
In Proceedings of the IEEE Congress on Evolutionary Computation, Krakow, Poland, pp. 901-908, June 2021 
DOI: 10.1109/CEC45853.2021.9504917 

Surrogate-Assisted Reference Vector Adaptation to 

Various Pareto Front Shapes for Many-Objective 

Bayesian Optimization 

Nobuo Namura 

Jiteki Lab 

Noda, Japan 
nobuo.namura.gp@gmail.com 

 

Abstract—We propose a surrogate-assisted reference vector 

adaptation (SRVA) method to solve expensive multi- and many-

objective optimization problems with various Pareto front shapes. 

SRVA is coupled with a multi-objective Bayesian optimization 

(MBO) algorithm using reference vectors for scalarization of 

objective functions. The Kriging surrogate models for MBO is 

used to estimate the Pareto front shape and generate adaptive 

reference vectors uniformly distributed on the estimated Pareto 

front. We combine SRVA with expected improvement of penalty-

based boundary intersection as an infill criterion for MBO. The 

proposed algorithm is compared with two other MBO algorithms 

by applying them to benchmark problems with various Pareto 

front shapes. Experimental results show that the proposed 

algorithm outperforms the other two in the problems whose 

objective functions are reasonably approximated by the Kriging 

models. SRVA improves diversity of non-dominated solutions for 

these problems with continuous, discontinuous, and degenerated 

Pareto fronts. Besides, the proposed algorithm obtains much 

better solutions from early stages of optimization especially in 

many-objective problems.  

Keywords—Bayesian optimization, Kriging, Gaussian process, 
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I. INTRODUCTION 

Real-world optimization problems are typically formulated 
as a multi-objective form with trade-offs among objective 
functions. In this study, we deal with the following multi-
objective optimization problem: 

min
𝐱∈𝑆

𝐟(𝐱) = [𝑓1(𝐱) ⋯ 𝑓𝑀(𝐱) ]
T, (1) 

where 𝐟(𝐱)  is a vector of M objective functions 𝑓𝑖: 𝑆 →
ℝ (𝑖 = 1,⋯ ,𝑀) with a m–dimensional design variable vector 𝐱 
in a design space 𝑆 which is a subset of ℝ𝑚 . Pareto optimal 
solutions are obtained by solving (1) due to the trade-offs among 
the objective functions. Evolutionary algorithms (EAs) have 
been developed to solve the multi-objective optimization 
problems successfully and obtain diverse and converging non-
dominated solutions (NDSs) [1,2]. EAs have been applied to 
many-objective optimization problems (𝑀 ≥ 4) [3–7].  

Another important feature of the real-world problems is 
computational time and cost for expensive function evaluation. 
Previous studies using computational fluid dynamics required 
couple of minutes [8] to one week [9] for the function evaluation 
of each solution. Thus, the number of function evaluation is 

limited by computational resources (e.g., 10–1,000 times). 
Surrogate models are frequently introduced for applying EAs to 
the expensive optimization problems. They are constructed for 
promptly estimating the values of the objective functions at any 
point in the design space from a set of sample points obtained 
by the expensive function evaluation. EAs search on the 
surrogate models using estimated values instead of expensive 
objective functions.  

Bayesian optimization is one of the popular approaches to 
apply surrogate models to the expensive optimization problems 
[10]. The Kriging model (or Gaussian process model) is often 
used as the surrogate model in the Bayesian optimization. The 
Kriging model produces not only estimation of the objective 
function values but also uncertainty of the estimation. The 
Bayesian optimization utilizes the estimation and uncertainty to 
compute infill criteria (or acquisition function). Adding sample 
points (hereinafter, additional sample points) to the positions 
where the infill criteria have optimal values enables the 
Bayesian optimization to balance exploration and exploitation 
and efficiently solve the expensive optimization problems.  

Some algorithms for multi-objective Bayesian optimization 
(MBO) adopt scalarizing functions, which transform a multi-
objective problem into one or multiple single-objective 
problem(s), to compute infill criteria [11,12]. Many scalarizing 
functions use reference vectors which have the same dimension 
as the number of objective functions. Each component of the 
reference vector is a weight of the corresponding objective 
function. ParEGO [13] and MOEA/D-EGO [14] were typical 
algorithms for MBO using expected improvement (EI) as the 
infill criterion and Tchebycheff functions for scalarization. In 
these algorithms, the Kriging models were generated for each 
scalarized objective function. On the other hand, K-RVEA [15] 
generated the Kriging models for original objective functions to 
compute angle penalized distance as an infill criterion for each 
reference vector. EPBII [16] is another infill criterion utilizing 
the Kriging models of original objective functions to compute 
EI of penalty-based boundary intersection (PBI) in multi-
dimensional objective space. In MBO with EPBII (MBO-
EPBII), the Kriging models were used for not only computing 
the infill criterion but also estimating the Pareto front (PF). The 
PF was estimated through the approximation of each objective 
function to define nadir and utopia points for normalization of 
the objective space.  



All of these methods adopted the simplex lattice-design 
(SLD) [17] and two-layered SLD [3] to generate the reference 
vectors uniformly distributing on a hyperplane in the objective 
space. However, the SLD method is unsuitable for the multi-
objective problems with degenerated and discontinuous PFs and 
the many-objective problems. The SLD method suffers from a 
lack of NDSs for the degenerated and discontinuous PFs. Many 
of reference vectors do not intersect the PF and become waste of 
computational resources. Applying the SLD method to many-
objective optimization problems results in enormous reference 
vectors to cover high-dimensional objective space. To tackle this 
issue, reference vector adaptation has been introduced into EAs 
[18-20]. RVEA [4] randomly regenerated reference vectors 
when no NDS was assigned to them. This approach worked well 
to improve diversity of NDSs for the problems with degenerated 
and discontinuous PFs. However, no reference vector adaptation 
method taking advantages of surrogate models has been 
proposed for MBO. 

In this study, we propose a surrogate-assisted reference 
vector adaptation (SRVA) method for MBO to efficiently solve 
the multi- and many-objective optimization problems with 
various PF shapes including degenerated and discontinuous PFs. 
SRVA utilizes the PF shape estimated by the surrogate models 
of objective functions to determine distribution of reference 
vectors. We chose EPBII as the infill criterion for MBO coupled 
with SRVA (hereinafter MBO-EPBII-SRVA) because the PF 
estimation in MBO-EPBII can be easily diverted to SRVA. 
Besides, global optimization of hyperparameter with a genetic 
algorithm in MBO-EPBII can enhance accuracy of the PF 
estimation at the sacrifice of computational time. To validate 
effects of SRVA, MBO-EPBII-SRVA was compared with 
MBO-EPBII and K-RVEA by applying them to 4 types of 
benchmark problems, each of which had 3 and 6 objective 
functions. Comparison results showed that MBO-EPBII-SRVA 
obtained NDSs with better diversity than MBO-EPBII and K-
RVEA with a limited number of function evaluation in most 
problems.  

II. KRIGING MODEL 

For MBO and SRVA, we use the ordinary Kriging model 
which expresses the unknown function f (x) as 

𝑓(𝐱) = 𝜇 + 𝜀(𝐱), (2) 

where 𝜇 is a global model and has a constant value and 𝜀(𝐱) 
represents a local deviation from the global model that is defined 
as a Gaussian process following 𝑁(0, 𝜎2) . The correlation 

between 𝜀(𝐱𝑖)  and 𝜀(𝐱𝑗)  is strongly related to the distance 

between the corresponding points, 𝐱𝑖 and 𝐱𝑗 (𝑖, 𝑗 = 1,⋯ , 𝑛). 𝑛 
is the number of sample points (training data points). Various 
functions are available to define the correlation. In this study, we 
employ the Gaussian function with a weighted distance. The 

correlation between 𝐱𝑖 and 𝐱𝑗 is defined as 

𝑟(𝐱𝑖 , 𝐱𝑗) = exp [−∑𝜃𝑘(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)
2

𝑚

𝑘=1

], (3) 

where 𝜃𝑘 ≥ 0 is a hyperparameter and the k-th element of an m-
dimensional weight vector 𝛉. This hyperparameter provides the 
Kriging model with anisotropy and enhances its accuracy.  

The Kriging predictor and uncertainty, which are proposed 
by Jones et al. [21], are expressed as 

𝑓(𝐱) = 𝜇̂ + 𝐫(𝐱)T𝐑−𝟏(𝐲 − 𝟏𝜇̂), (4) 

𝑠2(𝐱) = 𝜎̂2 [𝟏 − 𝐫(𝐱)T𝐑−𝟏𝐫(𝐱) +
(1 − 𝟏T𝐑−𝟏𝐫(𝐱))

𝟐

𝟏T𝐑−𝟏𝟏
] , (5) 

where 𝜇̂  and 𝜎̂2  are the estimated value of 𝜇  and 𝜎2 , 
respectively. R denotes the 𝑛 × 𝑛  matrix whose (𝑖, 𝑗) entry is 

𝑟(𝐱𝑖 , 𝐱𝑗) while r(x) and y are n-dimensional vectors whose i-th 

elements are 𝑟(𝐱, 𝐱𝑖)  and 𝑓(𝐱𝑖) , respectively. 𝟏  is a n-
dimensional vectors all of whose elements are 1. The unknown 
parameters in the Kriging model are 𝛉, 𝜇̂ , and 𝜎̂2. These are 
obtained by maximizing a likelihood function. 𝜇̂  and 𝜎̂2  are 
analytically derived as 

𝜇̂ =
𝟏T𝐑−1𝐲

𝟏T𝐑−1𝟏
, (6) 

𝜎̂2 =
(𝐲 −  𝟏𝜇̂)T𝐑−1(𝐲 −  𝟏𝜇̂)

𝑛
. (7) 

The other parameter 𝛉  is determined by maximizing the 
following log-likelihood function: 

𝐿𝑛(𝛉) = −
1

2
(𝑛 ln 𝜎̂2 + ln|𝐑|). (8) 

In this study, a genetic algorithm is adopted to maximize (8). 

III. EXPECTED PBI IMPROVEMENT WITH SURROGATE-ASSISTED 

REFERENCE VECTOR ADAPTATION 

MBO-EPBII-SRVA uses the Kriging models to estimate the 
PF shape for SRVA and compute expected PBI improvement 
(EPBII). A pseudo code of MBO-EPBII-SRVA is given in 
Algorithm 1. First, initial sample points are generated by the 
Latin hypercube sampling method [22] and their real objective 
functions are evaluated by expensive computation (Step 1). The 
main loop in Algorithm 1 consists of 8 steps. The Kriging model 
is constructed for each objective function with all sample points 
which have already been evaluated (Step 3). Then, the PF shape 
and nadir and utopia points are estimated for SRVA and 
normalization of the objective space by obtaining NDSs on the 
Kriging models (Steps 4 and 5). SRVA is conducted by using 
Algorithm 2 at Step 6 in Algorithm 1. Additional sample points 
are determined by the other two algorithms. Candidate solutions 
are found by maximizing EPBII for each reference vector with 
Algorithm 3 (step 7) while the additional sample points are 
selected from them by using Algorithm 4 (step 8). Finally, real 
objective functions of additional sample points are evaluated 
(Step 9), and sample points are updated (Step 10). The main loop 
is iterated until the number of sample points exceeds limitation. 
Details of Steps 4-8 in Algorithm 1 are described in the 
following subsections. 

A. Pareto Front Shape and Nadir/Utopia Points Estimation 

The PF shape is estimated by obtaining NDSs on the Kriging 
models. We use NSGA-III [3] for this purpose to deal with 
many-objective problems while NSGA-II [1] was used in [16]. 
Function evaluation in NSGA-III is replaced by the estimation 
from the Kriging models. To generate well-distributed adaptive 



reference vectors, we need to obtain adequate number of NDSs 
by increasing the number of fixed reference vectors for NSGA-
III. In this study, the number of fixed reference vectors for 
NSGA-III is at least five times more than that of adaptive 
reference vectors for EPBII. If practical EAs with reference 
vector adaptation are available, NSGA-III can be replace by 
them. Additionally, a single objective genetic algorithm is 
adopted to minimize each objective function and obtain an 
extreme solution. These solutions may be used to determine 
nadir and utopia points for objective function normalization. 

Weak PFs should be eliminated from NDSs on the Kriging 
models to suitably normalize the objective space by using 
estimated PFs. This operation is especially important in artificial 
benchmark problems where multiple optimal solutions can be 
obtained in single objective minimization of each objective 

function (e.g., ZDT [23], DTLZ [24], WFG [25]). We adopt -
dominance to eliminate the weak PF. In advance, objective 
functions of NDSs are tentatively normalized by minimum and 
maximum values in all NDSs, and all NDSs are added into a 
NDS set. One NDS is sequentially selected from the NDS set, 

and a small value   (0.01 in this study) is subtracted from each 
objective function of the other NDSs in the NDS set. If the 

selected NDS is dominated by the others subtracted by , this 
NDS is dropped from the NDS set. The NDS set after the 
iteration for all NDSs is used to determine the nadir and utopia 
points whose components consist of the maximum and 
minimum values of each objective function in the NDS set. 
Finally, the objective function values of the nadir and utopia 

points are added and subtracted by , respectively, and 
denormalized. 

 

Algorithm 1: MBO-EPBII-SRVA 

 Input:  number of initial sample points 𝑛𝑖𝑛𝑖𝑡, number 

of maximum function evaluation 𝑛𝑚𝑎𝑥 , number of 

additional sample points at each iteration  𝑛𝑎𝑑𝑑 , 

number of reference vectors 𝑁𝑟𝑒𝑓  

 Output: NDSs among 𝑛 sample points 𝑋 

1: Generate initial sample points 𝑋  using the Latin 

hypercube sampling and evaluate objective functions 

𝐹. Set number of sample points 𝑛 = 𝑛𝑖𝑛𝑖𝑡 
2: while 𝑛 < 𝑛𝑚𝑎𝑥 

3: Construct the Kriging models with 𝑋 and 𝐹 

4: Obtain NDSs on the Kriging models 𝑋̂ and 𝐹̂ using 

NSGA-III 

5: Delete weak Pareto optimal solution in 𝐹̂ using  

-dominance and determine nadir and utopia points  

6: Generate 𝑁𝑟𝑒𝑓  reference vectors 𝛬 with Algorithm 2  

7: Obtain 𝑁𝑟𝑒𝑓  candidate solutions 𝑋𝑐  for 𝛬  through 

EPBII maximization using Algorithm 3 

8: Select 𝑛𝑎𝑑𝑑  additional sample points 𝑋𝑎 from 𝑋𝑐 
using Algorithm 4 

9: Evaluate objective functions 𝐹𝑎 for 𝑋𝑎 

10: Update 𝑋 ← 𝑋 ∪ 𝑋𝑎,  𝐹 ← 𝐹 ∪ 𝐹𝑎,  

and 𝑛 = 𝑛 + 𝑛𝑎𝑑𝑑 

11: End while 

B. Surrogate-assisted Reference Vector Adaptation 

The adaptive reference vectors are generated by uniformly 
selecting NDSs of 𝑁𝑟𝑒𝑓  (the number of reference vectors) on the 

Kriging models. Objective functions of sample points and NDSs 
on the Kriging models including the weak PF are normalized by 
the nadir and utopia points. Then, NDSs  to be used as reference 

vectors, 𝐟𝑟𝑒𝑓
𝑖 , are selected by computing maximin distances as 

follows: 

𝐟𝑟𝑒𝑓
𝑖 = argmax

𝐟𝑗∈𝐹̂

[𝑑(𝐟𝑗)], (9) 

𝑑(𝐟𝑗) = min
𝐟∈𝛬∪𝐹

[‖𝐟𝑗 − 𝐟‖] , (10) 

where 𝐹  and 𝐹̂  are archives for objective functions of sample 
points and NDSs on the Kriging models, respectively. 𝛬 is an 
archive for already selected NDSs to be used as reference 

vectors. 𝐟 and 𝐟𝑗 are M-dimensional objective function vectors 

belonging to 𝛬 ∪ 𝐹  and 𝐹̂ , respectively. 𝐟𝑟𝑒𝑓
𝑖  is added into 𝛬 , 

and a next NDS is selected by iteratively computing 𝐟𝑟𝑒𝑓
𝑖  until 

the number of NDSs in 𝛬 reaches 𝑁𝑟𝑒𝑓 . Note that we use the 

distance in the normalized objective space in (10) instead of that 
in the hyperplane for SLD. This enables the adaptive reference 
vectors to obtain uniformly distributed NDSs on PFs even if the 
PFs are degenerated and discontinuous. Using 𝐹  in (10) 
enhances to generate the adaptive reference vectors away from 
the already explored region in the objective space. 

Selected NDSs in 𝛬 are divided into 𝑛𝑎𝑑𝑑 clusters using the 
k-means method [26] in the normalized objective space as well 
as the NDS selection. 𝑛𝑎𝑑𝑑 is the number of additional sample 
points at each iteration. Cluster centroids of the k-means method 
are determined only with NDSs inside a hypercube defined by 
the nadir and utopia points. The other NDSs on the weak PF are 
assigned to the nearest centroids. One additional sample point is 
selected from each cluster at Step 8 in Algorithm 1. Classified 
NDSs in 𝛬 are transformed into unit vectors, and we use them 
as adaptive reference vectors. The process for SRVA described 
above is summarized in Algorithm 2. 

 

Algorithm 2: SRVA 

 Input:  number of additional sample points at each 

iteration  𝑛𝑎𝑑𝑑 , number of reference vectors 𝑁𝑟𝑒𝑓 , 

NDSs on the Kriging models 𝐹̂ , objective functions of 

sample points 𝐹, nadir and utopia points 

 Output: classified reference vectors in 𝛬 

1: Normalize 𝐹 and 𝐹̂ using nadir and utopia points 

2: Initialize an empty archive for reference vectors 𝛬 ← ∅ 

3: For 𝑖 = 1,⋯ ,𝑁𝑟𝑒𝑓  

4: Select one NDS 𝐟𝑟𝑒𝑓
𝑖  from 𝐹̂ using (9) and (10) 

5: Update 𝛬 ← 𝛬 ∪ {𝐟𝑟𝑒𝑓
𝑖 } 

6: End for 

7: Divide objective function vectors in 𝛬  into 𝑛𝑎𝑑𝑑 

clusters using the k-means method 

8: Generate reference vectors by transforming the 

objective function vectors in 𝛬 into unit vectors 



C. Expected PBI Improvement 

EPBII is the expected value of the PBI improvement (PBII) 
and derived from the predictor and uncertainty from the Kriging 

models 𝒩(𝑓𝑘(𝐱), 𝑠𝑘
2(𝐱))  (𝑘 = 1,⋯ ,𝑀) . Along the i-th 

reference vector 𝛌𝑖 (‖𝛌𝑖‖ = 1, 𝑖 = 1,⋯ ,𝑁𝑟𝑒𝑓), a PBI function 

𝑔(𝐟, 𝛌𝑖) for a certain point 𝐟 in the normalized objective space is 
defined as follows:  

𝑔(𝐟, 𝛌𝑖) = 𝑑1 + 𝜃𝑃𝐵𝐼𝑑2, 
(11) 

𝑑1 = ‖𝐟
T 𝛌𝑖‖, (12) 

𝑑2 = ‖𝐟 − 𝑑1𝛌
𝑖‖, (13) 

where 𝜃𝑃𝐵𝐼 is a penalty parameter, and we use 𝜃𝑃𝐵𝐼 = 1 as well 
as [16].  

EPBII is computed by numerical integration of PBII and the 
M-dimensional probability density functions 𝜑(𝑓𝑘) denoted by 

𝒩(𝑓𝑘(𝐱), 𝑠𝑘
2(𝐱)) as follows: 

𝐸𝑃𝐵𝐼𝐼(𝐱, 𝛌𝑖 , 𝐹) (14) 

=

{
  
 

  
 
∫ ⋯ ∫ 𝑃𝐵𝐼𝐼

∞

−∞

∞

−∞

(𝐟, 𝛌𝑖 , 𝐹)𝜑(𝑓1)⋯𝜑(𝑓𝑀)𝑑𝑓1⋯𝑑𝑓𝑀

                                                          (𝑇(𝐟(𝐱), 𝛌𝑖) ≥ 0)

𝑇(𝐟(𝐱), 𝛌𝑖)                                 (𝑇(𝐟(𝐱), 𝛌𝑖) < 0)

, 

𝑃𝐵𝐼𝐼(𝐟, 𝛌𝑖 , 𝐹) = max[𝑔𝑟𝑒𝑓
𝑖 − 𝑔(𝐟, 𝛌𝑖), 0], (15) 

𝑔𝑟𝑒𝑓
𝑖 = min

𝐟∈𝐹𝑇
𝑖
[𝑔(𝐟, 𝛌𝑖)], 

𝐹𝑇
𝑖 = {𝐟 ∈ 𝐹|𝑇(𝐟, 𝛌𝑖) ≥ 0}, 

(16) 

𝑇(𝐟, 𝛌𝑖) = 𝑑1 − 𝜃𝑟𝑒𝑓𝑑2. 
(17) 

where 𝐟(𝐱)  is a M-dimensional vector whose k-th element is 

𝑓𝑘(𝐱). 𝑇(𝐟, 𝛌
𝑖) is a territory function which defines search space 

(territory) in the objective space assigned to each reference 

vector. As shown in (14), EPBII for 𝛌𝑖  is computed as the 

expected value of PBII only inside the territory (𝑇(𝐟, 𝛌𝑖) ≥ 0) 
while the territory function leads solutions outside the territory 

(𝑇(𝐟, 𝛌𝑖) < 0) to the inside. PBII for 𝛌𝑖  is computed as the 

difference between reference PBI 𝑔𝑟𝑒𝑓
𝑖 , which is the minimum 

PBI for the sample points inside the territory 𝐹𝑇
𝑖 , and PBI at a 

certain point 𝐟 = [𝑓1, ⋯ , 𝑓𝑀]
T . One hundred points of 𝐟  are 

generated by a Monte Carlo sampling following 

𝒩(𝑓𝑘(𝐱), 𝑠𝑘
2(𝐱)) for the numerical integration in (14).  𝜃𝑟𝑒𝑓 is a 

parameter to adjust the size of the territory defined as 

𝜃𝑟𝑒𝑓 =
√2

𝑑𝑚𝑖𝑛
, (18) 

𝑑𝑚𝑖𝑛 =
1

𝑁𝑟𝑒𝑓
∑ min

𝑗≠𝑖
[𝑑𝑖𝑗]

𝑁𝑟𝑒𝑓

𝑖=1

, 
(19) 

𝑑𝑖𝑗 = ‖𝛌̃𝑖 − 𝛌̃𝑗‖. (20) 

𝛌̃𝑖  and 𝛌̃𝑗  are reference vectors projected onto the hyperplane 
where a sum of vector elements is one. 𝜃𝑟𝑒𝑓 in (18) is modified 

from [16] to deal with the adaptive reference vectors. 

Algorithm 3: EPBII Maximization 

 Input:  classified reference vectors in 𝛬 , number of 

reference vectors 𝑁𝑟𝑒𝑓 , NDSs on the Kriging models 𝑋̂ 

and 𝐹̂ , objective functions of sample points 𝐹 , nadir 

and utopia points, Kriging models  

 Output: candidate solutions 𝑋𝑐 with their EPBII, 

distances 𝑑𝑖𝑗  and the mean minimum distance 𝑑𝑚𝑖𝑛  

among reference vectors in 𝛬  projected onto the 

hyperplane, 𝐹 inside each territory 𝐹𝑇
𝑖  

1: Compute 𝜃𝑟𝑒𝑓,  𝑑𝑚𝑖𝑛 , and 𝑑𝑖𝑗 from 𝛬 using (18)-(20) 

2: Initialize an empty archive for candidate solutions 

𝑋𝑐 ← ∅ 
3: For 𝑖 = 1,⋯ ,𝑁𝑟𝑒𝑓  

4: Compute reference PBI 𝑔𝑟𝑒𝑓
𝑖  for the i-th reference 

vector and obtain 𝐹𝑇
𝑖  

5: Add one of NDSs in 𝑋̂, whose 𝐹̂ is closest to the i-th 

reference vector, into 𝑋𝑐 as initial population 

6: End for 

7: Run MOEA/D to maximize EPBII for 𝛬  and obtain 

optimized candidate solutions 𝑋𝑐 
 

EPBII for each reference vector is maximized by Algorithm 
3 to obtain optimized candidate solutions. 𝜃𝑟𝑒𝑓 and the reference 

PBI for the current MBO iteration are computed beforehand 
because these values are constant through EPBII maximization. 
Additionally, we use NDSs on the Kriging models obtained at 
Step 4 in Algorithm 1 as initial population for the EPBII 
maximization. 𝑁𝑟𝑒𝑓  NDSs closest to each reference vector are 

selected as the initial population. In this study, MOEA/D [2] is 
adopted to simultaneously maximize EPBII for each reference 
vector while EPBII was individually maximized as 𝑁𝑟𝑒𝑓  single 

objective problems in [16].  

D. Selection of Additional Sample Points 

Additional sample points are selected from the candidate 
solutions according to their fitness derived from EPBII, niche 

counts, and Pareto ranking. The niche count 𝑛𝑐𝑖 of the i-th 

candidate solution maximizing EPBII for 𝛌𝑖 is computed as  

𝑛𝑐𝑖 = ∑
𝑛𝑁𝐷𝑆
𝑗

ℎ(𝑑𝑖𝑗 𝑑𝑚𝑖𝑛⁄ ) + 1

𝑁𝑟𝑒𝑓

𝑗=1

, (21) 

ℎ(𝑥) = {
2𝑥 − 1 (𝑥 > 1)

𝑥2 (𝑥 ≤ 1)
, (22) 

where ℎ(𝑥) is a correction function and 𝑛𝑁𝐷𝑆
𝑗

 is the number of 

NDSs belonging to 𝐹𝑇
𝑗
. If multiple sample points are added in 

the same MBO iteration, 𝑛𝑁𝐷𝑆
𝑗

 includes the number of additional 

sample points which have already been added in the current 

MBO iteration and are inside the territory of 𝛌𝑗 . A reference 
vector passing near NDSs has a high niche count. Thus, 
selecting the candidate solutions with low niche counts 
improves diversity of NDSs among the sample points.  

Using 𝑛𝑐𝑖 and the Pareto ranking of i-th candidate solution 

𝑟𝑎𝑛𝑘𝑖 , EPBII is converted into the following fitness: 



𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
𝐸𝑃𝐵𝐼𝐼(𝐱𝑐

𝑖 , 𝛌𝑖 , 𝐹)

𝑛𝑐𝑖 ∙ 𝑟𝑎𝑛𝑘𝑖
, (23) 

where 𝐱𝑐
𝑖  is a candidate solution maximizing EPBII for 𝛌𝑖. One 

candidate solution with the highest fitness in each cluster is 
selected as additional sample points. This selection is conducted 

for each cluster one by one while updating 𝑛𝑁𝐷𝑆
𝑗

. The detailed 

process is summarized in Algorithm 4.  

IV. NUMERICAL EXPERIMENT 

In this section, we apply MBO-EPBII-SRVA to 4 types of 
benchmark problems to investigate effects of SRVA and its 
performance in multi- and many-objective problems with 
various PF shapes. MBO-EPBII-SRVA was compared with 
MBO-EPBII and K-RVEA in these problems. MBO-EPBII was 
implemented by replacing Step 6 in Algorithm 1 by the two-
layered SLD and not the same as implementation in [16]. MBO-
EPBII(-SRVA) was implemented in Python while we used K-
RVEA implemented in MATLAB and provided through GitHub 
repository of the author of [15]. The Python implementation of 
MBO-EPBII-SRVA is available on our GitHub repository1. 

A. Experimental Setup 

DTLZ1, 2, 5, 7 benchmark problems with 3 and 6 objective 
functions (M = 3 and 6) were used in numerical experiments. 
The number of design variables was 10 in all problems. DTLZ1 
and 2 were selected to examine effects of approximation 
accuracy of the Kriging model on SRVA. DTLZ1 is a typical 
problem difficult to approximate while DTLZ2 is easy to 
approximate. DTLZ5 and 7 were used to examine the 
performance of SRVA on degenerated and discontinuous PFs, 
respectively.  

 

Algorithm 4: Selection of Additional Sample Points 

 Input:  number of additional sample points at each 

iteration  𝑛𝑎𝑑𝑑, candidate solutions 𝑋𝑐with their EPBII, 

classified reference vectors in 𝛬, objective functions of 

sample points 𝐹, 𝐹 inside each territory 𝐹𝑇
𝑗
, distances 

𝑑𝑖𝑗  and the mean minimum distance 𝑑𝑚𝑖𝑛  among 

reference vectors in 𝛬, Kriging models 

 Output: additional sample points 𝑋𝑎 

1: Evaluate objective functions 𝐹̂𝑐  for 𝑋𝑐  using the 

Kriging models and perform Pareto ranking for 𝐹̂𝑐 
2: Count up the number of NDSs belonging to each 𝐹𝑇

𝑗
 

and obtain 𝑛𝑁𝐷𝑆
𝑗

 

3: Initialize an empty archive for additional sample points 

𝑋𝑎 ← ∅ 

4: For 𝑘 = 1,⋯ , 𝑛𝑎𝑑𝑑 

5: Compute niche count and fitness of candidate 

solutions in 𝑋𝑐  belonging to the k-th cluster using 

(21)-(23) 

6: Add the candidate solution with the highest fitness in 

the k-th cluster 𝐱𝑎
𝑘 into 𝑋𝑎 

7: Add estimated objective functions 𝐹̂𝑐  at 𝐱𝑎
𝑘  into 

corresponding 𝐹𝑇
𝑗
 and update 𝑛𝑁𝐷𝑆

𝑗
  

8: End for 

Parameters of the three algorithms used in the experiments 
are summarized as follows: 

1) Number of initial sample points: 𝑛𝑖𝑛𝑖𝑡 = 30 

2) Number of maximum function evaluation: 𝑛𝑚𝑎𝑥 = 300 

3) Number of additional sample points at each iteration:  

𝑛𝑎𝑑𝑑 = 10 

4) Number of independent runs = 11 

5) Number of reference vectors: 𝑁𝑟𝑒𝑓  = 91 and 112 for 3 

and 6 objective problems, respectively 

6) Design factors (𝐻1, 𝐻2) of the two-layered SLD used in 

MBO-EPBII and K-RVEA: (𝐻1 , 𝐻2) = (12, 0)  and 

(3, 3) to meet 𝑁𝑟𝑒𝑓  = 91 and 112, respectively. 

7) Design factors (𝐻1, 𝐻2)  of the two-layered SLD for 

NSGA-III in MBO-EPBII(-SRVA): (𝐻1, 𝐻2) = (30, 0) 
and (6, 5) resulting in 496 and 716 reference vectors for 

3 and 6 objective problems, respectively 

8) Number of generations in NSGA-III = 200 

9) Number of generations in MOEA/D for MBO-EPBII(-

SRVA) = 50 

The other parameters used in K-RVEA were set to its default.  

In order to compare the performance of three algorithms, we 
evaluated hypervolume and inverted generational distance plus 
(IGD+) [27] for sample points at every iteration. Reference 
points for the hypervolume and the number of reference points 
for IGD+ are shown in Table I and II, respectively.  

TABLE I.  REFERENCE POINTS FOR HYPERVOLUME COMPUTATION 

Problem 3 objectives 6 objectives 

DTLZ1 [150, 150, 150] [50, 50, 50, 50, 50, 50] 

DTLZ2 [1.1, 1.1, 1.1] [1.1, 1.1, 1.1, 1.1, 1.1, 1.1] 

DTLZ5 [1.1, 1.1, 1.1] [1.1, 1.1, 1.1, 1.1, 1.1, 1.1] 

DTLZ7 [1.1, 1.1, 6.1] [1.1, 1.1, 1.1, 1.1, 1.1, 12.1] 

TABLE II.  NUMBER OF REFERENCE POINTS FOR IGD+ COMPUTATION 

Problem 3 objectives 6 objectives 

DTLZ1 1326 8568 

DTLZ2 1326 8568 

DTLZ5 2000 8000 

DTLZ7 2401 7776 

 

B. Results and Discussion 

Statistics of the hypervolume and IGD+ at the end of MBO 
in 11 independent runs are summarized in Tables III and IV, 
respectively. Results of the Wilcoxon signed rank test at a 
significance level of 0.01 are shown as three types of symbols 
+ , − , and ≈ . The symbols +  and −  indicate MBO-EPBII-
SRVA has significantly larger and smaller values than the other 
algorithm (MBO-EPBII or K-RVEA) while the symbol ≈ 
indicates there is no significant difference. Correction for 
multiple comparisons was not applied. The best values for each 
problem are highlighted. 

Tables III and IV show that MBO-EPBII-SRVA achieved 
the best performance among three algorithms except for DTLZ1 
which has many local optimums and is hard to approximate. 

1 https://github.com/Nobuo-Namura/MBO-EPBII-SRVA 



Comparison between MBO-EPBII-SRVA and MBO-EPBII 
revealed that SRVA can improve the performance of MBO for 
the problems which can be approximated by the Kriging models 
(DTLZ2, 5, 7). Besides, SRVA did not disturb the MBO 
performance even for the problems difficult to approximate 
since there is no significant difference between MBO-EPBII-
SRVA and MBO-EPBII in DTLZ1. K-RVEA outperformed the 
other two algorithms in DTLZ1 because sample points can be 
added to the position maximizing the Kriging uncertainty 
regardless of the approximation accuracy of the Kriging models. 

For the problems difficult to approximate, surrogate-assisted 
algorithms which do not use objective function approximation 
are available [28,29]. Compared with these algorithms, MBO-
EPBII-SRVA is useful for the problems which can be 
approximated by the Kriging models.  

Mean hypervolume for each MBO iteration is shown in Fig. 
1 where shading represents 25 and 75 percentiles. MBO-EPBII-
SRVA showed much better performance than K-RVEA from 
early stages of optimization. This feature was enhanced in 6 
objective problems. The hypervolume of MBO-EPBII-SRVA 

TABLE III.  STATISTICS OF HYPERVOLUME OBTAINED BY THREE ALGORITHMS 

Problem M MBO-EPBII-SRVA MBO-EPBII K-RVEA  

  mean std
†
 min max  mean std

†
 min max  mean std

†
 min max  

DTLZ1 
3 2.153 0.331 1.449 2.574 ≈ 2.074 0.297 1.618 2.575 ≈ 2.467 0.522 1.399 2.960 × 106 

6 0.653 0.188 0.348 0.945 ≈ 0.701 0.339 0.000 1.050 − 1.186 0.151 0.966 1.390 × 1010 

DTLZ2 
3 0.712 0.007 0.699 0.723 + 0.686 0.012 0.664 0.707 + 0.702 0.008 0.682 0.710  

6 1.361 0.016 1.334 1.382 + 1.157 0.039 1.086 1.195 + 1.261 0.083 1.106 1.368  

DTLZ5 
3 0.426 0.003 0.418 0.429 + 0.396 0.007 0.381 0.402 + 0.388 0.008 0.373 0.400  

6 0.390 0.025 0.339 0.422 ≈ 0.382 0.015 0.356 0.410 ≈ 0.402 0.013 0.368 0.415  

DTLZ7 
3 2.011 0.007 2.001 2.024 + 1.967 0.018 1.925 1.993 + 1.917 0.018 1.897 1.951  

6 4.377 0.036 4.329 4.448 + 3.974 0.055 3.906 4.067 + 3.138 0.412 2.424 3.660  

†
Standard deviation. 

TABLE IV.  STATISTICS OF IGD+ OBTAINED BY THREE ALGORITHMS 

Problem M MBO-EPBII-SRVA MBO-EPBII K-RVEA 

  mean std
†
 min max  mean std

†
 min max  mean std

†
 min max 

DTLZ1 
3 75.96 17.19 57.88 112.5 ≈ 74.52 16.95 50.60 101.1 ≈ 61.26 21.19 39.23 111.1 

6 30.66 7.15 21.90 46.05 ≈ 32.21 12.23 20.03 55.83 + 19.47 6.83 11.79 32.29 

DTLZ2 
3 0.036  0.003  0.031  0.041  − 0.044  0.004  0.036  0.050  − 0.040  0.003  0.036  0.046  

6 0.166  0.006  0.153  0.174  − 0.202  0.009  0.187  0.216  ≈ 0.174  0.025  0.145  0.230  

DTLZ5 
3 0.010  0.002  0.008  0.015  − 0.032  0.006  0.025  0.042  − 0.036  0.005  0.027  0.043  

6 0.047  0.010  0.034  0.061  − 0.073  0.019  0.045  0.111  ≈ 0.052  0.008  0.043  0.067  

DTLZ7 
3 0.018  0.001  0.017  0.020  − 0.030  0.005  0.025  0.044  − 0.045  0.005  0.033  0.053  

6 0.297  0.041  0.261  0.412  − 0.463  0.093  0.311  0.617  − 0.388  0.067  0.320  0.560  

†
Standard deviation. 

     

 (a) DTLZ1 (M = 3) (b) DTLZ2 (M = 3) (c) DTLZ5 (M = 3) (d) DTLZ7 (M = 3) 

     

 (e) DTLZ1 (M = 6) (f) DTLZ2 (M = 6) (g) DTLZ5 (M = 6) (h) DTLZ7 (M = 6) 

Fig. 1. Mean hypervolume obtained by three algorithms for each MBO iteration. Shading shows 25 and 75 percentiles. 

 



increased from that of MBO-EPBII even in DTLZ2 with 
continuous PFs where well-distributed NDSs can be easily 
obtained by fixed reference vectors of SLD. In MBO-EPBII, 
many sample points were added to the position where one of the 
objective functions was zero due to the weak PF on the Kriging 
models. SRVA led additional sample points to the true PF, and 
diversity of NDSs was improved in MBO-EPBII-SRVA as 
shown in Fig. 2 where NDSs of 3 objective DTLZ2 obtained in 
the run with median hypervolume are visualized. The 
hypervolume in 6 objective DTLZ2 was greatly increased by 
introducing SRVA because SRVA generated reference vectors 
away from the already explored region in the objective space.  

MBO-EPBII-SRVA obtained many NDSs close to the 
degenerated PF of 3 objective DTLZ5 as shown in Fig. 3. This 
result indicates that SRVA helps MBO efficiently solve the 
problems with degenerated PFs. However, the performance of 
three algorithms was comparable in 6 objective DTLZ5. This 
may be caused by NSGA-III used in Algorithm 1. SRVA cannot 
generate well-distributed reference vectors if the number of 

NDSs on the estimated PF is small. The degenerated PF of 
DTLZ5 was hard to explore with fixed reference vectors 
generated by two-layered SLD in NSGA-III when the number 
of objective function is large. We can improve the performance 
of MBO-EPBII-SRVA on many-objective DTLZ5 by replacing 
NSGA-III by another EA with adaptive reference vectors. 

SRVA most effectively worked in DTLZ7 with the 
discontinuous PF. As shown in Fig. 4, MBO-EPBII-SRVA 
obtained the adequate number of NDSs on all part of the 
discontinuous PF in 3 objective DTLZ7 while NDSs obtained 
by MBO-EPBII and K-RVEA were non-uniformly distributed 
on each part of the PF. As a result, MBO-EPBII-SRVA with 120 
sample points achieved the comparable hypervolume obtained 
by K-RVEA with 300 sample points. In 6 objective DTLZ7, the 
difference between MBO-EPBII-SRVA and K-RVEA was 
emphasized due to the small number of fixed reference vectors 
intersecting the PF in K-RVEA. SRVA efficiently assigned 
limited number of reference vectors to the entire high-
dimensional objective space. 

 

    

 (a) MBO-EPBII-SRVA (b) MBO-EPBII (c) K-RVEA 

Fig. 2. NDSs of 3 objective DTLZ2 obtained in the run with median hypervolume in each algorithm. 

    

 (a) MBO-EPBII-SRVA (b) MBO-EPBII (c) K-RVEA 

Fig. 3. NDSs of 3 objective DTLZ5 obtained in the run with median hypervolume in each algorithm. 

    

 (a) MBO-EPBII-SRVA (b) MBO-EPBII (c) K-RVEA 

Fig. 4. NDSs of 3 objective DTLZ7 obtained in the run with median hypervolume in each algorithm. 
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V. CONCLUSIONS AND FUTURE WORK 

In this study, a surrogate-assisted reference vector adaptation 
(SRVA) was proposed to solve the multi- and many-objective 
optimization problems with various Pareto front shapes. We 
combined SRVA with multi-objective Bayesian optimization 
with expected PBI improvement (MBO-EPBII) and named it 
MBO-EPBII-SRVA. MBO-EPBII-SRVA was compared with 
two MBO algorithms (MBO-EPBII and K-RVEA) in four types 
of benchmark problems, each of which had 3 and 6 objective 
functions. Comparison between MBO-EPBII-SRVA and MBO-
EPBII showed that SRVA improved diversity of non-dominated 
solutions for the problems with continuous, discontinuous, and 
degenerated Pareto fronts if the objective functions were 
reasonably approximated by the surrogate models. MBO-
EPBII-SRVA showed comparable performance to MBO-EPBII 
even in the problems difficult to approximate. Besides, MBO-
EPBII-SRVA obtained much better solutions than K-RVEA 
from early stages of optimization especially in many-objective 
problems. As future work, we will replace NSGA-III used in 
MBO-EPBII-SRVA by another evolutionary algorithm with 
adaptive reference vectors to improve the performance of SRVA.  

REFERENCES 

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 
vol. 6, no. 2, pp. 182-197, Apr. 2002. 

[2] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm 
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, 
pp.712-731, Dec. 2007. 

[3] K. Deb and H. Jain, “An evolutionary many-objective optimization 
algorithm using reference-point-based nondominated sorting approach, 
part I: Solving problems with box constraints,” IEEE Trans. Evol. 
Comput., vol. 18, no. 4, pp. 577-601, Aug. 2014. 

[4] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector 
guided evolutionary algorithm for many-objective optimization,” IEEE 
Trans. Evol. Comput., vol. 20, no. 5, pp. 773-791, Oct. 2016. 

[5] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and 
decomposition”, IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694-716, 
Oct. 2015. 

[6] Y. Tan, Y. Jiao, H. Li, and X. Wang, “MOEA/D + uniform design: A new 
version of MOEA/D for optimization problems with many objectives,” 
Comput. Oper. Res., vol. 40, no. 6, pp. 1648-1660, Jun. 2013. 

[7] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: a short review,” in Proc. IEEE Congr. Evol. 
Comput., pp. 2424-2431, Jun. 2008. 

[8] T. Chugh, K. Sindhya, K. Miettinen, Y. Jin, T. Kratky, and P. Makkonen, 
“Surrogate-assisted evolutionary multiobjective shape optimization of an 
air intake ventilation system,” in Proc. IEEE Congr. Evol. Comput., pp. 
1541-1548, Jun. 2017. 

[9] N. Namura, K. Shimoyama, S. Obayashi, Y. Ito, S. Koike, and K. 
Nakakita, “Multipoint design optimization of vortex generators on 
transonic swept wings,” Journal of Aircraft, vol. 56, no. 4, pp. 1291–1302, 
Jul. 2019. 

[10] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian 
methods for seeking the extremum,” Towards Global Optimization, vol. 
2, pp. 117-129, 1978. 

[11] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single and 
multiobjective evolutionary optimization assisted by Gaussian random 
field metamodels,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 421-
439, Aug. 2006. 

[12] T. Chugh, “Scalarizing functions in Bayesian multiobjective 
optimization,” in Proc. IEEE Congr. Evol. Comput., pp. 1-8, Jul. 2020. 

[13] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape 
approximation for expensive multiobjective optimization problems,” 
IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 50-66, Feb. 2006. 

[14] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive optimization by 
MOEA/D with Gaussian process model,” IEEE Trans. Evol. Comput., vol. 
14, no. 3, pp. 456-474, Jun. 2010. 

[15] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A surrogate-
assisted reference vector guided evolutionary algorithm for 
computationally expensive many-objective optimization,” IEEE Trans. 
Evol. Comput., vol. 22, no. 1, pp. 129-142, Feb. 2018. 

[16] N. Namura, K. Shimoyama, and S. Obayashi, “Expected improvement of 
penalty-based boundary intersection for expensive multiobjective 
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 898-913, 
Dec. 2017. 

[17] I. Das and J. Dennis, “Normal-boundary intersection: A new method for 
generating the Pareto surface in nonlinear multicriteria optimization 
problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631-657, Aug. 1998. 

[18] T. Takagi, K. Takadama, and H. Sato, “A distribution control of weight 
vector set for multi-objective evolutionary algorithms,” in Proc. Int. Conf. 
Bio-inspired Inf. and Commun., pp.70-80, Jul. 2019. 

[19] R. Cheng, Y. Jin, and K. Narukawa, “Adaptive reference vector 
generation for inverse model based evolutionary multiobjective 
optimization with degenerate and disconnected Pareto fronts,” in Proc. 
8th Int. Conf. Evol. Multi-criterion Optim., pp. 127-140, Mar. 2015. 

[20] J. Siwei, C. Zhihua, Z. Jie, and O. Yew-Soon, “Multiobjective 
optimization by decomposition with Pareto-adaptive weight vectors,” in 
Proc. 7th Int. Conf. Natural Comput., pp. 1260-1264, Jul. 2011. 

[21] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization 
of expensive black-box function,” J. Global Optim., vol. 13, no. 4, pp. 
455-492, Dec. 1998. 

[22] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three 
methods for selecting values of input variables in the analysis of output 
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239-245, May 
1979. 

[23] K. Deb, “Multiobjective genetic algorithms: Problem difficulties and 
construction of test problems,” Evol. Comput., vol. 7, no. 3, pp. 205-230, 
Feb. 1999. 

[24] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multiobjective 
optimization test problems,” in Proc. IEEE Congr. Evol. Comput., 
pp.825-830, May 2002. 

[25] S. Huband, L. Barone, L. While, and P. Hingston, “A scalable multi-
objective test problem toolkit,” in Proc. 3th Int. Conf. Evol. Multi-
criterion Optim., pp. 127-140, Mar. 2005. 

[26] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” 
ACM Comput. Surv., vol. 31, no. 3, pp. 264-323, Sep. 1999. 

[27] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified distance 
calculation in generational distance and inverted generational distance,” 
in Proc. 8th Int. Conf. Evol. Multi-criterion Optim., pp. 110-125, Mar. 
2015. 

[28] Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi, “Multiobjective tree-
structured parzen estimator for computationally expensive optimization 
problems,” in Proc. Genetic and Evol. Comput. Conf., pp. 533-541, Jun. 
2020. 

[29] T. Sonoda and M. Nakata, “MOEA/D-S3: MOEA/D using SVM-based 
surrogates adjusted to subproblems for many objective optimization,” in 
Proc. IEEE Congr. Evol. Comput., pp. 1-8, Jul. 2020. 


