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Abstract—The manufacture and creation of large scale high
value structures has been done by humans for centuries. Exam-
ples include the Egyptian pyramids, Bridges, Modern Skyscrap-
ers to mention a few. These structures are large but also provide
a high value in terms of economy, culture, display of prestige to
mention a few. With advances in space technology, we are bound
to see these large scale high value structures constructed in space.
The vacuum of space present us with the challenges of repairing
these structures. This is due to the inhospitable and dangerous
environment of space. With increasing number of structures in
space, there is bound to be more debris created resulting in
high impact damages to these high value structures. Inspired
by the biological blood clotting process and biological active
particles, in this work, we propose the use of a swarm of live
on artificial active particles for the purposes of continuous and
timely repair of these structures. We tackle one of the challenges
of artificial active particles research; the ability to navigate in
crowded and obstacle filled environments. This challenge can
be viewed from the perspective of a constrained multi-objective
optimisation problem in which a balance between exploration of
an environment and its exploitation needs to be achieved while
taking into consideration the various other constraints that apply
to an active particle. In this work, we show how artificial active
particles could avoid obstacles in their environment through
the use of an exploration mechanism and find damaged sites.
Our results show that as the ability to explore increases, the
active particles are able to navigate around obstacles and find a
damaged site. However, there is a limit to this.

Index Terms—Active Particles, Swarm Optimisation, Au-
tonomous Repair, Multi-Objective, Brownian motion

I. INTRODUCTION

Satellites and space assets, such as the international space

station, are large scale high value assets that often suffer

damages due to hyper-velocity impact collisions with microm-

eteoroids (natural objects such as dust and rocks) and orbital

debris (human-made objects such as metallic fragments, paint

chips and components from old spacecraft) at orbital velocities

often exceeding 9 km/s [1] [2] (Fig. 1(c)). Such strikes lead to

vital oxygen venting into space as well as render sections of

the spacecraft unusable until fixed. Furthermore, damages are

difficult to repair due to the dangerous and humanly hazardous

area of space vacuum. Such dangerous, repetitive, and dull

nature of the repair work classifies as a job for robots.

(a)

(b) (c)

Fig. 1. Showing the international space station Fig. 1(a) with the probability
of micrometeorite impact risk [2] Fig. 1(b) and a crater caused by a
micrometeorite impact Fig. 1(c).

On earth, large scale high value structures/assets such as

tunnels and sea-based bridges suffer continuous damage due

to heavy usage, water ingress, extreme weather conditions and

sea salt based corrosion. The timely and rapid repair of such

structures is very important in order to prevent catastrophic

loss of life. However, bridges are currently repaired by timely

maintenance schedules [3] which involve humans suspended

dangerously at heights while space structures often require978-1-7281-8393-0/21/$31.00 ©2021 Crown



uncomfortable and dangerous human external vehicle space

walks. In this paper, we propose that an autonomous robotic

repair system comprised of a swarm of millirobots (robots

measured at the millimetre range) that live on structure could

repair damages as they occur. We take inspiration from the

biological blood clotting system that starts healing a damage to

a tissue as soon as it happens. The advantage of such approach

is that it ensures that repairs are done faster thereby preventing

even more damages to the structures or loss of astronaut lives

in the case of long voyage space ships. With private space

companies (e.g spaceX) planning to venture towards the moon,

mars and deep space in a few years, being able to repair a

space ship continuously, autonomously and on the spot will

ensure safety to humans and longevity of space missions [4].

The Blood clotting process is a process by which blood

undergoes a transformation from a liquid state to a gel based

state (coagulation). The stages towards coagulation involves

the following stages: Activation (chemotactic migration blood

platelets to an injury site as soon as it happens); Adhe-

sion (attachment of platelets to site); Aggregation (recruiting

other platelets to site resulting in non-linear feedback of

agents) deposition and maturation of fibrin by platelets [5].

Platelets, the key ingredient of blood clotting, are biological

active particles. Active particles, also known as self-propelled

Brownian particles are capable of taking up energy from

their environment and converting it into directed motion [6].

Artificial active particles are an active research area and

there have been various attempts to synthesize artificial article

particles because of the promise they hold for various purposes

including environmental cleaning and targeted drug delivery to

mention a few.

However, [6] discusses that the current challenges of apply-

ing artificial active particles in various applications includes

the precise and intelligent control of such agents, dealing

with environmental constraints such as obstacles as well as

navigating in the environment. These are challenges limiting

their practical use. In this paper, the novelty of our work lies

in deriving and applying a milli-robot controller based on the

biological model of a natural active particle namely platelets

for the purposes of navigating an environment to provide self-

healing to structures. Our proposed milli-robot would have the

capability to deal with noise in the sensor readings as well as

address the challenges posed by the current state of the art

in literature. Such a developed robot would ensure continuous

monitoring and autonomous repair of high value structures.

In this work, we focus on solving the issue of providing

active particles with the ability to explore and navigate an

environment filled obstacles towards finding the site of damage

on a simulated structure environment.

II. METHODOLOGY

As discussed in the introductory section, the blood clot-

ting process is the process by which blood undergoes a

transformation from a liquid state to a gel based state. This

involves activation, adhesion, aggregation and deposition and

maturation of fibrin (See Fig. 2).

Our approach covers the first three items mostly but in

future work, we plan to go onto artificial fibrin creation. In the

natural blood clotting process, the first three stages are part of

the primary hemostasis in which platelets immediately form a

plug at the site of the injury. Secondary hemostasis occurs

simultaneously where coagulation factors in the biological

pathway lead to formation of fibrin strands that strengthen

the platelet plug.

We focus on primary hemostasis in this work. Our proposed

approach results in a rapid recruitment of other active particles

to the site of damage for the next stage in self-healing. The

area of the injury results in an adaptive recruitment of active

particles leading to a nonlinear feedback cycle. This results

in active particles going from an exploration state to a liquid

state then gel state towards deposition for repair. We describe

the stages in the diagram shown in Figure 3. We now explain

each of the stages below:

Fig. 2. The blood clot process.

• Release state: This is the stage in which the smart

active particles are released when a damage is detected

or to replenish particles that have been used in the repair

process. This leads to exploration of the large structure

towards finding damaged sites. The larger the distance

between the release site and the damaged site, the longer

it will take for the active particles to get to the damaged

site.

• Exploration state: In this stage, the active particles

explore the structure. The parameters of each individual

particle can be assigned and tuned before release towards

controlling exploration behaviour. As will be seen in the

experimental section, the higher the rate of exploration

the increased likelihood that particles will find the dam-

aged site. Taking an analogy of fluids in gas states, the

higher mobility of particles enable them to achieve a gas

like behaviour that enables them to ”diffuse” and explore

the environment.

• Stuck state: During exploration, it is highly likely that

particles would encounter obstacles on structures. This

could cause the agents to be stuck. The more obstacles

in the environment, the more difficult it will be for the

particles to get to the damage site. As a result, a strategy



must be discovered to ensure that they escape from stuck

scenarios.

• Liquid state: The liquid state happens when the particles

get attached to a damaged site. In this state, the particles

start a count down time that transitions them into a gel

state after a threshold value. In this liquid state, the

particles also move more slowly in order to navigate

to the areas of intense damage. This ensures that in the

case of limited number of particles, priority based repair

take place with the most damaged site repaired more

intensively.

• Recruit state: In this state, particles recruit other nearby

actives particles in order to create a non-linear feedback

that ensures repairs start taking place faster. The rate

of recruitment is controlled by the field of influence

generated by individual active particles.

• Gel state: The gel state is not implemented in this work.

However, the aim for this state is that particles either start

secreting repair agents such as polymers to start the repair

process [7].

Fig. 3. The blood clot process.

A. Assumptions

We consider the following assumptions in this current work.

In the future, these assumptions will be relaxed as progress is

made.

• Since active particles take energy from the environment to

do some work, we assume that the robotic active particles

can take induction energy from the structure surface (e.g

space craft hull) or solar energy from the sun to power

their work.

• In the case of the international space station, since the

spacecraft goes round the earth every 90 minutes, in the

worse case scenario, this is how long it should take for

repairs to take place when using direct solar energy.

• We assume in this work that the active particles have a

way of attaching themselves easily to the hull. This could

be via suction, magnetic, electrostatic and other forms of

attachment.

• At this stage of the research, we assume the robots have

a differential or omnidirectional drive.

• Robots have minimal sensors and in this case to measure

the condition of the structure as well as to detect their

neighbours. They find their way around by stochastic

motion similar to brownian motion or diffusion behaviour.

• It is possible to use externally generated electromagnetic

forces to inform agents of a damage as used in micro-

robotics research [8] [9]. This can generate a potential

field for the agents to flow and navigate towards the

problem. However, this could present challenges when

obstacles are encountered. In this work, we assume that

there is no global field that pulls agents towards the site

of damage. Instead, there are only localised damages that

generate local fields. As a result, agents have to explore

an environment while avoiding obstacles to discover

damaged sites.

B. Individual Active Particle Controller Definition

In this section, we describe a foraging chemotactic con-

troller capable of using stochastic behaviour to explore the

environment as well as use chemotactic behaviour to navigate

up a noise gradient once a damage site is found. This is

inspired by the biological active particle, bacterium, whose

motion can be described according to Equations 1 to 3.

τ =

{

τoexp(α
dPb

dt
) if C(x, t) > 0

τo else C(x, t) = 0
(1)

dPb

dt
=

∫ t

−∞

dPb

dt
′
exp(

(t′ − t)

τm
)dt′ , (2)

dPb

dt
=

kd

(kd + C(x, t))2
dC

dt
(3)

Assuming that we represent the damaged sites by a spatial

function C(X) in the environment S(X), C(x, t) is a spatial

measurement obtained by the biological active particle at x and

time t with x ∈ X . τ is the adaptive mean run length value,

τo is the mean run length in the absence of concentration

gradients and α is a amplification constant of the bacterium

chemotactic pathway. Pb is the fraction of the receptor bound

of the agent when measuring concentration C(x, t), kd is

the dissociation constant of the bacterium chemoreceptor and

controls the chemical sensitivity of the bacterium. dPb

dt
is the

rate of change of Pb and dPb

dt
is the weighted rate of change

of Pb.

Equation 2 was implemented in the discrete form using a

memory length of 4 according to a bacterium’s chemosensory

pathway [10]. The above Equations determine the time be-

tween tumbles and hence the length of runs between tumbles.

In this work, during the tumble phase, the agent can randomly

choose an angle in the uniform distribution set σǫ{0, ..., 360}.

We define a control law given by Equation 4 below.

motion =

{

tumble() if counter > τ

run() else counter < τ
(4)

where counter is a variable that is incremented every time step

and gets reset when it is greater than τ .



According to Equation 1, in the absence of spatial readings,

that is C(x, t) = 0, τ = τo. As a result, the agents will still

move about in the environment in search of a spatial function.

C. Relationship Between Individual Motion and a Spatiotem-

poral Distribution

In this section, we shall attempt to show that the proposed

method is capable of providing a priority based coverage to

both spatial and spatiotemporal damages in the environment.

In both [11] and [12], the authors discussed that the motion

of active cells can be described as a Langevin Equation.

Active particles are representations of living organisms that

are capable of moving about in the environment for various

purposes including foraging but are also affected by noise

from the environment. We write the Langevin Equation for

our proposed bacterium algorithm as in Equation 5.

m
δvi

δt
= −λ− τ +

√

2v2τoǫ(t) (5)

where m is mass, the term λ is a frictional term that depends

on the reading C(x, t) obtained from the environment. We

shall define the λ term as Equation 6

λ =
vβ

C(x, t)
(6)

where β is a tuning value and v is the velocity of the agent.

τ is the chemotactic term in the spatial function field C(X)
with the third right hand term simulating the effect of random

changes in the agent’s direction where ǫ represents white noise.

We introduce ω = v2τo as a diffusion coefficient in this work.

This leads to the Fokker Planck relationship of Equation

7 [13] and the stationary distribution of Equation 8. The

stationary distribution shows that as kd increases, the coverage

(exploitation) of the spatial function C(X) provided by the

agent increases while as τo increases, the exploration attribute

of the agent increases [14]. From an optimisation perspec-

tive, this points to a constrained multi-objective optimisation

problem in which one has to obtain a balance of exploration

and exploitation while ensuring the agent can optimally and

feasibly complete the task within its physical constrains [15]

[16].

∂P (X, t)

∂t
= −[λ+ τ ]

∂P (X, t)

∂t
∇C(X) + v2τo

∂2P (X, t)

∂t2
(7)

P (X,∞) = exp(− [λ+ τ ])
C(X)

v2τo
(8)

This shows that if the function C(X) changes with time

(spatiotemporal function), then the spatial distribution P (X, t)
would also change with time. In order to do this however,

it must be ensured that the speed of our agent is faster

than the rate at which the spatiotemporal function changes

or damages in the environment propagates. This is because

it is not possible for an agent to track a function that is

faster than itself. In the case of cracks that develop slowly

overtime, it means that this approach can be used to heal the

cracks and stop them. The Equation 8 also shows that the

healing behaviour of the agent would be dependent on the

distribution of the spatial function C(X) in the environment

thereby suggesting that our agent is adaptable.

If it is assumed that the spatial function C(X) covers the

entire environment S(X), then Equation 8 provides guaranteed

complete coverage as time t → ∞. Future work would

investigate this possibility further and the expected time of

convergence.

D. Macroscopic Equations of Swarm Population Dynamics

Since we plan to deploy a swarm of artificial active particles

onto a structure, we now present a series of Equations that

enable us to understand the dynamics of the swarm at a marco-

level.

There are two ways by which artificial active particles could

be added onto the structure: Continuously or at once. In this

work, we consider the case of all the particles added at once.

In this case, the Equation 9 shows that the total number of

particles NT is made up of:

• Number of active particles stuck, NS

• Number of active particles in liquid state, NL

• Number of active particles in exploration state, NE

• Number of active particles in gel state, NG

• Number of active particles in recruitment state, NR

NT = NS +NL +NG +NR +NE (9)

We assume that a certain number of robots are released at

the beginning and as such is fairly constant. This is represented

by the Equation 10. In this work, ω is a diffusive term which

we define as ω = v2τo; where v is the velocity of the active

particle, ∂NE

∂t
, ∂NS

∂t
, ∂NL

∂t
and ∂NG

∂t
are the rate of exploration,

rate of the number of active particles stuck, rate of the number

of active particles in liquid state, and rate of the number of

active particles in gel state respectively.

∂NE

∂t
= N0 −

[

∂NS

∂t
+

∂NL

∂t
+

∂NG

∂t

]

ω (10)

The second term of Equation 10 is given by Equation

11 where φ captures the geometry of obstacles as well as

the number of obstacles in the environment as a function

f(Nobs, Gobs). The third term of Equation 10 is given by

Equation 12.

∂NS

∂t
= N0 − φ

[

∂NE

∂t
+

∂NL

∂t
+

∂NG

∂t

]

(11)

∂NL

∂t
= γ

N0

d
NLf(GDS ,MDS)−

[

∂NE

∂t
+

∂NG

∂t
+

∂NS

∂t

]

(12)

Equation 12 captures the possibility of the damage site

geometry (GDS) and magnitude (MDS) or severity of damage

affecting the number of robots recruited to the damaged site.

d is the distance of the damaged site from the site where the



self-healing robots were released. When the agents find the

damaged site, they recruit others. The recruitment rate to the

damaged site is given by Equation 13, where we define σ has

Equation 14.

∂NR

∂t
= σNL (13)

σ =
(

Gi
R −Gi

A

)

exp

(

‖ − r‖

k

)

(14)

The gain Gi
R repels agents when they are too close to each

other while Gi
A attracts agents thereby recruiting them to the

damaged site; r is the distance between each agent and k is a

constant that can used for tuning purposes.

The more the agents in the liquid state, the more local

influence they generate and this attracts more agents to the

damage site. However, the repulsion term Gi
R ensures that the

damaged site just gets enough agents to repair the damage

leading to some agents breaking away to explore and find

other damaged sites. Once in the liquid state, we define η (in

Equation 15) as a timeout parameter that moves an agents

motion from liquid state to gel state. In the gel state, it

irreversibly starts bounding with the damaged site at a position

due to its self-sacrificing repair secretions.

∂NG

∂t
= ηNL (15)

III. EXPERIMENTS AND RESULTS

We use a simulation environment to test our methodology

with green tiles as shown in Figure 6 indicating damaged sites

while white tiles were undamaged. Damaged sites were created

using pixels so that if a tile was damaged, a boolean value was

set to 1 and 0 otherwise. An agent was able to read the states

of 10 by 10 tiles at its location. The value at a damaged site

was obtained by adding up the boolean states of these tiles

thereby resulting in a damaged value range of {0...100}.

We tested two scenarios for active particle deployment: (i)

dealing with multiple damaged sites as a single agent and (ii)

dealing with a single damaged site with a population of active

agents. This are discussed in detail below. For the approach in

which we used a population of agents, 20000 contaminated

tiles were deployed randomly at (x, y) = (800, 550) with

standard deviations of (σx, σy) = (30, 30) (See Figure 6).

If a tile has been declared damaged by the random process

previously, it was redeclared as damaged. As a result, two

or more damaged tiles at a pixel would read as one damaged

tile. Placing the damaged tiles randomly in this way introduced

some noise into the readings obtained by the agent.

Agents were placed in a bounded environment with dimen-

sions (x, y) = (1000, 800). Whenever an agent encounters a

boundary, it uses the tumble phase to change its direction. This

is equivalent to using a proximity sensor to detect obstacles

and subsequently changing direction.

During individual experiments, we estimated how many

iterations to afford our artificial particles in ensuring complete

coverage of the environment. This was estimated by using a

simple back and forth motions in the bounded environment

[17]. The Equation 16 was used to calculate how many

iterations it would take to provide optimal coverage of our

simulated environment using ∆S = 5 and v = 20. ∆ is the

distance between each parallel trajectory and v is the velocity

of the agent.

t =
x(1 + y)

∆Sv
(16)

The value obtained was 8100 iterations for our simulated

environment. If the value of ∆S were made any larger, the

resolution of the cleaning would suffer resulting in areas that

are not cleaned or covered. We estimate that in order to

be fair, our algorithm should take ≤ 8100 iterations for an

environment of this size. We decided to set the iteration limit

to a value of 5000. However, during our population based

experiments, the agents were allowed to run for a maximum

of 4500 iterations [14].

Fig. 4. Showing an environment with obstacles and five damaged locations.
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Fig. 5. Showing the results of the agent’s distribution in the presence of
obstacles.



A. Dealing with Multiple Damaged Sites as a Single Active

Agent

As discussed so far, obstacles and boundaries will occur on

a large structure in which the agent is likely to be deployed

as well as potentially multiple damaged sites. As a result, we

introduce obstacles as well as multiple damaged sites as shown

in Figure 4. When the agent encounters a boundary, the agent

stays at the boundary until the tumble behaviour of the bac-

terium gives it a randomly chosen direction to head away from

the obstacle. In this way, the sensor requirements were kept to

the minimum. According to Equation 4, it should be possible

for our active particle to find distant separated concentrations

of contaminated tiles if given enough time. In order to present

a challenge to our proposed approach and proof that our active

particle was capable of finding damage sites in the presence

of obstacles, a spatial distribution with obstacles was created

as shown in Figure 5. The spatial distribution was obtained

by using means of (x, y) = (150, 150), (x, y) = (850, 150),
(x, y) = (450, 400), (x, y) = (150, 550) and (x, y) =
(800, 550) with standard deviations of (σx, σy) = (30, 30)
for 20000 randomly distributed contaminated tiles. In results

shown in Figure 5, the agent was able to find the damaged site

with the distribution at (x, y) = (150, 150) receiving more

coverage. This is because the active particle was closest to

this distribution at the beginning of the experiment. However,

this also shows that as distance between the release site and

damaged site increases, the less coverage damaged sites will

receive. This would call for optimally placing active particle

release sites strategically in order to ensure adequate coverage

of the large scale structure.

Furthermore, Figure 5 shows that despite the maze, the

agent is capable of exploring the environment and finding the

various damaged sites in the environment.

Fig. 6. Environment showing 3 obstacles and swarm of active particles.

B. Applying a Swarm of Active Particles to an Obstacle Filled

Environment

A swarm of 25 active particles were then deployed in an

environment with multiple obstacles and a single damaged

site as shown in Figure 6. Different values of the exploration

parameter v (v = 7; v = 14; v = 21) were tested. The graph in

Figure 7 shows that when v increased in value from v = 7 to

Fig. 7. The average rate of active particles finding the damaged site with
increases in v values.

Fig. 8. The average rate of active particles finding the damaged site with an
increase in the number of obstacles.

v = 14, the rate at which active particles increased. However,

at v = 21, the rate reduced compared to v = 14. This results

show that there is an optimal exploration term that needs to be

applied to the swarm of active particles to find damage sites

quickly.

Also, we tested the consequences of adding more obstacles

to the environment. Figure 8 shows that as the number of

obstacles in the environment increases, the number of active

particles finding the damaged site reduces. This shows the

impact of obstacles on our approach. However, as discussed

previously, if given enough time, a single active particle as the

potential to find the damaged sites in an environment. Once

an active particle finds a site, it recruits passing particles to it

using the Equation 14. Once recruited, the distance between

individual active particles was regulated by the Equation 14.

IV. CONCLUSIONS

In this work, we have presented the application of active

particles to the healing of large scale high value structures.

We have also addressed one of the challenges raised by

the active particle research community, that of dealing with

obstacles in the environment. According to [6], this is one of

the challenges that need to be addressed in the use of active

particles for various applications. Other challenges include

how to engineer useful emergent behaviours, identify compact

propulsion mechanisms and energy supplies capable of lasting



for the whole particle life cycle and how to scale down

active particle dimensions towards the nanoscale. The above

can be viewed from the perspective of a constrained multi-

objective optimisation problem in which a balance between

exploration of an environment and its exploitation needs to

be achieved while taking into consideration the technical

feasibility (sensing and actuating at nanoscales) and optimality

(in terms of energy usage) of an active particle.

In this work, we have focused on understanding how ac-

tive particles behaviour could be controlled in crowded and

complex environments filled with obstacles. We presented a

minimalist active particle controller that uses a random explo-

ration behaviour and a sensor to detect the condition of the

environment. We have shown in our results that given enough

time, a minimalist active particle as the potential to navigate an

environment filled with obstacles and find multiple damaged

sites. As seen in the results, as the number of obstacles

increase, the number of agents finding a damaged site reduces.

This supports the challenge highlighted in [6]. Nevertheless,

this can be solved by increasing the exploration capability of

active particles. An increased exploration capability gives them

a more diffusive behaviour and an almost ”gas” like behaviour

enabling them to navigate around obstacles. Nevertheless,

we also discovered that there is an optimal value for this

exploration term beyond which performance drops.

In future work, we will investigate how to deploy this

concept on physical agents. It will be interesting to also see

how we can deploy healing materials to a damaged site as

well as how agents respond to a generated field from the

site of damage. Currently, we have investigated a scenario

where the damaged site has a local influence. With a generated

field influencing the recruitment ability of the agents to a

site, it is possible that the rate at which agents find the site

increases. However, this might lead to difficulties in navigating

the obstacles on a structure due to the need to resolve the

conflict between the pull of the generated field and escaping

from the obstacle. Furthermore, the applications of constrained

multi-objective optimisation might offer some insights into the

research and development of nanoscale active particles.
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