg`1 by combining the current population Pg

and assortative mating offspring population Pga . We update rΠg
k

j

, ϕΠg
k and τΠg

k of the combined population in Pg`1, and keep
the top half of fittest individuals in Pg`1 based on ϕΠg

k . In
each generation, we keep track of the fittest Π‹

j for each task
Tj . When the maximal generation gmax is met, we return the
best Π‹

j over all the generations for Tj .

C. Permutation-based representation

A permutation is a sequence of all the services in the repos-
itory, and each service appears exactly once in the sequence.
Each service has a unique id, i.e., index number from 0 to n. Let
Π “ pπ1, . . . , πt, . . . , πnq be a permutation-based composite
solution of service indexes t0, . . . , t, . . . , nu such that πi ‰ πj
for all i ‰ j. Permutation-based solutions must be decoded into
DAG-based solutions for easily calculating of factorial cost and
presenting users a final execution services workflow [6].

Fig. 1 illustrates an example of producing a DAG-based
solution decoded from a permutation using a forward graph-
building technique [2]. In the example, we take an arbitrary
permutation r4, 3, 5, 1, 2s as an example with composition task



𝑺𝟐
Input: d
Output: f 

2

𝑺𝟑
Input: 𝑏

Outputs: c,d

3

𝑺𝟓
Inputs: e,f
Output: g 

5

𝑺𝟏
Input: c

Output: e 

1

𝑺𝟒
Input: a

Output: h 

4

4

3

1

2

5Start End

𝑰𝑻: a, b 𝑂+ 	: g

1st

2nd

3rd

4th

5th

Figure 1: Example of a DAG-based solution decoded from a
given permutation

inputs IT and outputs OT . We check the permutation from left
to right, looking for services whose inputs can be fulfilled by
IT , so we remove them from the permutation and add them to
the graph. Afterwards, we go through the permutation from left
to right again and add services whose inputs can be fulfilled
by IT and any outputs of services in the graph. We continue
this process until we can add End to the graph (i.e., OT can
be produced). Note that this process may result in graphs that
contain some services whose outputs are not used to fulfill the
input of any other service, such as service S4. These services
will be removed later on.

D. Assortative Mating

PMFEA employs assortative mating to breeding offspring for
K segment tasks. In particular, two randomly selected parent
candidates undergo crossover if they have the same skill factors.
Otherwise, a randomly generated probability rand that is used
to balance exploitation and exploration across tasks: crossover is
performed over the parent candidates with different skill factors
or mutation is performed on each parent, see ALGORITHM 2
in APPENDIX A for technical details.

Two-point crossover and one-point swap mutation [12], [20]
for single-objective single-tasking service composition works
are employed for the purpose of assortative mating to generate
permutations. In a crossover, two children are produced, and
each child preserves a part of the permutation from one parent
while the remaining parts are filled by another parent. The
mutation operator swaps the positions of two elements in the
permutation. The inherited skill factors of children will be
discussed in Section IV-E

Fig. 2 illustrates an example of crossover and mutation for
randomly selected parents with different skill factors, e.g., the
skill factors of the platinum and the bronze segment are 1 and
4 respectively. In a crossover, Child 1 preserves positions of 3
and 4 of Parent 1 while the other parts are filled from left to
right with 1, 5, and 2 that are obtained from Parent 2 from its
left to right. Child 2 is also produced in the same way. In a
mutation, Child 3 is produced by swapping the positions of 2
and 4 in Parent 1.

1 2 3 4 5

3 1 4 5 2

1 5 3 4 2

1 2 4 5 3

Crossover

Parent 1 whose skill factor is 1

Parent 2 whose skill factor is 4

Child 1 whose skill factor is 4 
: 

Child 2 whose skill factor is 1

1 2 3 4 5

1 4 3 2 5

Mutation

Parent 1 whose skill factor is 1 

Child 3 whose skill factor is 1

Figure 2: Examples of crossover and mutation for two parents
with different skill factors

𝑐𝑜𝑛𝑠% 𝑐𝑜𝑛𝑠& 𝑐𝑜𝑛𝑠' 𝑐𝑜𝑛𝑠(

0 0.25 0.5 0.75 1

𝑇% 𝑇& 𝑇' 𝑇(Tasks

Segment preferences

(𝐼,, 𝑂, , 𝑐𝑜𝑛𝑠%) (𝐼,, 𝑂, , 𝑐𝑜𝑛𝑠&) (𝐼,, 𝑂, , 𝑐𝑜𝑛𝑠') (𝐼,, 𝑂, , 𝑐𝑜𝑛𝑠()

Figure 3: Examples of neighborhood structure over four tasks

E. Task Selection for Evaluations

Gupta et al. [14] investigated two optimization tasks and
suggest candidate solutions is only evaluated on the task that is
inherited from parents based on the vertical cultural transmis-
sion, see details in ALGORITHM 3 in APPENDIX B for details.

To effectively deal with more than two optimization tasks,
we proposed PMFEA-NT for evolving more effective solutions
through careful selections of tasks, where we introduce a
neighborhood structure over a set of tasks. In particular, we sug-
gest identifying the neighboring tasks of each child’s inherited
task, which is imitated from the vertical culture transmission.
Subsequently, we will assign each child to the neighboring tasks
for additional evaluations.

Fig. 3 illustrates an example of neighborhood structure over
four composition tasks T1, T2, T3 and T4 with respect to four
user segments. These four composition tasks have the same
input and output (i.e., IT and IO) but different consj , where j P
t1, 2, 3, 4u. In particular, cons1 P p0, 0.25s, cons2 P p0.25, 0.5s,
cons3 P p0.5, 0.75s and cons4 P p0.75, 1s, respectively. The
neighborhood structure is determined based on the tasks whose
segment preferences on QoSM are adjacent to each other. For
example, the neighboring tasks of task T2 are T1 and T3

whose segment preference on QoSM (i.e., cons1 and cons3)
are adjacent to that of T2 (i.e., cons2).

We continue to use the example in Fig. 3 to demonstrate the
benefits of our proposed neighborhood structure in PMFEA-NT.
Consider a child derived from a parent that satisfies cons1 of T1,
and this child can also lead to the satisfaction of a neighboring
segment preference, i.e., cons2. If this child is only evaluated
on task T1 based on the vertical cultural transmission, resulting
in a poor fitness value, it is likely to be discarded. On the other



Table I: Mean fitness values for our approach in comparison to FL [10]
(Note: the higher the fitness the better)

Task 1
Method PMFEA-AT PMFEA-NT PMFEA FL [10]

WSC09-1 0.192631 ˘ 0.00475 0.19291 ˘ 0.003977 0.192864 ˘ 0.003543 0.193947 ˘ 0.003276
WSC09-2 0.146518 ˘ 0.003685 0.146975 ˘ 0.005269 0.148709 ˘ 0.00488 0.146254 ˘ 0.002946
WSC09-3 0.152277 ˘ 0.003385 0.152809 ˘ 0.003959 0.150053 ˘ 0.003885 0.15355 ˘ 0.002688
WSC09-4 0.141319 ˘ 0.000747 0.140892 ˘ 0.000836 0.140255 ˘ 0.00073 0.141451 ˘ 0.000515
WSC09-5 0.144593 ˘ 0.001096 0.144193 ˘ 0.00102 0.143447 ˘ 0.000946 0.144942 ˘ 0.000705

Task 2
Method PMFEA-AT PMFEA-NT PMFEA FL [10]

WSC09-1 0.810555 ˘ 0.00638 0.808541 ˘ 0.006982 0.809369 ˘ 0.007696 0.807483 ˘ 0.005398
WSC09-2 0.748537 ˘ 0.006183 0.749583 ˘ 0.00816 0.752848 ˘ 0.006956 0.74895 ˘ 0.006425
WSC09-3 0.765014 ˘ 0.007071 0.764333 ˘ 0.007089 0.760746 ˘ 0.006192 0.761924 ˘ 0.006194
WSC09-4 0.739807 ˘ 0.000696 0.73975 ˘ 0.000825 0.739866 ˘ 0.000853 0.739826 ˘ 0.000692
WSC09-5 0.73927 ˘ 0.00081 0.739328 ˘ 0.00073 0.73936 ˘ 0.001217 0.739467 ˘ 0.000735

Task 3
Method PMFEA-AT PMFEA-NT PMFEA FL [10]

WSC09-1 0.820082 ˘ 0.00571 0.820097 ˘ 0.004829 0.820107 ˘ 0.007241 0.819418 ˘ 0.003768
WSC09-2 0.230114 ˘ 0.006103 0.231639 ˘ 0.007691 0.234557 ˘ 0.00651 0.22968 ˘ 0.004616
WSC09-3 0.788258 ˘ 0.003952 0.788829 ˘ 0.00307 0.789012 ˘ 0.002968 0.788726 ˘ 0.002576
WSC09-4 0.224035 ˘ 0.001628 0.224026 ˘ 0.001827 0.224278 ˘ 0.001957 0.224127 ˘ 0.001467
WSC09-5 0.221114 ˘ 0.001512 0.221319 ˘ 0.001286 0.221169 ˘ 0.002244 0.221102 ˘ 0.001248

Task 4
Method PMFEA-AT PMFEA-NT PMFEA FL [10]

WSC09-1 0.222976 ˘ 0.007486 0.223659 ˘ 0.008279 0.219863 ˘ 0.013342 0.221582 ˘ 0.00946
WSC09-2 0.105114 ˘ 0.006103 0.10656 ˘ 0.007747 0.109708 ˘ 0.00659 0.10468 ˘ 0.004616
WSC09-3 0.215947 ˘ 0.00718 0.215877 ˘ 0.007496 0.217783 ˘ 0.005575 0.216698 ˘ 0.00533
WSC09-4 0.099035 ˘ 0.001628 0.098941 ˘ 0.001889 0.099276 ˘ 0.001935 0.099127 ˘ 0.001467
WSC09-5 0.096114 ˘ 0.001512 0.096312 ˘ 0.001287 0.096085 ˘ 0.002181 0.096102 ˘ 0.001248

hand, if we give this child a chance to be evaluated on the
neighboring task, i.e., T2, resulting in a good fitness value, it
can survive to the next generation due to its good performance
on T2. We hope such a situation will help to diversify solutions
in the population and make the evolution process more efficient.

V. EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the effectiveness and ef-
ficiency of PMFEA, PMFEA-NT, and PMFEA-AT. These three
approaches are compared to one state-of-art single-tasking EC-
based method, i.e., Fixed Length Genetic Algorithm (FL) [10],
which is reported as a very effective method to find high-quality
solutions for single-tasking service composition problem. In
particular, these PMFEA approaches are utilized to find optimal
solutions for Task 1, Task 2, Task 3 and Task 4 concurrently
while FL is utilized to optimize each task one by one. One
benchmark, i.e., WSC-09 [21] extended with QoS attributes
from [22] is used as a benchmark, which is popularly used in
related works [2], [11]. This benchmark contains five datasets,
i.e., WSC09-1 to WSC09-5. Each dataset that includes one IT ,
one OO is extended with four pre-defined QoSM preferences of
user segments: p0, 0.25s, p0.25, 0.5s, p0.5, 0.75s, and p0.75, 1s.
Furthermore, to demonstrate that PMFEA can maintain high
performance on large-scale problems, we double the size of the
service repository for each task with 1144, 8258, 16276, 16602,
and 30422 services respectively.

The size of the population m is set to 30, which strictly
follow the population size of FL [10]. The assortative mating
rand is set to 0.3, following the popular evolutionary multitask-
ing setting in [17]. The maximum generation gmax is 200. For
the compared FL [10], we use its reported setting: crossover

and mutation are 0.95 and 0.05 respectively, tournament size
is set to 2 and elitism is set to 2. The weights in the fitness
function Eq. (2) are set to balance quality criteria in both QoSM
and QoS, i.e., w1 and w2 are set to 0.25, and w3, w4, w5 and
w6 to 0.125 [6]. The weights Eq. (3) are set to balance all
quality criteria in QoSM, i.e., w7 and w8 are set to 0.5. We
have also conducted tests with other weights and parameters
and generally observed the same behavior.

A. Comparison of the Fitness

We use an independent-sample T-test with a significance level
of 5% to verify the observed differences in mean fitness over
30 runs. In particular, a pairwise comparison of approaches was
carried to rank the performances of all the approaches based on
the number of times they were found to be better, similar, or
worse than the others. We highlight the best performances and
the worst performances in green and red colors, respectively, for
related values in the tables. Note that all values in a row are
highlighted in green implying no significant differences among
all the approaches for the task.

First, all the multitasking approaches, i.e., PMFEA, PMFEA-
NT, and PMFEA-AT, outperform FL [10] since the most values
related to FL [10] in Tables I are marked in red color. This
observation agrees with the findings in work [14] that multi-
tasking is more competent at improving the quality of solutions
by utilizing the knowledge of other tasks through assortative
mating.

Second, the quality of solutions produced by MFEA-NT is
the most favorable one since all the solutions are marked as
best performance except one that is marked with an average



Table II: Mean execution time (in s) for our approach in comparison to [10]
(Note: the shorter the time the better)

All tasks (Task 1, Task 2, Task 3 and Task 4)
Method MFEA-AT MFEA-NT MFEA FL [10]

WSC09-1 54 ˘ 52 44 ˘ 32 79 ˘ 87 150 ˘ 151
WSC09-2 1900 ˘ 1032 1925 ˘ 702 2371 ˘ 804 8479 ˘ 3002
WSC09-3 1479 ˘ 1257 1542 ˘ 1159 1821 ˘ 740 5926 ˘ 3199
WSC09-4 64311 ˘ 16843 60925 ˘ 16311 71903 ˘ 19042 250146 ˘ 55355
WSC09-5 12943 ˘ 6615 12456 ˘ 6094 13689 ˘ 6723 47879 ˘ 16126

performance in Tables I. This corresponds well with our ex-
pectation that careful selections of the neighborhood structure
can contribute to searching good solutions effectively. It is due
to that the implicit knowledge of solutions (i.e., the order of
services used for composition) on one task can potentially be
more effectively transferred to the neighboring tasks.

Third, MEFA and MFEA-AT are comparable to each other,
and both are less favorable to MFEA-NT since its perfor-
mance varies on different tasks, i.e., 16 out of 20 tasks as
best performance and 4 out of 20 tasks are marked as worst
performance in Tables I. MEFA strictly follows the vertical
cultural transmission, so it loses the chance to transfer implicit
knowledge to other tasks. On the other hand, although MFEA-
AT assigns candidate solutions to all tasks for evaluations, it
can be easily trapped in local optima, e.g., all the four tasks in
WSC09-2. It may due to that candidate solutions only inherit
the most effective task over all the tasks and make a locally
optimal choice each time. Such a greedy strategy can easily
lead to local optima.

B. Comparison of the Execution Time

Table II shows the execution times observed for MFEA-AT,
MFEA-NT, MFEA and FL [10] on the four tasks as a whole.
Again an independent-samples T-test has been conducted over
30 runs.

MFEA, MFEA-NT, and MFEA-AT require significantly less
execution time while FL [10] consistently takes four times
the execution time of MFEA, MFEA-NT and MFEA-AT ap-
proximately in the worst cases. e.g., mean execution time for
WSC09-3. It is due to that FL [10] is a single-tasking EC
technique that optimizes four tasks separately, unlike MFEA,
MFEA-NT and MFEA-AT.

MFEA-NT achieves the shortest execution time for each
dataset consistently. Meanwhile, MFEA-NT and MFEA-AT
are very comparable to each other. It corresponds well with
our expectation that the execution time of PMFEA can be
reduced due to the effective knowledge transformation across
different tasks through the introduced neighborhood structure
over multiple tasks.

C. Comparison of the Convergence Rate

We investigate the convergence rate of PMFEA-AT, PMFEA-
NT, PMFEA, and FL [10] on four tasks over 30 runs, and use
WSC09-3 as an example to illustrate the performance of all the
compared methods.

Fig. 4 shows the evolution of the mean fitness value of
the best solutions found along 200 generations for all the

Figure 4: Mean fitness over generations for tasks 1-4, for
WSC09-3 (Note: the larger the fitness the better)
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approaches. Among all the four tasks, we observe a significant
increase in the fitness value towards the optimum for all
the approaches, which eventually reach a plateau with more
stable improvements. In particular, PMFEA converges much
slower consistently than all the other approaches. PMFEA-NT
and PMFEA-AT converge much faster than PMFEA and are
comparable to each other. This observation further agrees with
our findings that evaluating an offspring on neighbor tasks or
all tasks are essential for multitasking service composition with
more than two concurrent composition tasks. On the other hand,
FL [10] happens to converge very fast at early generations, but
PMFEA-AT, PMFEA-NT eventually get a chance to catch up
with FL [10] in later generations, such as convergence rates
over Task 1, 3 and 4.

VI. CONCLUSION

In this paper, we model multiple service composition tasks
for user segments with different QoSM preferences as a multi-
tasking problem and propose a permutation-based multifactorial
evolutionary algorithm to solve this problem. We also introduce
a neighborhood structure over multiple tasks to allow newly
evolved solutions to be evaluated on related tasks without
incurring extra computation time. This structure is vital for



supporting more than two tasks. Our proposed method can
perform better at the cost of only a fraction of time, compared
to one state-of-art single-tasking EC-based method. We also
found that the use of the proper neighborhood structure can
enhance the effectiveness of our approach.
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APPENDIX

A. Assortative Mating

The procedure of assortative mating for breeding offspring for K
composition tasks is outlined in ALGORITHM 2.

ALGORITHM 2. Assortative Mating [14]

1: Randomly select two parents Πg
a and Πg

b from Pg;
2: rand Ð Randp0, 1q;
3: if τΠg

a “ τΠg
b or rand ă rmp then

4: Perform crossover on Πg
a and Πg

b to generate two
children Πg

c and Πg
d;

5: else
6: Perform mutation on Πg

a to generate one child Πg
e ;

7: Perform mutation on Πg
b to generate one child Πg

f ;

B. Vertical Cultural Transmission

Vertical cultural transmission via selective imitation is illustrated
in ALGORITHM 3, where any child produced by assortative mating
is only evaluated on one selected task that is determined by the skill
factors of its parents.



ALGORITHM 3. Vertical Cultural Transmission Via Se-
lective Imitation [14]

1: if Πg
k is produced by two parents Πg

a and Πg
b then

2: Generate a random rand between 0 and 1;
3: if rand ă 0.5 then
4: Πg

k imitates the skill factor τΠg
a of Πg

a;
5: Πg

k is only evaluated on task T
τΠ

g
a

;
6: else
7: Πg

k imitates the skill factor τΠg
b of Πg

b ;
8: Πg

k is only evaluated on task T
τΠ

g
b

;

9: else
10: Let Πg

e be the only one parent of Πg
k;

11: Πg
k imitates the skill factor τΠg

e of Πg
e ;

12: Πg
k is only evaluated on task T

τΠ
g
e

;
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