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Abstract—The survivable network concept refers to contexts
where the wireless communication between ground agents needs
to be maintained as much as possible at all times, regardless
of any adverse conditions that may arise. In this paper we
propose a nature-inspired approach to survivable networks, in
which we bring together swarm intelligence and evolutionary
computation. We use an on-line real-time Genetic Algorithm to
optimize the movements of an UAV swarm towards maintain-
ing communication between the ground agents. The proposed
approach models the ground agents and the UAVs as boids-
based swarms, and optimizes the movement of the UAVs using
different instances of the GA running independently on each UAV.
The UAV coordination mechanism is an implicit one, embedded
in the fitness function of the Genetic Algorithm instances. The
behaviors of the individual UAVs emerge into an aggregated
optimization of the overall network survivability. The results
show that the proposed approach is able to maintain satisfactory
network survivability levels regardless of the ground agents’
movements, including for cases as complex as random walks.

I. INTRODUCTION

In survivable networks domain there is currently a growing

interest to employ swarms of UAVs that act as relays for

maintaining wireless communication between the agents of

a ground swarm. Network survivability refers to the extent

to which the group of ground agents remains connected or

recovers from connectivity loss, when obstructions for the

wireless communication occur [1], [2]. These obstructions can

be actual physical obstacles (i.e. mountains, forests, buildings),

or, simply, the distance between the ground agents, which

naturally attenuates the radio signals. The use of UAVs,

especially rotary wing UAVs, as relays for the ground agents is

gaining great popularity at both theoretical and practical levels,

in application fields like search and rescue in disaster areas,

large scale farming operations, military operations, internet of

things, autonomous cars and transportation, and many others.

In such contexts, the UAVs continuously adjust their positions

to the movement pattern of the ground agents, so that the

ground communication is maintained as much as possible at

all times. The main challenges associated to the above are

related to the mobility models employed for implementing the

movement of the individual UAVs, and to the coordination

mechanisms available for the individual UAVs to perform well

collectively as a relay swarm [3].

In this paper, we use a nature-inspired approach that

combines swarm intelligence and evolutionary computation

to provide ground network survivability regardless of the

ground agents’ movements. To address the challenges men-

tioned above, we propose an implementation of the UAVs’

mobility which is inspired from the classic boids model of

Reynolds [4]. The proposed model uses modified versions

of the two key concepts of the classic boids: the interaction

based on the concept of neighborhood, and the position update

rule based on the weighted sum of a set of primitive forces.

The modifications we propose are that the neighborhood is

network-based [5] instead of the classic vision-based [4], and

the update rule includes forces from outside the swarm, not

only from within. The influence from outside comes from

the ground agents, whose movements have to be tracked by

the UAVs. Further, to couple the proposed mobility model

to the survivable networks problem, we propose an on-line

real-time genetic algorithm that optimizes the weights in the

update rule towards maximizing the network survivability. The

genetic algorithm runs in multiple independent instances in

parallel (i.e. one instance on each UAV), and embeds in its

fitness function a network coverage metric. The way the fitness

function is defined contributes to addressing the coordination

challenge too. By attempting to maximize their individual

coverages, the UAVs take individual quasi-greedy actions

which aggregate to form an implicit coordination mechanism

that maximizes the ground network connectivity (which is the

metric we use to evaluate the network survivability).

In addition to the main contributions mentioned above, we

also contribute to the mobility model of the ground agents,

which we implement using Reynold’s classic boids, with no

modification of the key concepts. This leads to a dual boids-

based swarm with evolution view on survivable networks,

where the ground swarm operates independently to simulate a

certain mission in the field, and the airborne swarm operates

as a networked boids-based swarm with inputs from both air

and ground agents. This view offers two other benefits, which

are typically not found in the evolutionary swarm applications

related to survivable networks. The first benefit of considering

the dual swarm is that the number of parameters used to

model the system is overall very low, facilitating evolutionary

optimization approaches in general, and our proposed GA

in particular, to run in real-time. Thus, very complex non-

deterministic behaviors can be obtained by optimizing only a

very small number of weights, associated with the boids forces
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that implement the swarm behavior. The second benefit, which

flows from the first one, is the scalability of the system. Due

to the small number of primitive forces typically involved by

boids-based swarms, the number of agents used in experiments

(both airborne and ground) is virtually irrelevant. Thus, very

large systems, with very complex behaviors can be investigated

with fairly low computational power required.

With the proposed approach, we perform experiments using

the swarm of ground agents in two contexts. First, the ground

agents operate as pure classic boids, and then as random

walkers. The former case implements a very general movement

pattern, while the latter implements no movement pattern

at all. Arguably, the less pattern exists in the movement of

the ground agents, the more difficult it is for the UAVs to

track them and provide network survivability. Thus, ideally,

it would be desired that the UAVs provide ground network

survivability regardless of the ground agents’ movements (i.e.

with or without a coherent pattern). While that is not the

case in practice, we demonstrate in our experiments that the

proposed real-time GA, in conjunction with the boids-based

UAV mobility model, is able to provide very good results

for the boids-based ground movement and also satisfactory

results for the random walks. In summary, the results we obtain

offer convincing evidence that the methods employed ensure

network survivability for complex ground activity, including

good responsiveness to activities that have no pattern at all,

such as random walks.

II. BACKGROUND

Historically, the network survivability problems have been

first approached using ground relays, either fixed or mobile.

Later, high-altitude airborne relays like satellites and fixed-

wing aircraft have been used. However, both the ground and

the high-altitude approaches have substantial limitations in nu-

merous respects. The very first issue is their limited ability to

reach (or follow) the ground agents in difficult locations, such

as densely forested areas, densely built urban areas, indoors,

or underground; that is, a significant mobility issue. Other

limitations, which are equally important, are the difficulties in

scaling the systems, and also the technological complexity of

the hardware and communication technologies employed. This

has led to studies that involved very low number of agents,

where the very concept of swarms is not really applicable.

Typical scenarios in these studies implement very low scale

systems with 1 relay agent and 2 ground agents [6], [2],

few relay agents to support communication between a single

mobile ground agent and a fixed base station [7], or few relay

agents and few ground agents [8], [9], [10], [1].

More recently, the advances in drone technology allowed

the use in these contexts of miniaturized rotary-wing UAVs

(i.e. multicopter drones), which provide high mobility and

versatility at relatively low cost. This allowed for a wider

range of mobility models to be employed for the UAVs, which

in turn facilitated the investigation of a wider range of air-

ground systems. The mobility models employed by the UAVs

refer to the individual control and the group-level cooperation

mechanisms that allow the UAVs to find, either individually

or collectively, the optimal air trajectories/positions for maxi-

mizing the communication capabilities of the ground agents.

Early studies on mobility discussed models as simple as

random mobility [11], which later generated the more complex

concept of chaos enhanced mobility [12], [13], [14]. Other

studies proposed analytic and/or parametric approaches with

fixed pre-tuned parameters [15], [8], [9], [16], [17], [10],

[18]. However, both these directions of research suffered from

limitations related to scalability.

More recently, various nature-inspired algorithms have been

used in the mobility models, such as ant colony pheromone-

based mobility [11], bat algorithms [19], or boids-based finite

state machines [8]. Evolutionary computation, which is of

particular interest for this paper, has been also employed in

various forms in UAV path planning and coordination. One

class of studies used evolution as standalone method for the

mobility, where evolutionary algorithms evolve parameters

of the controllers used in the individual UAVs [7]. These

studies do not account for the collective behavior of the

UAVs, that is, they apply only to individual agents, with no

coordination mechanisms in place. Another class of studies

employs evolutionary algorithms that contribute to both the

individual and group mobility of the UAVs [20], [21], [22].

One important issue of the evolutionary algorithms in these

contexts is their limited ability to operate on-line, in real-

time, due to the relatively slow convergence [23]. Thus, most

of the studies report off-line and/or centralised algorithms in

relation to the survivable networks domain. In [20] the authors

use a centralised Genetic Algorithm to evolve parameters

for the behavior of UAVs, where the behavior of the UAVs

is based on a small set of primitive individual actions and

transitions (5 possible actions and 11 transitions), however,

the coordination mechanism requires global knowledge, or

at least a persistent trace left in the environment by each

UAV. Lamont et. al [21] use a multi-objective evolutionary

algorithm that operates quasi locally, based on the pinning

concept from control theory. The objectives are related to the

cost of operation (distance distance traveled and amount of

climbing), and to the risk resulting from flying through difficult

areas. The solution set offers paths that provide the lowest cost

associated with a particular level of risk.

To alleviate the real-time operation issue, Particle Swarm

Optimization (PSO) methods have been proposed, or hybrid

methods that combine GAs and PSO. In [22], a comparison

between the two directions is discussed, where the authors

show that the speed of PSOs and GAs can vary greatly de-

pending on the type scenario they are employed for, however,

in most of the scenarios the PSO is faster, and therefore more

appropriate for real-time use. PSO’s speed gain over GAs is

also reported by Tang et. al [23], who use a PSO method for

UAV coordination, and also by Duan et. al [24], who use a

hybrid PSO-GA for multi-UAV formation control.

In spite of the issue discussed above, the GA we propose

in this paper is fast enough to operate in real-time for the

scenarios considered, which include 4 UAVs and 100 ground



agents. While the GA itself is designed to operate in real-

time, and therefore is fast, there is also the boids-based

mobility model we propose, which contributes to its speed

via the low number of parameters to be optimized. Another

contribution to the speed of the GA, and also to the scalability

of the system, is the level of integration we adopt for the

UAVs’ and ground agents’ behaviors. As far as we know,

there is no attempt in the current research to implement both

the ground agents and the UAVs using the same conceptual

model. The existing studies consider the airborne and ground

agents as separate groups, and as a result, their operation and

mobility are implemented using different conceptual models.

By considering the ground agents as a boids-based swarm

too, we integrate seamlessly the air-ground operation (i.e.

two boids-based swarms with slightly different settings of the

parameters). Thus, the parameters in the GA that come as

inputs from the ground swarm are only a few (i.e. 2), and

of exactly the same type as those corresponding to the UAV

swarm. The details of the proposed methodology are provided

below, in Section III.

III. METHDOLOGY

In this paper, we consider that the UAVs fly at a constant

low altitude that does not affect their communication with the

ground. Thus, the vertical distance between the UAVs and

ground level can be neglected from a networking perspective,

as there is no variation in communication conditions due to

altitude changes. For the ground agents, we consider that they

operate on a flat field with no obstacles. This means they can

move freely across the field, with the only restriction being

to avoid collisions with each-other. This type of environment

has been successfully used as a test-bed in other studies on

survivable networks [8], [20].

We model the swarming behaviours of the two types of

agents, airborne and ground, based on the classic boids model

of Reynolds [25], which means, all agents, airborne and

ground, are flocking boids. We use the two key concepts of

the original boids model, i.e. the neighborhood-based inter-

action and the three boids forces: cohesion, alignment, and

separation. However, we propose an enhanced version of these

concepts, and we enrich these concepts to suit our approach

to the survivable networks context.

In the following sections, we describe in detail the method-

ology used for implementing the ground and UAVs, with the

subsequent optimization algorithm, and the metrics used for

evaluating the network survivability.

A. Measuring Survivability

The ground network survivability can be measured using

to major concepts: coverage and connectivity. The coverage

refers to the number of ground agents situated within the

aggregated area that contains the communication range of

all UAVs, as shown in Figure 1a. In this case, the ground

agents covered by one of the UAVs can communicate between

them, but cannot communicate with those covered by the other

UAV. As a result, the ground agents do not form a complete

connected network; there are two sub-networks where each

UAV acts as a relay for its own current local ground network.

The coverage is defined very straightforward, as the number

of ground agents covered by all UAVs.

(a) A full coverage network

(b) A full connected network

Fig. 1: Full coverage v.s. full connectivity, via two UAVs with

communication range R.

The connectivity refers to the situation when the agents are

able to communicate regardless of which UAVs’ coverage they

belong to. Figure 1b illustrates a full connectivity case, where

a fully connected network is established when all UAVs are

close enough to be able to communicate between them, and

thus relay the communication between any ground agent. If the

ground swarm is fully connected, then it is also fully covered,

but not the vice-versa. The connectivity is typically modeled

based on the graph theoretical concept of connected network

component [26]. A connected component is a sub-graph where

any two nodes are connected to each other. Therefore, we

define the connectivity metric as the number of connected

components that exist at a moment in time within the swarm

of ground agents. Ideally, the connectivity should have the

value 1, which means there is only one sub-graph which is



equal to the entire network. In this case, the ground swarm is

fully connected via the UAVs (i.e it operates as an equivalent

full connected graph from a graph theory perspective). In

practice, less perfect cases are still acceptable, where there

are more than one connected components, but among them

one or several giant connected components [27] exist.

In this paper we use the connectivity as the main metric for

evaluating the ground network survivability, and we use the

coverage in the fitness function of the optimization algorithm.

While this may appear as an inconsistency, we demonstrate

that it is possible to use the coverage as the objective for

the optimization engine of each individual UAV, and obtain

a maximization of the connectivity at the swarm level. This

process actually implements an implicit coordination mecha-

nism embedded in the individual goals of the UAVs (this is

explained in detail in Section III-D).

B. Modelling the Ground Agents

The ground agents implement entirely the classic boids

model. They follow the three boids rules, which are applied as

a result of the influence received from their ground neighbors,

where the neighborhood is defined by agents’ vision distance

vd and a vision angle vα. We recall that in survivable networks

contexts the ground agents operate in the field to accomplish

a certain task, and are not aware or concerned about the

existence of the airborne support. Thus, the movement of the

ground agents is not influenced by the UAVs. The three boids

forces (i.e vectors with magnitude and heading) applied to the

ground agents are described below.

a) Cohesion Force (C): describes the tendency of an

agent to move towards its neighbors’ location, and is calculated

based on the centre of mass (average position) of all agents

in its neighborhood.

b) Alignment Force (A): shows the tendency of the agent

to align with the direction of movement of its neighbors, and is

calculated based on the average heading of all the neighbors.

c) Separation Force (S): expresses the tendency of

agents to steer away from their neighbours in order to avoid

crowding them or colliding with them. The agents need to keep

a minimum ground safe distance (SDG) from their neighbors.

Once the forces are calculated based on the neighbours

influence, the velocity V of a ground agent at time step t

is updated using the following equation:

V (t) = V (t− 1) +WC · C(t) +WA ·A(t) +WS · S(t) (1)

where WC , WA, and WS are weights corresponding to the

cohesion, alignment, and separation forces. The weights are

constant for the ground agents, since their behavior is fixed

(i.e. they perform a certain task). Based on the velocity update,

the position P of a ground agent at time step t can be updated

as follows:

P (t) = P (t− 1) + V (t) (2)

In addition to the boids-based swarming behaviour, we also

consider the case when the ground agents move at random.

This allows us to investigate the performance of our proposed

approach in the most general case, when the ground agents

have no movement pattern at all. In the context of boids-

based swarming, a random walk movement equates with a

swarm in which the cohesion and alignment forces do not

exist. However, the agents still need to keep the safe distance

from neighbours; hence, the separation force is still applied.

C. Modelling the UAVs

The UAVs form another boid-based swarm, which embeds

the three classic boids forces showing the influence from

the neighboring UAVs, and two other additional forces that

represent the influence from the neighboring ground agents.

Unlike the classic boids model, for the UAVs the neighborhood

is not defined by vision, instead we use an omnidirectional

communication range R. We recall that the purpose in surviv-

able networks is for the UAVs to move according to the ground

agents’ movement, so that they facilitate communication. This

means, they tend to follow/track the ground agents in order

to provide the network relay service. Thus, we consider

that an UAV is influenced by the movement of the ground

agents situated in its neighborhood (i.e. communication range)

through the cohesion and alignment forces. The separation

force is not applied, since there is never a risk of collision

between a ground and an UAV.

The three classic forces applied between UAVs are defined

just like the ones for the ground agents, that is, according to

the original study of Reynolds [4]. The other two forces, cor-

responding to the influence from ground agents, are described

below.

a) Air-Ground Cohesion Force(CAG): All ground agents

situated within the communication range R of an UAV Ai form

the set of ground neighbors NG of that UAV. Each ground

neighbor gj ∈ NG satisfies dist(Ai, Gj) < R. Then, the air-

ground cohesion force CAGi
applied to UAV Ai at time t can

be derived from the position of its ground neighbours as in

Equation 3.

CAGi
=

∑|NG|
j=0

PGj

|NG|
− PAi

for each Gi ∈ NG (3)

where, |NG| is the cardinality of NG, P is the position of an

agent.

b) Air-Ground Alignment Force (AAG): The air to

ground alignment force (AAGi
) of an UAV Ai at time t is

derived from the velocities of all its ground neighbors NG as

in Equation 4.

AGAi
=

∑|NG|
j=0

VGj

|NG|
− VAi

with i 6= j (4)

where |NG| is the cardinality of NG, and V is the velocity of

an agent.

Once all five forces are calculated, the velocity VAi
(t) of

each UAV Ai is updated as follows:

VAi
(t) =VAi

(t− 1)+

+WCA
CAi

(t) +WAA
AAi

(t) +WSA
SAi

(t)

+WCAG
CAGi

(t) +WAAG
AAGi

(t)

(5)



where W s denote the weights of the forces in the update rule.

Then, the position PAi
at time t of each UAV Ai can be

updated as in Equation 6.

PAi
(t) = PAi

(t− 1) + VAi
(t) (6)

The rules considered above for the UAVs allow them to

move according to a boids-based swarming behavior, where

the behavior is guided by the interaction with both airborne

and ground agents. However, the swarm behavior alone does

not guarantee optimal connectivity services for the ground

agents. Unlike the ground agents, the force weights of the

UAVs are not constant, since their movement need to adapt

comtinuously to the ground activity. Therefore, an optimiza-

tion of the force weights at each time step is needed in order

to achieve the best connectivity for the ground agents. The

optimization algorithm is described in detail in Section III-D.

D. A Decentralized Real-Time Genetic Algorithm

In this paper, we propose an decentralized real-time genetic

algorithm as optimization method for the UAVs’ movement.

We mentioned above that the force weights need to be

optimized. This can be done in two ways. One way is to

optimize the weights in the same way for all UAVs. This

means that at each time step, the current optimal set of weights

is used by all agents. This is similar to employing a centralized

optimization for the whole swarm. We are interested to make

the UAVs individually adaptive, therefore each UAV runs its

own optimization engine to obtain its own set of optimal

weights at each time step. Thus, each UAV attempts to

optimize independently its own five force weights plus the

speed, with the purpose of providing better connectivity to

the ground agents. In this case, a coordination mechanism is

also required. Our approach is that an explicit coordination

mechanism is not needed, instead, the way we define the

fitness function of each individual agent leads to an implicit

coordination capability.

Figure 2 illustrates how each UAV has its own optimization

engine, which relies on a population of chromosomes. At each

time step, only one chromosome is active, representing a valid

decision in the simulation; all other chromosomes represent

shadow agents, which are evolved in the GA but do not take

effect in simulation. The structure of the chromosomes is

the same for all UAVs, i.e. they are vectors with 6 compo-

nents s,WGA,WGC ,WAA,WAC ,WAS , where W s are force

weights and s is the speed. The value ranges for the genes in

the chromososes are as follows. The speed of an UAV can vary

from 0 (hovering) to 5. The separation weight needs to be high

in order to maintain safety. Hence, it can take values between

0.5 and 2. All other weights (i.e. WGA,WGC ,WAA,WAC )

can take values from 0 to 0.5.

Ideally, each UAV would run the GA at each time step;

however, a certain time is needed for the evolution to reach

meaningful results. For this reason the agents run the GA

every t′ time steps instead of every time step. This means

that the GAs run in time windows of duration t′, where the

duration is the stopping condition. This affects the quality

of the optimal solution at each run, but ensures that overall

throughout the swarm simulation, the aggregated optimization

process runs virtually real-time. The use of GAs in time

windows also allows a past/historical period of duration t′,

as well as a future/prediction period of duration t′ to be used

for optimization as part of the fitness function. This will be

explained below.

Consider an arbitrary agent and an arbitrary time window

within the swarm simulation timeline. The agent starts running

a GA. In the beginning of the GA, a population of chro-

mosomes is randomly generated within the ranges discussed

earlier. One chromosome is selected randomly (illustrated in

Figure 2 as coloured rows) to be an active chromosome.

The active chromosome will be used in the actual swarm

simulation, and the speed and force weights will be applied

in simulation to produce actual position updates. All other

chromosomes represent shadow agents, which update their

virtual positions accordingly, but these positions will not

reflect in the actual simulation. The shadow chromosomes have

their fitness evaluated, a tournament selection with elitism is

performed, and one point crossover and mutation are applied

for producing the next generation. Then, the best solution

among the current population is chosen to become the active

agent, and its updates take effect in simulation, while the rest

of the chromosomes continue to operate as shadows. The pro-

cess ends when the time window ends, and the current active

chromosome takes effect in the simulation; i.e. it represents

the decision of the agent.

The fitness function used in our GA is built upon the

number of ground agents covered by an aerial agent and

its neighbouring aerial agents (i.e. one hop airborne network

links), with the consideration of both historic and predicted

states.

F =

t∑

k=t−t′

NG(k) +NG(t+ t′) (7)

where NG is the total number of ground agents covered by an

UAV and its neighbouring UAVs, calculated as below:

NG(t) = N(t) +

NA∑

i=1

|Ni(t)| (8)

This fitness function considers the local coverage and the

intermediate connected UAVs’ coverage. It does not consider

any indirectly connected UAVs’ coverage, in order to save

network bandwidth and computation cost. The GA aims to

maximize the fitness; this means, to increase the local cov-

erage as well as the number of neighbouring connections for

establishing better connectivity.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The size of the environment is 1000 × 1000 units. In the

environment operate 100 ground agents and 4 UAVs for a

duration of 22000 time steps. The ground agents are initialized



Fig. 2: Chromosomes of each UAV in the Decentralized GA. Triangles are UAVs; squares are ground agents

with random positions. The UAVs are initialized to form a

300 × 300 units square situated in the center of the environ-

ment, which means, a fully connected airborne network. There

are a total of 30 random number generator seeds for initialing

the ground agents in our experiments. Along with each ground

agents initialization, each UAV initializes 50 chromosomes

randomly (the size of the population in the GA) and then runs

the GA repeatedly in t′ time windows. Therefore, there are

total 30 runs for each scenario, to ensure statistical validity of

the algorithm.

As mentioned earlier in the paper, two scenarios are used

for the ground agents behavior to evaluate the proposed

decentralized approach: classic boids and random walk. The

parameter setting for each of the scenarios is listed in Table I.

TABLE I: Two ground movement patterns, implemented via

various force weights applied to ground agents.

Scenarios Cohesion Alignment Separation

Classic Boids (CB) 0.01 0.125 1

Random Walk (RW) N/A N/A 1

The neighborhood for the ground agents is defined by vd =
30 units, and vα = 360 degrees. The neigborhood for the

UAVs is defined by the radius of coverage, which has the

constant value R = 300.

B. Discussion of Results

The first set of results, illustrated in Figure 3, shows the

connectivity of the ground agents over time in the best cases,

from both scenarios. It can be seen that, by using the proposed

optimization algorithm, the swarm of UAVs is able to maintain

high connectivity, i.e. there are very few disconnected network

components. This results in very good survivability, with the

number of connected components equal or close to equal to

1 most of the time in the boids case, and lower than 20 for

the random walks case. Another aspect that can be observed

in the boids case, is that from time to time there are spikes

that show lower survivability. This is due to a bounce-back

boundary condition, where agents reflect from the boundary
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Fig. 3: Connectivity comparison between boids and random

walk

of the environment. The bounce-back movement breaks the

swarm behavior for a short period of time until the ground

agents regroup in a new swarm formation. This shows that the

proposed algorithm is able to recover from a large connectivity

loss, and quickly provide high survivability for the newly

formed swarm. The bounce-back movement has no visible

effect in the case of random walks, since there is no movement

pattern anyway.

Further, we are interested to see what is the amount of time

a certain level of survivability is ensured, since the previous

set of results did not show this very clearly. For the same sim-

ulation, i.e. the one with the best survivability results, we show

in Figure 4 the percentage of time a certain connectivity was

achieved. This is a remapping of the information presented in

Figure 3, to show a time summary of the connectivity measure.

It can be seen that in the boids scenario the connectivity value

is 1 for more than 50% of the time, which means the ground

network is fully connected. For the random walk scenario, the

graph shows lower, but still acceptable level of performance.

The previous results showed the connectivity, which is

measured as the number of connected components. However,



(a) Boids

(b) Random walk

Fig. 4: The frequency of connect components from the best

runs of boids and random walk

they do not show the size of the connected components. Thus,

for example, if a connectivity of 2 has been achieved, the two

connected components may consist of 50-50 nodes, or they

may consist of 95-5 nodes. The two examples are significantly

different, with an obvious advantage of the latter case. Thus,

the strength of the proposed approach may be overshadowed

by this aspect, and the results shown in the previous figures

may lead to the conclusion that the results are not a substantial

achievement. We investigate this aspect by calculating the size

of the largest three connected components, for the best runs.

The results shown in Figure 5 are convincing. It can be seen

that the largest component contains over 70 nodes even in the

random walk scenario, while in the boids scenario it contains

most of the time over 90 nodes.

To further clarify what “most of the time” means, we show

in Figure 6a the amount of time (as percentage of the total

simulation time) certain numbers of nodes are part of the

largest connected component, in the best simulation run. This

is in essence the same information presented in Figure 6 for

the largest component, remapped as a time summary. It can

be seen, especially in the boids scenario, that over 40% of

the simulation time the largest component contains all the

nodes, i.e. all the ground agents. However, the results are

acceptable even in the random walk scenario, where the largest

component contains over 70 nodes for more than 50% of the

time.
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Fig. 5: The number of agents in TOP 3 largest sub-networks

- from the best simulation run

V. CONCLUSIONS

In this paper, we presented a nature-inspired approach to

network survivability, which combines swarm intelligence and

evolutionary computation. The proposed approach models the

ground agents and the UAVs as a dual air-ground swarm

that uses boids-like rules, and optimizes the movement of the

UAVs using a decentralized real-time genetic algorithm. The

proposed approach provides seamless integration of the ground

and air swarms of agents, while also facilitating scalability and

airborne responsivity to complex general ground behaviors.

The results obtained in simulations demonstrate that the

mobility model used for the UAVs, and the associated evolu-

tionary optimization algorithm are able to provide good levels

of network survivability for complex ground movements,

including the case of no movement pattern.

We believe that the conceptual approach presented in

this work can be successfully extended to a large variety

of scenarios. In this paper we only used the three classic

forces (cohesion, alignment and separation) that govern the

emergence of swarming. However, numerous other behaviors

(with their subsequent forces) can be investigated, such as

leader following, flow field following, path following, obstacle

avoidance, and many others. To the proposed approach more

forces can be easily added, since the mobility model and the



(a) Boids
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Fig. 6: The number of agents over time (percentage) in the

largest sub-network - from the best simulation run

optimization algorithm depend mainly on the weights of these

forces. Therefore, the approach is both size-wise and context-

wise scalable.
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