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Abstract—Training multi-layer neural networks (MLNNs), a
challenging task, involves finding appropriate weights and biases.
MLNN training is important since the performance of MLNNs
is mainly dependent on these network parameters. However,
conventional algorithms such as gradient-based methods, while
extensively used for MLNN training, suffer from drawbacks such
as a tendency to getting stuck in local optima. Population-based
metaheuristic algorithms can be used to overcome these prob-
lems. In this paper, we propose a novel MLNN training algorithm,
CenDE-DOBL, that is based on differential evolution (DE), a
centroid-based strategy (Cen-S), and dynamic opposition-based
learning (DOBL). The Cen-S approach employs the centroid of
the best individuals as a member of population, while other
members are updated using standard crossover and mutation
operators. This improves exploitation since the new member is
obtained based on the best individuals, while the employed DOBL
strategy, which uses the opposite of an individual, leads to en-
hanced exploration. Our extensive experiments compare CenDE-
DOBL to 26 conventional and population-based algorithms and
confirm it to provide excellent MLNN training performance.

Index Terms—neural network training, optimisation, differen-
tial evolution, center-based strategy, dynamic opposition-based
learning.

I. INTRODUCTION

Artificial neural networks (ANNs) are popular pattern
recognition techniques to deal with complicated classification
and regression problems in various domains, including food
quality [1], [2], medicine [3], [4], and business [5].

Multi-layer neural networks (MLNNs), which are exten-
sively employed, generally have three types of layers, input,
hidden, and output layers, while each connection has a specific
weight that ascertains its strength. Training an MLNN means
finding appropriate weights for the connections, and is a
challenging and important task since the performance of an
MLNN is directly related to these parameters [6].

Gradient-based approaches such as back-propagation are
widely used for MLNN training, but have drawbacks such
as being sensitive to the initial weights and a tendency to get
stuck in local optima. Population-based metaheuristic (PBMH)
algorithms such as particle swarm optimisation (PSO) [7],

differential evolution [8], and human mental search (HMS) [9],
[10] are capable of overcoming these problems. PBMHs
are problem-independent optimisation algorithms that find an
optimal solution using a population of candidate solutions
and some specific operators. Nowadays, these algorithms
are extensively employed for MLNN training due to their
simplicity, flexibility, and ability to escape local optima.
PBMH-based training algorithms have been introduced us-
ing particle swarm optimisation (PSO) [11]–[13], artificial
bee colony (ABC) [14], imperialist competitive algorithm
(ICA) [15]–[17], firefly algorithm (FA) [18], grey wolf op-
timiser (GWO) [19], [20], ant lion optimiser [21], dragon-
fly algorithm (DA) [22], sine cosine algorithm [23], whale
optimisation algorithm (WOA) [24], grasshopper optimisation
algorithm [25], and salp swarm algorithm (SSA) [26], among
others.

Differential evolution (DE) [8] is an effective PBMH al-
gorithm with demonstrated excellent performance in solving
complex optimisation problems [27]–[29]. DE is based on
mutation, crossover, and selection operators, where mutation is
responsible for generating a mutant individual based on scaled
differences among individuals, crossover combines the mutant
individual with the parent one, and selection carries over the
better individuals to the next population.

DE has shown satisfactory performance in finding optimal
weights in MLNNs. [30] proposes a DE-based algorithm
and compares it with gradient-based algorithms, indicating
DE to achieve higher accuracy, while [31] employs a DE
algorithm with multiple trial vectors for MLNN training.
[32] proposes a novel training algorithm based on quasi-
opposition-based learning, showing the improved DE to ob-
tain better performance in classification problems. Recently,
[33] introduces a region-based DE algorithm combined with
quasi-opposition-based learning, RDE-OP, for MLNN training.
RDE-OP benefits from a clustering algorithm to partition
the current population so that each cluster centre acts as a
crossover operator.

In this paper, we propose a novel DE-based training al-
gorithm, CenDE-DOBL, that is based on a centroid-based
strategy incorporating opposition-based learning. In our pro-978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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posed algorithm, a centroid individual is injected into the
current population. Since the centroid individual is based on
the best individuals, this improves the exploitation ability of
the algorithm. On the other hand, dynamic opposition-based
learning (DOBL) is incorporated to further enhance the explo-
ration ability of the algorithm. We perform an extensive set of
experiments, comparing CenDE-DOBL with 26 conventional
and population-based algorithms and demonstrate it to give
excellent MLNN training performance and to outperform the
other methods.

The remainder of the paper is organised as follows. Sec-
tion II describes some background on differential evolution
and opposition-based learning. Section III then details our
proposed CenDE-DOBL algorithm, while experimental results
are presented in Section IV. Finally, Section V concludes the
paper.

II. BACKGROUND

A. Differential Evolution

Differential evolution (DE) [8] is an effective PBMH al-
gorithm which has shown remarkable performance in solv-
ing different complex optimisation problems [34]–[36]. DE
commences with NP individuals generated by a uniform
distribution, and has three main operators: mutation, crossover,
and selection. Mutation creates a vector, called mutant vector,
as

vi = xr1 + F ∗ (xr2 − xr3), (1)

where xr1, xr2, and xr3 are three distinct randomly selected
individuals, and F is a scaling factor.

Crossover combines the mutant and target vectors. A pop-
ular crossover operator is binomial crossover, defined as

ui,j =

{
vi,j rand(0, 1) ≤ CR or j == jrand

xi,j otherwise
, (2)

where i = 1, ..., NP , j = 1, ..., D, CR is the crossover rate,
and jrand is a random number in [1;NP ].

Finally, the selection operator is responsible for choosing
the better individual from the trial and target vectors.

B. Opposition-based Learning

Opposition-based learning (OBL) [37] aims to yield im-
proved performance by employing opposition individuals.
Assume that x = [x1, x2, ..., xN ] is a number in an N -
dimensional space. The corresponding opposite number of x
is then defined as

x̌i = ai + bi − xi, (3)

where ai and bi are the lower and upper bounds of the search
space.

Dynamic quasi-opposition-based learning (DOBL) [38] is
a variant of OBL employing quasi-opposition numbers, and
is dynamic since the maximum and minimum values of the
individuals are employed to create an opposite individual. [38]
shows that in a black-box optimisation quasi-opposition num-
bers have a higher chance of getting closer to the optimum in

comparison to opposite numbers. The quasi-opposite number
of x is obtained as

x̌i = rand[
(ai + bi)

2
, (ai + bi − xi)], (4)

where rand[m,n] is a uniform random number between m
and n.

III. CENDE-DOBL ALGORITHM

Neurons are the main components of MLNNs. While every
neuron performs a minor task, their co-operation enables a
neural network to handle complex pattern recognition tasks.
In general, an MLNN has three types of layers, an input
layer, hidden layers, and an output layer. Each connection
between two neurons has a specific weight that determines
the strength of each connection, while neurons also have bias
terms. MLNN training means finding appropriate weights and
biases and is a challenging task.

Our proposed CenDE-DOBL algorithm for MLNN training
is based on a combination of a centroid-based strategy and
a dynamic opposition-based learning strategy with the former
improving exploitation and the latter exploration. In the fol-
lowing, we first describe the main components of CenDE-
DOBL and then explain how these fit together to form the
algorithm.

A. Centroid-based Strategy

Centre-based sampling is a concept based on the centroid
of individuals to improve a metaheuristic algorithm [27],
[39]. [40] shows that, based on Monte-Carlo simulation, the
probability of individuals being closer to an unknown solution
is higher towards the centre of the search space compared to
randomly-located individuals.

Inspired by [41], CenDE-DOBL benefits from a centroid-
based individual that is created based on the N best individu-
als. In our proposed algorithm, all individuals except one are
updated based on standard operators, while the last individual
is the centroid of the N best individuals, defined as

−−−−→xcenter =
−→xb1 + ...−→xbi + ...+−−→xbN

N
, (5)

where −→xbi is the i-th best individual.
Fig. 1 visualises the concept for a 1-D problem with NP = 6

where 5 individuals are created using the standard operators,
and the three best individuals, −→x2, −→x3, and −→x4 with positions
at {3, 5, 8} are used to create the centroid-based individual
−−−−→xcenter at 5.33.

It is worthwhile to mention that (1) the centroid-based
individual does not require any additional function evaluations,
and (2) the centroid-based individual is based on the best
individuals and, therefore, enhances exploitation.

B. Opposition-based Strategy

CenDE-DOBL uses an OBL scheme in two ways, for
initialisation and for generating jumps. Algorithm 1 shows the
employed OBL strategy in form of pseudo-code.



Algorithm 1 Pseudo-code of OBL(D, NP , Pop L, U ) algo-
rithm

1: procedure OBL
2: // Variables: D: dimensionality, NP : population size, Pop:

initial population, L: lower bound, U : upper bound
3:
4: for i from 0 to NP do
5: for j from 0 to D do
6: ˇOPop(i, j) = rand[ (L(i,j)+U(i,j)

2
, (Li,j + Ui,j −

Pop(i, j))]
7: end for
8: end for
9: Evaluate objective function value for each individual based

on Eq. (8)
10: Pop ← Select NP best individuals from set {Pop,OPop}

as initial population
11: end procedure

After the initial population is generated, a quasi-opposition-
based population (OPop) is generated using Eq. (4). We then
select the NP best individuals from the union of the initial
population and the opposition-based population.

After generating new individuals using mutation and
crossover operators, the proposed algorithm generates a quasi-
opposition-based population based on a jumping rate Jr be-
tween 0 and 0.4 [38]. Then, a new population is generated
based on the best individuals from the current population
and the quasi-opposition-based population. The OBL strategy
in this step is dynamic since the maximum and minimum
values of the individuals are employed to create an opposite
individual as

x̌i,j = minp
j + maxp

j −xi,j i = 1, 2, ..., Np j = 1, 2, ..., D,
(6)

where minp
j and maxp

j indicate the minimum and maximum
of the population in the j-th dimension.

C. DE/local-to-best/1 Strategy

Instead of the standard mutation operator, we employ a
DE/local-to-best/1 strategy in which the base vector is a

Fig. 1. Visualisation of centroid-based candidate solution for a one-
dimensional problem.

combination of one randomly-selected individual and the best
individual of the previous population as

vi = xi + F ∗ (xbest − xi) + F ∗ (xr2 − xr3), (7)

where xi and xbest are the i-th and the best member of the old
population, xr1 and xr2 are two different randomly-selected
individuals, and F is a scaling factor. This approach tries to
strike a balance between robustness and fast convergence.

D. Encoding Strategy

CenDE-DOBL employs a real-valued encoding strategy to
encode the connection weights and biases. Consequently, each
individual’s length is equal to the total number of weights and
bias terms. Fig. 2 illustrates the encoding strategy for a sample
MLNN with one neuron in the single hidden layer.

E. Objective Function

We use an objective function based on classification error
defined as

E =
100

P

P∑
p=1

ξ(xp), (8)

with

ξ(xp) =

{
1 if op 6= dp

0 otherwise
, (9)

where dp and op are the desired and predicted output, respec-
tively, of input xp, the p-th of P test samples. The aim of
CenDE-DOBL is to find weights and biases so as to minimise
the classification error.

F. Algorithm

While OBL increases the exploration of the algorithm, the
centroid-based strategy enhances its exploitation. Switching
between these two schemes is based on a probability, meaning
that in each iteration, only one of these is performed. The
whole CenDE-DOBL algorithm is given in Algorithm 2 in
the form of pseudo-code.

Fig. 2. Illustration of encoding strategy. Top: network, bottom: resulting
structure of individual.



Algorithm 2 Pseudo-code of CenDE-DOBL(D, MaxNFC ,
NP , Jr, N , L, U ) algorithm for MLNN training.

1: procedure CenDE-DOBL
2: // Variables:D: dimensionality, MaxNFC : maximum number

of function evaluations, NP : population size, Jr: jumping rate,
N : number of best solutions, L: lower bound, U : upper bound

3:
4: Generate initial population Pop randomly based on the

encoding strategy introduced in Section III-D
5: Call OBL(D, NP , Pop L, U ) algorithm for generating a new

population based on DOBL strategy
6: Calculate objective function value for each individual based

on Eq. (8)
7: while NFE <= NFEmax do
8: Select three parents, xr1 and xr2, randomly from the

current population, with xr1 6= xr2

9: vi = xi + F ∗ (xbest − xi) + F ∗ (xr1 − xr2)
10: for j from 0 to D do
11: if randj [0, 1] < CR or j == jrand then
12: ui,j = vi,j
13: else
14: ui,j = xi,j

15: end if
16: end for
17: Calculate objective function value of ui based on Eq. (8)
18: if f(ui) < f(xi) then
19: x̄← ui

20: else
21: x̄← xi

22: end if
23:
24: if rand(0, 1) < Jr then
25: LNew = minimum of all individuals
26: UNew = maximum of all individuals
27: Call OBL(D , NP , Pop, LNew, UNew) algorithm
28: else
29: Select N best individuals
30: Pop(NP ) =

−−→xb1+
−−→xb2+...+−−→xbN

N
31: end if
32: end while
33: x∗ ← the best individual in the population
34: end procedure

IV. EXPERIMENTAL RESULTS

To assess our proposed CenDE-DOBL algorithm, we con-
duct a set of experiments with different datasets from different
domains with diverse characteristics from the UCI machine
learning repository1, namely

• Iris: this dataset is one of the most commonly used
datasets in the literature. It includes 150 instances, 4 fea-
tures, and 3 classes. One class is linearly separable from
two others, while the latter are not linearly separable.

• Breast Cancer: this dataset contains 699 instances placed
in 2 classes with 9 features such as menopause and
tumour size.

• Liver: this clinical dataset from BUPA Medical Research
Ltd. has 345 samples, 2 classes and 7 features.

• Pima: this binary classification dataset is a challenging
problem with 768 instances and 8 features.

1https://archive.ics.uci.edu/ml/index.php

• Seed: this agricultural dataset includes seven geometrical
properties of kernels such as compactness, perimeter, and
area belonging to three distinct wheat classes with 210
instances.

• Vertebral: this clinical dataset includes biomechanical
features such as pelvic incidence and pelvic tilt employed
to classify orthopaedic patients into 3 classes, normal,
disk hernia, and spondylolysthesis.

Since our paper does not focus on the best MLNN structure,
we follow [12], [17] and set the number of neurons in the
hidden layer to 2D + 1 where D is the number of input
features. Therefore, the number of connection weights for Iris,
Cancer, Liver, Pima, Seed, and Vertebral datasets are 43, 210,
105, 171, 136, and 105, respectively. We use k-fold cross-
validation, with k = 10, for evaluation, where the dataset is
divided into k folds, one fold for testing and the others for
training. This process is repeated k times so that each fold is
employed once as test data.

We compare CenDE-DOBL with an extensive set of algo-
rithms including both conventional and population-based algo-
rithms. The number of function evaluations for all population-
based algorithms is set to 25,000, similar to the number of
iterations for all conventional algorithms. The population size
for all population-based algorithms is set to 50. For CenDE-
DOBL, the crossover probability, scaling factor, number of
best individuals, and jumping rate are set to 0.9, 0.5, 3, and
0.3, respectively. For the other algorithms, we employ default
parameters values from the cited publications.

In the first experiment, we compare our algorithm with
DE, QODE [32], and RDE-OP [33]. We select DE since our
proposed algorithm is based on DE, and QODE and RDE-OP
because they are among the most recent DE-based training
algorithms. Table I indicates the results in terms of mean and
standard deviation as well as their ranking and the resulting
average rank.

As we can see from there, CenDE-DOBL gives the best
results for 5 of the 6 cases and is ranked second for the
remaining one. On the Iris dataset, our algorithm obtains the
first rank with a classification accuracy improvement of 2% or
more compared to the other algorithms. On the Cancer dataset,
RDE-OP gives slightly better results, by 0.14%, than CenDE-
DOBL. CenDE-DOBL outperforms the other algorithms by
over 1.9% on the Liver dataset, while for the Pima dataset, DE,
QODE, and RDE-OP achieve accuracies of 76.94% , 67.62%,
and 67.62%, respectively in comparison to 81.90% for CenDE-
DOBL. An even greater improvement can be seen for the
Seed dataset, where CenDE-DOBL obtains a mean accuracy
of 90.95%, while the next-best algorithm (DE) yields only
70.00%. Finally, on the Vertebral dataset, CenDE-DOBL and
QODE are tied to give the best results, however the standard
deviation for CenDE-DOBL is smaller, indicating more robust
performance.

In the next experiment, we compare CenDE-DOBL with
12 conventional algorithms, namely gradient descent with
momentum backpropagation (GDM) [42], gradient descent
with adaptive learning rate backpropagation (GDA) [43],



TABLE I
10CV CLASSIFICATION ACCURACY FOR ALL DATASETS FOR DE, QODE, AND RDE-OP IN COMPARISON TO CENDE-DOBL.

Iris Cancer Liver Pima Seed Vertebral avg. rank

DE
mean 92.00 97.36 67.81 76.94 70.00 85.16
stddev 5.26 2.06 8.21 4.97 11.01 5.31
rank 4 4 4 4 2 4 3.67

QODE
mean 95.33 98.10 76.82 79.55 67.62 88.39
stddev 6.32 0.99 9.46 4.95 3.01 8.76
rank 3 3 2 3 3.5 1.5 2.58

RDE-OP
mean 96.67 98.82 75.63 80.21 67.62 86.77
stddev 6.48 1.67 6.45 5.73 4.92 4.42
rank 2.00 1.00 3.00 2.00 3.50 3.00 2.42

CenDE-DOBL
mean 98.67 98.68 78.79 81.90 90.95 88.39
stddev 2.81 1.08 8.64 3.17 10.15 5.09
rank 1 2 1 1 1 1.5 1.33

gradient descent with momentum and adaptive learning rate
backpropagation (GDMA) [44], conjugate gradient backprop-
agation with Fletcher-Reeves updates (CG-FR) [45], con-
jugate gradient backpropagation with Polak-Ribiere updates
(CG-PR) [46], [47], conjugate gradient backpropagation with
Powell-Beale restarts (CG-PBR) [48], BFGS quasi-Newton
backpropagation (BFGS) [49], Levenberg-Marquardt back-
propagation (LM) [50], [51], one-step secant backpropaga-
tion (OSS) [52], resilient backpropagation (RP) [53], scaled
conjugate gradient backpropagation (SCG) [54], and Bayesian
regularisation backpropagation(BR) [55].

The results are given in Table II. In all cases, our proposed
algorithm gives the highest classification accuracy (once tied
with BR), thus outperforming all other methods by a wide
margin.

In the last experiment, we compare our algorithm with
11 population-based trainers, namely particle swarm opti-
misation [11], artificial bee colony (ABC) [14], imperialist
competitive algorithm (ICA) [15], firefly algorithm (FA) [18],
grey wolf optimiser (GWO) [19], ant lion optimiser [21],
dragonfly algorithm (DA) [22], sine cosine algorithm [23],
whale optimisation algorithm (WOA) [24], grasshopper opti-
misation algorithm [25], and salp swarm algorithm (SSA) [56].
Algorithms such as PSO and ABC are among established
training algorithms, while some others such as GOA and WOA
are more recent.

The results are reported in Table III from where it is evident
that our proposed algorithm gives the best results on all
datasets, providing clearly better performance compared to all
other PBMHs.

Overall, our proposed CenDE-DOBL algorithm thus gives
excellent performance in comparison to the other 26 training
algorithms.

V. CONCLUSIONS

Training plays a crucial role in the performance of multi-
layer neural networks. Conventional algorithms such as back-
propagation are extensively employed in the literature, but
suffer from difficulties such as their tendency to get stuck in
local optima.

In this paper, we have proposed a novel differential
evolution-based training algorithm, CenDE-DOBL, to find

optimal weights in multi-layer neural networks. Our proposed
algorithm benefits from a centroid-based strategy where a
centroid individual is injected into the current population,
and employs opposition-based learning in two ways, during
initialisation and for generating jumps, while for further im-
provement a DE/local-to-best/1 strategy is used for mutation.
Extensive experiments on diverse classification problems and
in comparison to 26 conventional and population-based train-
ing algorithms, convincingly demonstrate CenDE-DOBL to
yield excellent performance.

In future, we intend to extend our approach to other types
of neural networks including deep belief networks (DBNNs).
Since DBNNs have a plethora of weights, the algorithm will
need to be adapted to tackle this. In addition, our algorithm can
be extended to optimise both weights and network structure
simultaneously.
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