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Abstract

The Stockpile blending problem is an important component of mine production

scheduling, where stockpiles are used to store and blend raw material. The goal of

blending material from stockpiles is to create parcels of concentrate which contain

optimal metal grades based on the material available. The volume of material that

each stockpile provides to a given parcel is dependent on a set of mine schedule

conditions and customer demands. Therefore, the problem can be formulated as

a continuous optimization problem. In the real-world application, there are sev-

eral constraints required to guarantee parcels that meet the demand of downstream

customers. It is a challenge in solving the stockpile blending problems since its

scale can be very large. We introduce two repaired operators for the problems to

convert the infeasible solutions into the solutions without violating the two tight

constraints. Besides, we introduce a multi-component fitness function for solv-

ing the large-scale stockpile blending problem which can maximize the volume of

metal over the plan and maintain the balance between stockpiles according to the

usage of metal. Furthermore, we investigate the well-known approach in this pa-

per, which is used to solve optimization problems over continuous space, namely

the differential evolution (DE) algorithm. The experimental results show that the

DE algorithm combined with two proposed duration repair methods is significantly

better in terms of the values of results than the results on real-world instances for

both one-month problems and large-scale problems.

1 Introduction

Recently, evolutionary algorithms (EAs) have been applied to many combinatorial opti-

mization problems and proven to be very successful in real-world applications [7, 8, 3].

Differential evolution (DE) is an efficient heuristic optimization algorithm that facili-

tates a population-based search in continuous multidimensional spaces [15, 18]. The
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DE algorithm was first proposed in [19, 24, 25], after then, DE and its variants have

been successfully applied to solve numerous real-world problems from diverse do-

mains of science and engineering [5, 15]. Recently, survey papers [16, 4, 5] provide an

up-to-date view on DE algorithm and discuss its various modifications, improvements

and uses.

The open-pit mine production scheduling (OPMPS) problem has received a great

deal of attention in recent years, both in the academic literature and in the mining

industry [14, 11, 23]. The OPMPS problem is a decision problem that seeks to maxi-

mize net present value by determining the extraction time of each block of ore and the

destination to which this block is sent. The stockpile blending problem plays a sig-

nificant role in OPMPS which determines the rate and quality of production involving

large cash flows, as well as the stockpile blending problem takes mining scheduling

upstream and process limitation and customer requirements downstream into account.

Stockpile blending problem is a decision problem involving how many volumes of ore,

within the stockpiles limit, should be claimed in each period, and for which parcel the

ore should be sent, to maximize the volume of the valuable materials subject to the

constraints that: (1) processing consume limited resources and affect the production

profile in each period; (2) demands of downstream customers.

In this work, we consider the stockpile blending problem that has been examined

by Xie et al.[27]. In their study, the authors have considered the problem with the un-

certainty in the geologic input data and applied Chebyshev’s inequality to estimate the

probability of constraint confidence. They have introduced two approaches to tackle

the tight constraints that convert infeasible solutions into solutions without violating

two complexity constraints. However, due to the complexity of the problem, they only

considered a one-month stockpile blending problem with a reduced model and investi-

gated their approach with the instances they created.

To improve the research on the stockpile blending problem, we focus on the large-

scale stockpile blending problem. A challenge in solving a stockpile blending problem

is that its scale can be very large since there are maybe a large number of stockpiles and

many parcels under planned, which is also a challenge to OPMOS. To the best of our

knowledge, the large-scale stockpile blending problem has never been studied inde-

pendently, although it is important for real-world mining engineering. In this paper, we

introduce a realistic model of the stockpile blending problem containing a large-scale

plan, and we describe the related input parameters of production processes in the real-

world situation. Moreover, we introduce an approach based on the DE algorithm for

the large-scale problem and investigate the performance of the approach by examining

real-data instances.

1.1 Related Work

The task of the OPMPS problem is to generate a plan to guide the sequence of mining

blocks of the ore body that ensure delivery of the tonnes and grade of the mineral raw

material to the mill in the period under consideration. Initially, the OPMPS problem is

first described by Johnson et al. [9] as a mixed integer linear model without consider-

ing a stockpile and led to the research that formulated the OPMPS as a Mixed-Integer

Program (MIP) with binary variables [9, 2, 26]. To address the challenge of the large-
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scale OPMPS problem, Osanloo et al. [17] reviewed different models and algorithms

for long-term OPMPS. They discussed the advantages and disadvantages of the deter-

ministic and uncertainty-based approaches to solving the long-term production plan-

ning problem. However, when the research on OPMPS becomes more complex and

more realistic, and the problem subjects to blending resource constraints, it becomes a

challenge for the MIP to solve the problem. Lipovetzky et al. [12] introduced a com-

bined MIP for a mine planning problem, which devises a heuristic objective function

in the MIP and can improve the resulting search space for the planner. Samavati et al.

[22] proposed a heuristic approach that combines local branching with a new adaptive

branching scheme to tackle the OPMPS problem.

In the real-world application, stockpile plays an indispensable role in OPMPS

which is used to store the material with different grades and increase efficiency of

the mill. Jupp et al. [10] proposed four reasons for stockpiling before processing:

buffering, blending, storing, and separating material with different grades. Robinson

et al. [21] came to the conclusion that blending material in the stockpile can lead to

grade variation reduction. Some papers introduced approaches to represent the open-

pit mine production scheduling with stockpiling (OPMPS+S) problems as nonlinear-

integer models, and assumed that the material mixing homogeneously in the stockpile,

however, this problem is difficult to solve. Akaike et al. [1] proposed a model for mine

planning considering a stockpile, however there is no blending in the stockpile and the

material grade in the stockpile is the same as the block. Moreno et al. [13] introduced

a linear integer model to consider stockpiling in OPMPS and proofs their model is bet-

ter than other models by comparing the objective function values. Recently, Rezakhah

et al. [20] used a linear-integer model to approximate the OPMPS+S problem which

forces the stockpile to have an average grade above a specific limit.

The rest of the paper is organized as follows. In the next section, we present the

model of the stockpile blending problem and two repair operators for the tight con-

straints. Afterward, we introduce the heuristic search approaches for the one-month

and large-scale stockpile blending problems. We report on our experimental results for

one-month and long-term stockpile blending, and finish with some concluding remarks.

2 Nonlinear model of Stockpile Blending Problem

In a real-world application, a blending strategy is affected by the corresponding mining

plan which decides the volume and quality of material hauled from mine to stockpiles.

The blending strategy also leads to grade-level changing in stockpiles. The created

parcels have to respond to the market plan which provides the requirements, such as

tonnes concentrate and the total duration of all parcels from downstream process and

customers demand.

We present the nonlinear model of the stockpile blending problem in this section.

We only consider the problem that contains a one-month plan as a unit sub-problem

of the stockpile blending problem. We first introduce notation of Indices and sets,

Variables and Parameters, and we provide the math. We use the term ”material” to

include ore, i.e., rock that contains sufficient minerals including metals that can be

economically extracted and to include waste.
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Indices and sets

Name Description

s ∈ S stockpiles; 1, . . . , S
p ∈ P parcels; 1, . . . , Pm

m ∈ M month; 1, . . . ,M
emp the p-th parcel scheduled in month m
o material; {Cu,Ag, Fe,Au, U, F, S}

Variables

Name Description

xm
ps fraction of the p-th parcel in month m

claimed from stockpile s
tmp produce time (duration) for p-th parcel

in month m
wm

p volume of parcel p in month m
θmps tonnage stores in stockpile s after

providing material to parcel p in month m
cmp copper tonne in p-th parcel in month m
gomp grade of material o in p-th parcel in month m
g̃omps grade of material o in stockpile s

when proving parcel p in month m
kmp tonne concentrate of parcel p in month m
rCu,m
p Cu recovery of parcel p in month m
rF,m
p F recovery of parcel p in month m
rU,m
p U recovery of parcel p in month m

Now, we present the non-linear model of the problem. In [27], the authors for-

mulated the stockpile blending problem with chance constraints in a simplified ver-

sion by replacing complexity processes with constant parameters. Here, to discuss the

problem that matches the real-world situation and is more complex, we formulate the

stockpile blending problem without losing any information and describe the production

processes with their corresponding input variables and parameters.

As shown in the model, a solution X = {X1, . . . , XM} consists of M vectors

where vectorXm = {xm
11, . . . , x

m
1S , . . . , x

m
PmS} denotes the decision variables of parcels

in month m, and xm
ps is a continuous variable in (0, 1) which indicates the percantage

that the volume of material provided by stockpile s to p-th parcel in month m.

The objective function (1) is the sum of the volume of copper in the production

concentrate of parcels, which are inextricably intertwined with metal grades and the

duration of parcels. It should be noted that the calculation methods f1 to f5 are rep-

resented a series of non-linear complexity calculation process specified given by our

industrial partner that we are not able to publish.

In the model, Constraint (2) ensures the sum of duration in each month is less or

equal to the available production duration. Constraint (3) forces the sum of the decision

variables of a parcel to equal one. Equation (4) calculates the material grades of each

parcel which are related by the material grades in stockpiles and the decision variables
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Parameters

Name Description

Tm
p binary parameter, if Tm

p = 1, parcel p is the parcel

need to prepare in month m, if Tm
p = 0 otherwise

δ discount factor for time period

φ̃ factor in chemical processing stage

φAu factor of Au in chemical processing stage

φU factor of U in chemical processing stage

φFe factor of Fe in chemical processing stage

φCu factor of Cu in chemical processing stage

(γ1, γ2) factor of copper percentage within the produced

copper concentrate

µFl factor of Fl recovery

µU factor of U recovery

(µCu
1 , µCu

2 ) factor of copper recovery

Dm duration of month m
Hm

s tonnage of material hauled to stockpile s in month m
Gom

s grade of material o that shipping to the stockpile s
in month m

Km
p expected tonne concentrate of parcel p in month m

BF upper bound of F recovery

BU upper bound of U recovery

BCu lower bound of Copper grade

DCu bound of the difference between copper grades

of parcels

Nm number of planning parcels in month m

of the parcels. Constraint (5) guarantees the copper grade of parcels should be at least a

given bound. f2 in function (7) denotes the calculated process of the volume of parcels.

f3 in function 8 denotes the calculated process of the tonnes concentrate of parcels,

and the value of kmp is limited by constraint (9) which is a tight constraint in the model.

Function (10) and (12) denote the calculated process of F recovery and U recovery

respectively, and constraint (11) and (13) ensure the rF,m
p and rU,m

p of parcels are less

than or equal to the given bounds. Constraint (14) and (15) enforces material grades

balance and inventory balance for stockpiles when providing material to parcels. Since

the ore shipping from mine to stockpiles happened at the beginning of every month, the

stockpile material grades are updated once at the beginning of a month and constantly

for all parcels in this month, and θmps should be no-negative.

max
∑

m∈M

∑

p∈P

cmp =
M
∑

m=1

Pm

∑

p=1

f1
(

tmp , gopm

)

(1)
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Algorithm 1: Decision variables normalized approach

Input: Decision vector {xm
p1, . . . , x

m
pS}

a =
∑S

s=1 xps;

for s = 1 to S do

xps = xps/a;

return the normalized decision variables.

s.t.
∑

1≤p≤Pm

tmp ≤ Dm ∀m ∈ M (2)

∑

s∈S

xm
ps = 1 ∀p ∈ P , ∀m ∈ M (3)

gomp =
∑

s∈S

xm
psg̃

om
ps ∀p ∈ P , ∀m ∈ M (4)

gCu,m
p ≥ BCu ∀p ∈ P , ∀m ∈ M (5)

|gCu,m
p − gCu,m′

p′ | ≤ DCu ∀p, p′ ∈ P , ∀m,m′ ∈ M (6)

wm
p = f2(t

m
p , gomp ) ∀p ∈ P , ∀m ∈ M (7)

kmp = f3(t
m
p , gomp ) ∀p ∈ P , ∀m ∈ M (8)

(kmp − 1) ≤ Km
p ≤ (kmp + 1) ∀p ∈ P , ∀m ∈ M (9)

rF,m
p = f4(g

F,m
p ) ∀p ∈ P , ∀m ∈ M (10)

rF,m
p ≤ BF ∀p ∈ P , ∀m ∈ M (11)

rU,m
p = f5(g

U,m
p ) ∀p ∈ P , ∀m ∈ M (12)

rU,m
p ≤ BU ∀p ∈ P , ∀m ∈ M (13)

g̃omps =







g̃om

(p−1)s ·θ
m−1
(p)s

+Gom

s
·Hm

s

θ
m−1
(p)s

+Hm

s

if p = 1

g̃om(p−1)s otherwise
(14)

θmps =

{

θm−1
(p)s +Hm

s − xm
ps · w

m
p if p = 1

θm(p−1)s − xm
ps · w

m
p otherwise

(15)

As shown in the problem, we find that the decision variables of each parcels is

consisted by the vector {xm
p1, . . . , x

m
pS} and the duration tmp , and the tight constraints

(3) and (2) according to the decision variables are make it hard to construct a feasible

solution. We use the two approaches introduced in [27], the one (cf. Algorithm 1) used

to normalized decision variables according to the constraint (3), the other approach

(cf. Algorithm 2) repair the duration of parcels to convert an infeasible solution into a

solution without violating constraint (9).
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Algorithm 2: Duration repair operator

Input: {xm
p1, . . . , x

m
pS}, i ∈ {1, .., I}, j ∈ {1, .., J}; parameter ζ; available

duration D

Output: parcel duration: d ∈ {0,D}
initialization: d = 0, d = D , d ∈ {0,D} , k = ζ · d while d ∈ {0,D} and

k /∈ {K − 1,K + 1} do

if k > K + 1 then

d := (d+ d)/2;

k := ζ · d;

if k > K + 1 then

d = d;

else

d = d;

else if k < K − 1 then

d := (d+ d)/2
;

k := ζ · d;

if k > K + 1 then

d := d;

else
d := d

return the duration corresponding to solution X

3 Heuristic search approaches

In this section, we present the approach, the differential evolution (DE) algorithm

which is a classical heuristic algorithm used to solve optimization problems in continu-

ous space. However, the large-scale stockpile blending problem is difficult to solve due

to the significant number of constraints which always contains more than four months

and leads to large-scale decision variables and hard to solved by the DE algorithm as

an integrated problem. Therefore, we introduce a strategy to address this challenge in

the rest of this section.

We start by designing a fitness function that can be used in the heuristic approach.

The fitness function f for approaches needs to take into account all constraints. We

define the fitness function of a solution X as:

f(X) = (u(X), v(X), w(X), p(X), q(X), g(X), h(X), C(X)) (16)
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Algorithm 3: Differential evolution algorithm

Generate initial population of size NP ;

while stopping criterion not met do

for each individual t in the population do
Generate three random integers, r1, r2, r3 ∈ (1, NP ), with

r1 6= r2 6= r3 6= t Generate a random integer mrand ∈ (1, n);
for each parameter i of the individual do

Generate mutant vector Vt and trial vector Ut;

Replace Xt with the Ut, if Ut is better according to the fitness function

;

return the best solution in the final population according to the fitness

function.

where

u(X) =
∑

m∈M

∑

p∈P

max{
∣

∣Km
p − kmp

∣

∣ , 1}

v(X) =
∑

m∈M

max{
∑

p∈P

tmp −Dm, 0}

w(X) =
∑

m∈M

∑

p∈P

∑

s∈S

min{θmps, 0}

p(X) =
∑

m∈M

∑

p∈P

max{rU,m
p −BU , 0}

q(X) =
∑

m∈M

∑

p∈P

max{rF,m
p −BF , 0}

g(X) =
∑

m∈M

∑

p∈P

max{BCu − gCu,m
p , 0}

C(X) =
∑

m∈M

∑

p∈P

cmp .

This fitness function is similar to that presented in the paper [27], but we consider

the problem in a general way by containing the component p(X). In this fitness func-

tion, u(X), v(X), p(X), q(X) and g(X) need to be minimized while w(X) and C(X)
maximized. We optimize f in lexicographic order [6], and the function takes into ac-

count all constraints. According to the fitness function, an infeasible solution can at

least violate one of the above constraints. Then, among solutions that meet all con-

straints, we aim to maximize the total copper tonnes. The fitness function (16) can be

used in any heuristic approach in continuous search space. In this paper, we investigate

the performance of the classical DE algorithm (see Algorithm 3).

The DE is a well-known evolutionary computation approach developed for solv-

ing the global optimization problems in continuous search space where the objective

function can be nonlinear [5]. The DE algorithm is usually initialized by generating

a population of NP individuals with size n using uniformly distributed random num-
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Algorithm 4: DE approach for one-month problem

Initialization: initial population of size NP with applying Algorithm 1 to

normalize decision variables of all parcels in this month;

while stopping criterion not met do

for each individual in the population do
Generate the trial vector by applying the DE algorithm (Alg. 3);

Normalize the trial vector by using solution fixed operator (Alg. 1);

Calculate the duration parcel by parcel by applying operator (Alg. 2);

Compare the new solution to the chosen individual via fitness function;

Keep the best one for next population.
return the best solution in the final population.

bers, and these individuals are evaluated according to a fitness function. The next step

of the DE is to create a mutant vector for each population. For each target vector

Xt; t = 1, .., NP in the population, generate its mutant vector Vt using the mutation

method. The DE/target− to− best/1 strategy was adopted here, where the mutant

vector Vt is generated as:

V t
i = Xt

i + F (Xt
best −Xt

i ) + F (Xt
r1 −Xt

r2), (17)

where F ∈ (0, 1) is a user defined parameter which controls the magnitude of the

difference vector, Xr1 and Xr2 are vectors that are randomly selected from the popu-

lation, Xt
best denotes the best individual in the current population. Xt, Xr1 and Xr2

must all be distinct from each other.

Following the mutation phase, the crossover operator is applied on the population.

For each mutant vector Vt, an integer k ∈ {1, .., n} is randomly chosen, and a trial

vector Ut is generated, with:

uit =

{

vit if rand(0, 1) ≤ CR or i = k
xit otherwise

(18)

where, i = 1, 2, .., n; xit, vit and uit are the components of Xt, Vt and Ut respectively.

rand(0, 1) is a randomly generated number, and CR is the crossover parameter, and

it determines how often the trial vector Ut gets its component value from the mutant

vector Vt. Thus, a trial vector Ut is generated and evaluated with respect to the fit-

ness function. The target vector Xt is compared to the trial vector Ut w.r.t the fitness

function, and the best one is selected to the next population.

Then, the trial vector is compared with its parent vector, and the better one is passed

to the next generation, so the best individual in the population is preserved. The steps

of DE are repeated until a specified termination criterion is reached.

As discussed above, for the one-month stockpile blending problem, it is easy for

applying the DE algorithm to obtain results by using the fitness function (16). We pro-

pose a DE-based approach (see Algorithm 4) by combining the classical DE algorithm

and the decision variables normalized operator and the duration repaired operator for

one-month problems.
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According to Equation (14) and (15) the material grades and the volume of material

at the beginning of each month are affected by the blending strategy of last month and

the ore hauled plan. Here, we propose to optimize the large-scale stockpile blending

problem month by month.

The problem objects to maximize the sum of cmp , the copper volume of parcels,

which is calculated by the function with material grades and duration of parcels as

input. Regarding the characters of the DE algorithm, the DE-based approach always

obtains the feasible solution which has the highest objective value and leads to the

highest copper grade. Therefore, the approach preferentially blends material for those

stockpiles with high copper grades. However, constraint (5) requires that the maxi-

mum difference between copper grades of parcels is less than a given threshold. It

becomes extremely difficult to maintain the constant copper grades among all parcels

when optimize the problem month by month.

To tackle the problem of maintaining the copper grades of parcels, we introduce a

second objective function for the one-month stockpile blending problem. The second

objective function satisfies the predefined maximum difference of copper grades. The

developed fitness function f ′(X) of a solution is given as:

f ′(X) = (u(X), v(X), w(X), p(X), q(X), g(X), h(X), (C(X), C∗(X)))
(19)

where C∗(X) =
∑

p∈P x(ps∗) and x(ps∗) denotes the decision variables that the stock-

pile s∗ which has the highest copper grade among all stockpiles in this month provide

to parcel p. This specific stockpile might be different in each month and is only chosen

according to the copper grades. Using the last multi-component allows to cater for the

consistent copper grade of our problem. In bi-objective optimization of long-term plan

blending optimization problem, the goal is to maximize C(X) and minimize C∗(X)
with satisfying all constraints. Here, we have

f ′(X) � f ′(Y ) iff C(X) ≥ C(Y ) ∧ C∗(X) ≤ C∗(Y )

for the dominance relation of bi-objective optimization for two solutions X and Y .

Solving the large-scale stockpile blending problem is a challenge due to the signifi-

cant number of constraints and its scale can be very large. For example, an instance has

ten parcels and can claim material from six different stockpiles, then the search space

of this instance is a sixty-dimension space for decision vectors combined with a ten-

dimension space for the duration of parcels. Although DE has become a popular and

effective algorithm for continuous optimization problems, most reported studies on DE

are obtained using small-scale problems. It becomes difficult for the DE algorithm on

solving the large-scale stockpile blending problem within an acceptable compute time.

Here, we propose an approach (cf. Algorithm 5) which optimize the problem month

by month using the fitness function (19). The approach treats every one-month problem

as a unit-problem and obtains a set of feasible solutions for each month by using Algo-

rithm 4. Therefore, the process of this approach are, (1) for every month, the approach

adopts a set of feasible solutions Z of last month; (2) for every solution in the set Z ,

update the parameters (g̃omps and θmps) of stockpiles for this month; (3) apply Algorithm

4 to obtain a set of feasible solutions of this month and add them to a set Z ′. (4) loop

10



Algorithm 5: DE approach for long-term problem

Initialize the feasible solution set Z .

for m in {1, ..M} do
Copy all element from Z to Z ′;

Clean Z; for element z in Z ′ do
Update Sij and Lo

ij by considering ore hauled of this month and the

solution of z;

Apply the DE-based approach (Alg. 4) for this month by using fitness

function (19);

Add the feasible solutions in last population to Z;
return The best solution in Z .

all feasible solutions of last month, and select a fixed number from the set Z ′ randomly.

The steps of this approach are repeated until all months are reached. In this paper, we

set the number of the feasible solution in each month is equal to the population of the

DE algorithm.

4 Experimental Investigation

This section evaluates the efficiency of proposed heuristic search approaches in the

short-term problem and the long-term problem. It first compares the performance be-

tween the DE-based approach and the strategy used in real-world situation on one-

month instances provided by our industrial partner. Then, the results obtained by the

approach 5 are compared to the actually used results on large-scale stockpile blending

instances. In this paper, all instances are provided by our industry partner as well as

the real-world results of those instances. All experiments were performed using Java

of version 11.0.1 and carried out on a MacBook with a 2.3GHz Intel Core i5 CPU.

We first estimate the performance of the DE approach on one-month instances. The

setup of the experiments and the results obtained by the different approaches are sum-

marized in Table 1. For example, the instance with index 2 contains 2 parcels, and

the first parcel can claim material from 6 different stockpiles, and the second parcel

can claim material from the 6 stockpiles and another stockpile which available in this

period. In the implementation, each approach runs for 105 fitness evaluates, and the

DE approach runs with NP = 10, F = 1.2 and CR = 0.5. Table 1 reports the perfor-

mance of the approach by the average, maximum, minimum and standard deviation for

30 independent runs. Column Parcels refers to the number of parcels contained in the

instances, column Stockpiles lists the available stockpiles for each parcel. The results

list in column Org is the real-world results provided by our industrial partner. Specifi-

cally, we set the original solution of instances as the initial solution of the approaches.

As can be seen from Table 1, the results obtained by the DE approach reported

significantly better objective value than the original results among all instances. Even

the minimum results of all instances have higher values than the original results, which

shows that the DE-based approach guaranties better results in every time of the 30 runs.

Solving the stockpile blending problem is important in that is an important compo-
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Table 1: Results for one-month problem

Index Parcels Stockpiles Org DE-based

Max Min Mean Std.

1 2 {6, 6} 5777.62 6167.46 5815.87 5989.31 99.40

2 2 {6, 7} 4180.72 4383.60 4222.38 4298.08 36.47

3 2 {7, 7} 5371.08 5611.94 5373.62 5472.12 65.12

4 3 {7, 7, 7} 5124.92 5251.86 5129.03 5164.69 26.65

5 2 {7, 7} 5484.07 5600.56 5488.43 5536.35 27.79

6 2 {7, 7} 4334.78 4438.87 4340.60 4376.00 28.86

7 2 {7, 7} 5243.46 5351.31 5250.24 5287.49 26.46

8 3 {7, 7, 7} 5257.26 5411.48 5265.74 5342.09 32.35

nent of OPMPS which determines the quality of production involving large cash flows,

therefore the results of the stockpile blending problems can reach hundreds of millions

of dollars. These results show that for the one-month stockpile blending problem, the

DE algorithm combines with our proposed repair operators is able to achieve higher

copper tonnage than the real-world results which can lead to more than hundreds of

millions of dollars benefits in real-world situations.

We now consider the instances that have large scales and investigate the perfor-

mance of the DE approach in the large-scale problem and compare the results with the

real-world results. Table 2 lists the maximum, minimum and average results, and stan-

dard deviations of the DE approach and the results used in real-world situation of all

instances. As shown in the Table 2, the maximum result of each instances have higher

values than the original results which indicate more than hundreds of millions of dollars

profit over the plan. Moreover, even the minimum result of each instances have higher

values than the original results that shows the DE-based approach can reach better so-

lution in term of the objective value than the original result in every run. Therefore,

the results obtained by the DE approach are significantly greater than the real-world

results on the large-scale stockpile blending instances.

5 Conclusions

This paper studied the large-scale stockpile blending problem which is formulated as

a non-linear continuous model. The problem subject to a set of constraints dictated by

the mine schedule and the demands of downstream customers. Due to the complexity

and difficulty of the large-scale stockpile blending problem, we divided the problem

into several unit problems that have a one-month duration. The proposed one-month

stockpiles blending problem model exploits the problem constraints according to the

mine schedule conditions and the requirements, and we introduced two repaired op-

erators which improve the efficiency of finding a feasible solution in the mentioned

approaches. We introduced a multi-component fitness function to control the usage of
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Table 2: Results for long-term problem

Index Month Parcels Length Org DE-based

Max Min Mean Std

1 5 11 76 25938.41 26085.17 25988.38 26008.62 72.70

2 5 11 76 24495.58 24732.95 24497.95 24584.56 57.08

3 5 11 77 25558.31 25704.27 25565.20 25653.88 39.61

4 6 13 88 30273.20 30434.64 30289.02 30328.28 78.76

5 6 13 90 29739.03 29965.60 29761.57 29850.17 64.47

6 6 14 91 30815.57 31069.36 30841.72 30926.58 63.11

7 7 15 102 35516.65 35660.19 35530.73 35566.41 63.19

8 7 16 111 34996.29 35321.51 35009.17 35113.01 62.81

9 7 16 104 36025.85 36150.97 36029.17 36077.91 36.23

10 8 18 123 40773.92 41011.07 40782.25 40852.73 80.31

11 8 18 124 40206.57 40390.00 40213.26 40253.22 36.84

12 8 18 118 41297.38 41405.50 41308.73 41343.51 33.02

high-quality stockpiles for the large-scale stockpile blending problem and presented

an approach for large-scale stockpile blending problem which optimizes the problem

month by month. This approach guarantees the quality of solutions and the balance

of used material between stockpiles. In the experiment section, we first investigated

the DE algorithm combined with the two repaired operators for one-month stockpiles

blending problems. Then, we investigated the performance of the DE approach for the

large-scale stockpiles blending problem. We evaluated the proposed approach for real-

data instances. The results show that the DE approach obtains in all cases significantly

better results than the results of real-world situations. Next step, we are interesting

to improve the performance of the approach and investigate other algorithms on the

large-scale stockpile blending problem.
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