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Abstract—The design of each agent composing a Memetic
Algorithm (MA) is a delicate task which often requires prior
knowledge of the problem to be effective. This paper proposes
a method to analyse one feature of the fitness landscape, that
is the epistasis, with the aim of designing efficient local search
algorithms for Memetic Frameworks. The proposed Analysis
of Epistasis performs a sampling of points within the basin
of attraction and builds a data set containing those candidate
solutions whose objective function value falls below a threshold.

The covariance matrix associated with this data set is then
calculated. The eigenvectors of this covariance matrix are then
computed and used as the reference system for the local search:
a change of variables is performed and then the local search
is performed on the new variables. The Analysis of Epistasis
has been implemented on the three local search algorithms
composing a popular MA called Multiple Trajectory Search
(MTS). Numerical results show that the three modified local
search algorithms outperform their original counterparts.

Index Terms—Memetic Algorithms, Fitness Landscape Analy-
sis, Epistasis, Covariance Matrix, Local Search

I. INTRODUCTION

Local search is a fundamental element of Memetic Comput-
ing. Within Memetic Algorithms (MAs), properly designed
local search algorithms may have a major impact on the
performance of the entire Memetic Framework [1].

Within the context of the algorithmic design, studies on
Fitness Landscape Analysis (FLA) [2], [3] showed that testing
and understanding the optimisation problem enable the design
of powerful problem specific heuristics [4]. For example, the
Fitness Cloud allows to estimate the potential of the search
[5] while the negative slope [6] and hardness measure [7] es-
timates the difficulty of the problem. Some other examples of
fundamental features of an optimisation problem are modality,
epistasis, ruggedness and deceptiveness [8]. Although most of
the work on FLA currently present in the literature tends to
focus on the combinatorial domain, recent studies showed that
FLA has great potential also on continuous problems, see [4],
[8].

In Memetic Computing, FLA provides precious pieces of
information to design global and local search algorithms
employed within its framework [9]–[11]. For example, the
balance between global and local search should be related to
the modality of the problem [12]. The most studied feature
in the continuous domain is perhaps the ruggedness, that is

the number and location of local optima, see [13], [14]. A
popular way to analyse the ruggedness of a problem consists
of building up a random walk which, while moving according
to a pattern, samples and saves the points of the landscape,
see e.g. [8].

The present paper focuses on local search design based
on the analysis of epistasis. Furthermore, this study refers
to optimisation in the continuous domain. The concept of
epistasis is borrowed from biology where it refers to the
dependency between genes and phenotype. In Optimisation
and more specifically in Genetic Algorithms (GAs) epistasis
has been reinterpreted by means of an analogy: epistasis refers
to the degree of dependency between genes in a chromosome
and its objective function/fitness value [15].

For optimisation problems in general (when we do not nec-
essarily have the GA metaphor of chromosome), epistasis is
the degree of interdependency between variables with respect
to the objective function value. In other words, a multi-variate
optimisation problem is characterised by low epistasis if it can
be decomposed into multiple independent problems with lower
dimensionality while it is characterised by high epistasis if this
decomposition is not possible. This property is also referred
to as operational/non-linear separability and is broadly used
to address large scale optimisation problems, see [16]–[18].

This paper proposes a method for handling highly epistatic
local problems by means of FLA. The proposed FLA at first
generates a data set of candidate solutions whose fitness value
is below (minimisation) a certain threshold. This data set
describes the geometry of the basin of attraction [19]. The
covariance matrix of the points composing this set is calculated
and its eigenvectors extracted. A linear transformation is
performed: the directions of the eigenvectors are used as the
new reference system. The local search is then designed to
move alongside the new system of coordinates. In this paper,
we demonstrate and test the proposed approach on the three
local search algorithms composing an MA called Multiple
Trajectory Search (MTS) proposed in [20].

The remainder of this paper is organised in the following
way. Section II describes the proposed analysis of epistasis
and consequent change of reference system. Section III shows
how the analysis of epistasis is used to modify the local search
algorithms of MTS. Section IV displays the numerical results



of this study and demonstrates that local search designed
after the analysis outperforms the original local search for
the three algorithms composing MTS. Section V provides the
conclusion of this study.

II. ANALYSIS OF EPISTASIS AND NEW REFERENCE
SYSTEM

In order to clarify the notation used in this article, we will
refer to the minimisation problem of an objective function
f (x) in the continuous domain. The candidate solution x is a
vector of n design variables in a hyper-cubical decision space
D ⊂ Rn:

x = (x1, x2, . . . , xn) .

Each vector x ∈ D is expressed in the orthonormal
reference system of its variables. In other words, any vector x
can be interpreted as the linear combination of the orthonormal
basis Be = {e1, e2, . . . , en, } where ek is a vector of length
n composed of all zeros and a 1 in the kth design variable,
see [21].

Let us now consider that, at some point of the functioning
of an MA, a basin of attraction has been detected and a local
search must be activated, see [19], [22], [23].

The proposed analysis of epistasis consists of the following
steps. A number of candidate solutions/points are sampled in
the decision space D and their objective function values are
calculated. The function values are compared with a threshold
thr and those values that are below thr are saved in a data
structure, while the others are discarded. The purpose of this
step is to have a sample of points whose distribution describes
the geometry of the problem.

The m vectors/candidate solutions whose objective function
value is below the threshold thr
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are allocated in the data structure V.
These points can be interpreted as a multivariate statistical

distribution characterised by a mean vector:
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Subsequently, the n eigenvectors of the matrix C are
calculated by means of Cholesky Factorisation, see [21], [24].
These eigenvectors are the columns pi of a matrix P:

P =
(
p1,p2, . . . ,pn

)
.

The directions of the eigenvectors are then used by the
algorithms to perform the search. Algorithm 1 displays the
pseudocode of the Analysis of Epistasis.

Algorithm 1 Analysis of Epistasis
INPUT objective function f (x), decision space D, and parameters thr and
samplesize
h = 1
for s = 1 : samplesize do

sample a point x in the decision space D
if f (x) < thr then

Insert x into the data structure V: V (h) = x
h = h+ 1

end if
end for
Process the data structure V to calculate the mean vector µ and covariance matrix C
Apply Cholesky Factorisation to extract the eigenvectors P =

(
p1,p2, . . . ,pn

)
OUTPUT Matrix P

From a theoretical standpoint, the analysis of epistasis is a
procedure that returns a new reference system that is identified
by the eigenvectors pk of the matrix C. From linear algebra,
we know that a change of coordinates is the multiplication
of a matrix (whose columns are vectors of the new reference
system) by the vector in the old reference system [21]. Hence,
to express x in the reference system identified by P, we
calculate the vector x′ in the new system as x′ = Px.
Equivalently, every point x′ in the new reference system can
be interpreted as a linear combination of the vectors of the
basis BP = {p1,p2, . . . ,pn}.

In order to justify the proposed new system of coordi-
nates, we have to consider the fundamental meaning of the
covariance matrix of a multivariate distribution, see [25].
The diagonal elements of the matrix directly describe the
geometry of the problem since they represent the extent of
the distribution along a variable. A diagonal element much
larger in value than that of other diagonal elements means
that the distribution is stretched along a design variable.

The extra-diagonal elements represent the correlation be-
tween pairs of variables. A large value means high correlation
while zero means no correlation. In our case, since the points
are sampled below a threshold, the correlation is meant with
respect to the objective function: zero means that the function
can be decomposed over the variables while a large value
means that this decomposition is not possible. In order to
intuitively visualise this fact, the covariance matrix associated
with a sphere or a non-rotated ellipsoid would be diagonal
while that associated with a rotated ellipsoid would be full.



The proposed analysis of epistasis detects that basis of vec-
tors (system of coordinates) P that diagonalises the covariance
matrix C [21], since

D = P−1CP

where D is a diagonal matrix whose elements are the eigenval-
ues of the matrix C. Then, within this basin of attraction, we
propose to perform the local search alongside the directions
of the new variables. This operation can be interpreted as a
problem transformation by the change of reference system.
Since in the new system the problem is characterised by
low epistasis, it can be addressed by moving alongside the
new variables. This concept is broadly used in other contexts,
especially in Data Science, and is closely related to Principal
Component Analysis (PCA) [26].

In order to graphically represent the analysis of epistasis of
the landscape let us consider the following objective functions
in two dimensions within [−100, 100]2, see e.g. [27].

Sphere f (x) = x21 + x22
Ellipsoid f (x) = 50x21 + 200x22
Bent Cigar f (x) = x21 + 106x22
Rosenbrock f (x) = 100

(
x21 − x2

)2
+ (x1 − 1)

2

Let us consider that these problems have been shifted by
means of a bias and rotated by means of an orthogonal matrix.
Fig. 1 shows the data set of points below the threshold (in blue)
and the corresponding new reference system (dashed black
lines) identified by the columns of the matrix P.

Fig. 1. Sampling of points (blue) within [−100, 100]2 and new reference
system (dashed black lines) for shifted and rotated Sphere, Ellipsoid, Bent
Cigar, and Rosenbrock functions below the threshold values 103, 3 × 104,
106, and 5× 103, respectively.

Furthermore, we may easily observe that the covariance
matrix C is symmetric, i.e. with reference to its definition
above cj,l = cl,j ,∀j, l. Hence, the following observation is
valid, see [21].

Observation 1: Since the covariance matrix C is symmetric,
it follows that

1) C is always diagonalisable and hence there always exists
a non-singular transformation matrix P that diagonalises
C.

2) each pair of the eigenvectors of C (column of matrix
P) is orthogonal (P−1 = PT), the proposed reference
system is orthogonal.

The meaning of this observation is that we are theoretically
guaranteed that Algorithm 1 always returns a coherent output
i.e. a new orthogonal reference system that diagonalises the
covariance matrix.

A. Considerations about the Directional Derivatives

In order to better highlight the functioning of the proposed
Analysis of Epistasis, we tested the values of the directional
derivatives alongside the directions of the variables as well as
those alongside the directions of the eigenvectors of the matrix
C (columns on the matrix P).

With reference to Bent Cigar in Fig. 1 by using the detected
minimum as a start point we performed ten steps of size
0.01 along the directions of the variables and those of the
eigenvectors. At each step, we saved the objective function
value and calculated the numerical directional derivative. Fig.
2 illustrates the plots of the directional derivatives alongside
the four directions under consideration.

Fig. 2. Plot of the directional derivatives along the direction of the variables
(continuous lines) and eigenvectors p1 and p2 (dashed lines) for the rotated
bent cigar in two dimensions.

The test shows that one of the directional derivatives along
one eigenvector has a high value while the other has nearly
zero. The landscape analysis identifies a search direction along
which small steps quickly lead to large improvements (steep
slope) and another direction along which the problem is nearly
“flat”. The directional derivatives along the variables present
intermediate features.

We repeated the same test on a number of functions and
multiple dimensions ranging from 2 to 100 dimensions. Apart
from the sphere where, due to the central symmetry, all the
lines of the derivative plots collapse in one line, the analysis



of epistasis systematically detected a direction whose gradient
was higher than that of any variable directions. In other
words, the proposed analysis of epistasis appears to be able to
detect some preferential directions along which a local search
displays a high convergence rate.

In order to show an example of the gradient in higher
dimensions, Fig. 3 illustrates the results of the test for the
rotated ill-conditioned ellipsoid in ten variables:

f (x) =

10∑
i=1

(
106
) i−1

9 z2i .

where the design variables zi are obtained from xi after
shifting and rotation, see [27]. The plots in Fig. 3 clearly
show that the proposed analysis yields to the detection of one
direction whose derivative is higher than that of the directional
derivative along any variable directions. We may intuitively
observe the correlation between this result and PCA [26].

Fig. 3. Plot of the directional derivatives along the direction of the variables
(continuous lines) and eigenvectors P =

(
p1,p2, . . . ,p10

)
(dashed lines)

for the rotated ill-conditioned ellipsoid in ten dimensions.

B. Limitation of the proposed Analysis of Epistasis

An evident limitation of the proposed Analysis of Epistasis
outlined in Algorithm 1 is that its success depends on the
threshold parameter thr. This parameter should allow the
generation of a data set that describes the geometry of the
problem. With reference to minimisation, a value that is too
low would result in a small or empty data set, while a value
that is too high would generate a dataset that does not contain
the geometrical features of the basin of attraction. Further-
more, this parameter is problem dependent as it depends on
the specific objective function values. Besides being inelegant,
the sampling procedure can also be computationally expensive
in the high dimensional domain.

On the other hand, the latter is an issue common to other
FLA methods and is a consequence of the concept of FLA.
Moreover, in the context of a Memetic Framework, we may
suggest that part of the points visited in other phases of the

search can be saved in an archive and used for a local analysis
of the fitness landscape. Finally, we observed that the selection
of a reasonably good thr could be automatically performed
with modest computational effort: we sample a small number
of points (10 × n) in the domain and selected the lowest
objective function value among those of the sampled points
as a threshold thr.

III. LOCAL SEARCH DESIGN OF MULTIPLE TRAJECTORY
SEARCH

MTS is an MA composed of three local search algorithms,
each of them improving upon the performance of a single
solution x. These three local search algorithms are supervised
by a framework that processes a population of solutions and
activates the local search on single solutions. The selection of
the local search is adaptive and based on a mechanism that
rewards the most successful local search algorithms, see [28].

The three local search algorithms, namely Local Search 1
(LS1), Local Search 2 (LS2), Local Search 3 (LS3) are briefly
outlined in the following.
• LS1 is a greedy, deterministic local search [29] belonging

to the family of pattern search [30] that explores all the
variables of the problem in both directions

• LS2 is a randomised version of LS1 where only some
of the design variables (about 25% of the variables) in a
randomly selected direction are explored at each iteration

• LS3 is a steepest descent local search [31] that concur-
rently performs two actions: the deterministic perturba-
tion and a randomised exploration along all the variables

This section reports the implementation of LS1, LS2, and
LS3 in the new system of coordinates determined by the
Analysis of Epistasis in Algorithm 1. Let us consider that
a local basin of attraction has been identified and a matrix
P =

(
p1,p2, . . . ,pn

)
has been determined. The three modi-

fied local search algorithms, namely Covariance Local Search
1 (CLS1), Covariance Local Search 2 (CLS2), and Covariance
Local Search 3 (CLS3) are reported in Algorithms 2, 3, and
4, respectively.

Although the pseudocodes are straightforward and only
slightly modify those in [20], it is worthwhile mentioning
that the change of variables alters the update rule. While in
its original version the local search varies one single design
variable at the time, in the proposed scheme the update of one
variable in the new reference system corresponds to a sum
of vectors. For example, with reference to Algorithm 2, the
update of a single design variable

xti = xi − ρ

is equivalent to
xt = x− ρ · ei

that is a sum of numbers.
In the new reference system, the corresponding proposed

update rule is
xt = x− ρ · pi

that is, unavoidably, a sum of vectors.



Algorithm 2 Covariance Local Search 1
INPUT x and P =

(
p1,p2, . . . ,pn

)
while budget condition do
ρ = 0.4×width of D
while ρ > 10−15 do
xt = x
for i = 1 : n do
xt = x− ρ · pi

if f
(
xt
)
< f (x) then

x = xt

else if f
(
xt
)
> f (x) then

xt = x+ ρ
2 · p

i

if f
(
xt
)
< f (x) then

x = xt

end if
end if

end for
if x has not been updated then
ρ = ρ

2
end if

end while
end while
RETURN x

It is worth mentioning the initialisation of ρ Algorithms 2
and 3 which means that 80% of the space is reachable with
the first move. The stopping condition ρ > 10−15 refers to the
minimal radius allowed. The other parameters in Algorithms
2, 3, and 4 are the same parameters used in [20].

IV. NUMERICAL RESULTS

In order to experimentally demonstrate the effectiveness of
the proposed Analysis of Epistasis, we tested the performance
of CLS1, CLS2, and CLS3 and compared it against their origi-
nal versions, LS1, LS2, LS3, respectively. For each experiment
in this paper, LS1, LS2, and LS3 have been executed with a
budget of 5000 × n function calls where n is the problem
dimensionality. In order to guarantee a fair comparison, the
budget of CLS1, CLS2, and CLS3 has been split into two
parts: 2500 × n function calls have been used to build the
covariance matrix C whilst 2500×n function calls have been
spent to execute the algorithm. The bound handling has been
performed by saturating the design variable to the bound. We
preferred the saturation to the bound over the toroidal insertion
or reflection [32] since the latter two mechanisms would be
equivalent to the sampling of a point. We evaluated that this
sampling would modify the original logic of the local search
algorithms.

Each algorithm for each problem had been run 30 times.
Since the purpose of this experimental study is to check mul-
tiple pairwise comparisons LS# vs CLS# for each problem,
we strengthen the statistical significance of the tests by the
application of the Wilcoxon rank-sum test, see [33], [34].
In the Tables in this section, a “+” indicates that CLS#
significantly outperforms LS#, a “-” indicates that LS#

Algorithm 3 Covariance Local Search 2
INPUT x and P =

(
p1,p2, . . . ,pn

)
while budget condition do
ρ = 0.4×width of D
while ρ > 10−15 do
xt = x
for i = 1 : n do

generate a random integer ri ∈ {0, 1, 2, 3}
generate a random integer di ∈ {−1, 1}
if ri == 0 then

xt = xt − ρ · di · pi

end if
end for
if f

(
xt
)
< f (x) then

x = xt

else if f
(
xt
)
> f (x) then

xt = x
for i = 1 : n do

if ri == 0 then
xt = xt + ρ

2 · di · p
i

end if
end for
if f

(
xt
)
< f (x) then

x = xt

end if
end if
if x has not been updated then
ρ = ρ

2
end if

end while
end while
RETURN x

significantly outperforms CLS#, and a “=” indicates that there
is no significant difference in performance.

To test the enhancement in performance due to the new
reference system (directions of eigenvectors) we built the
following testbed. We simulated the local search conditions
we considered the unimodal functions of CEC2008 [35] and
CEC2013 [27]. More specifically the following testbed has
been used.

• f1: Shifted Sphere Function, f1 from [27] or nearly
identical F1 from [35]

• f2: Rotated High Conditioned Elliptic Function, f2 from
[27]

• f3: Rotated Bent Cigar Function, f3 from [27]
• f4: Rotated Discus Function, f4 from [27]
• f5: Different Powers Function, f5 from [27]
• f6: Schwefel’s Problem 2.21, F2 from [35]

Each problem has been considered in 10, 30, and 50 dimen-
sions. In order to obtain highly epistatic basins of attraction,
all the problems have been rotated. For the problems that were
rotated in their original definitions (f2, f3 and f4), we used the
rotation matrix provided with the test-bed. For the remaining



Algorithm 4 Covariance Local Search 3
INPUT x and P =

(
p1,p2, . . . ,pn

)
while budget condition do
xt = x
xs = x
for i = 1 : n do
X1 = xs + 0.1 · pi

Y1 = xs − 0.1 · pi

X2 = xs + 0.2 · pi

if f
(
X1
)
< f (x) then

x = X1

end if
if f

(
Y1
)
< f (x) then

x = Y1

end if
if f

(
X2
)
< f (x) then

x = X2

end if
D1 = f (xs)− f

(
X1
)

D2 = f (xs)− f
(
Y1
)

D3 = f (xs)− f
(
X2
)

generate a random real number a ∈ [0.4, 0.5]
generate a random real number b ∈ [0.1, 0.3]
generate a random real number c ∈ [0, 1]
δ = a (D1 −D2) + b (D3 − 2D1) + c
xt = xt + δ · pi

end for
if f

(
xt
)
< f (x) then

x = xt

end if
end while
RETURN x

problems, we used a randomly generated rotation/orthogonal
matrix, see [36], [37]. The following manually tuned threshold
values thr were used.

n f1 f2 f3 f4 f5 f6
10 104 5× 108 109 5× 108 3× 104 102

30 5× 104 2× 109 2× 109 108 105 1.1× 102

50 105 5× 109 5× 107 3× 105 105 1.2× 102

Tables I, II, and III display the average µ ± the standard
deviation σ over the 30 independent runs available and the
results of the Wilcoxon test. The best results are emphasised
in bold.

Numerical results displayed in Tables I, II, III show that
the proposed Analysis of Epistasis is overall beneficial to
the performance of the three local search algorithms. As a
first comment, we should not expect an improvement for f1
since a sphere is a lowly epistatic problem due to its central
symmetry. In other words, the reference system will not affect
the local search performance. The benefits of the proposed
fitness landscape analysis are evident for LS1 where all the
directions of the new basis of vectors (p1,p2, . . . ;pn) are
exploited. Results on LS3 display that the proposed approach

is beneficial also to for this local search. The performance
of CLS3 is marginally but consistently better than that of
LS3. It should be observed that also in this case the entire
basis of vectors is exploited. However, most of the exploration
is set in the close neighbourhood of the current best point
and since the radius is never reduced there is no clear
mechanism to follow the variations of the gradient. Hence,
the potentials of the information provided by the Analysis of
Epistasis are not fully exploited. Furthermore, we observed
that the randomisation in LS3 appears to be detrimental to the
proposed fitness landscape approach. The advantages of the
proposed fitness landscape approach on LS2 are, albeit present,
not substantial. In this case, the local search selects randomly
only 25% (on average) of the variables/search directions. This
mechanism does not exploit the potentials of the proposed
fitness landscape analysis since the new variables with high
directional derivatives may be excluded from the search, see
Fig.s 2 and 3.

In order to better highlight the impact of the proposed
approach on the local search performance, Fig.s 4, 5, 6 show
the performance trends of LS1 vs CLS1, LS2 vs CLS2, and
LS3 vs CLS3, respectively.

Fig. 4. Performance trend (logarithmic scale) of LS1 vs CLS1 for the
Different Powers Function f5 in 10D

The performance trends in Fig.s 4, 5, and 6 show that for
these problems the use of the eigenvectors of the covariance
matrix as new variables is very efficient. It should be high-
lighted that the CLS# algorithms require half of the computa-
tional budget to analyse the landscape and build the covariance
matrix. This explains why there are no improvements in the
fitness values for the first half of the trend. However, the
displayed results show that in many cases this investment in
the budget pays off with a rapid improvement in performance
during the second half of the run. This consideration in aligned
with the algorithmic philosophy of Fitness Landscape Analysis
[4], [8], [14] and should be taken into account while local
search elements are designed within Memetic Frameworks
[38], [39].



TABLE I
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE PROBLEMS f1 − f7 IN 10 DIMENSIONS.

LS1 CLS1 LS2 CLS2 LS3 CLS3
µ± σ W µ± σ µ± σ W µ± σ µ± σ W µ± σ

f1 0.00e+00±0.00e+00 - 1.12e-28±9.99e-29 3.16e-30±1.18e-29 - 1.54e-28±1.45e-28 9.03e+03±5.43e+03 = 8.00e+03±5.27e+03
f2 2.51e+05±3.05e+05 + 1.49e+04±1.24e+04 8.41e+04±4.74e+04 + 4.51e+04±3.38e+04 1.02e+08±1.41e+08 + 3.55e+07±5.82e+07
f3 1.28e+03±1.58e+03 + 4.93e+01±2.33e+02 5.56e+03±5.56e+03 + 3.44e+02±1.13e+03 2.54e+03±3.69e+03 + 2.53e+02±8.33e+02
f4 1.19e+04±1.50e+04 + 2.15e-25±3.64e-25 2.17e+04±2.67e+04 + 6.94e-25±1.91e-24 1.99e+07±1.09e+08 + 7.02e-03±1.75e-02
f5 4.75e+01±1.36e+02 + 5.08e-05±2.44e-05 1.12e-04±2.36e-05 = 1.20e-04±3.62e-05 6.36e+03±7.91e+03 = 7.99e+03±1.38e+04
f6 2.34e+01±1.95e+01 + 5.31e+00±9.26e+00 7.09e+00±1.17e+01 + 1.33e+00±5.87e+00 6.20e+01±2.13e+01 + 5.58e+01± 1.62e+01

TABLE II
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE PROBLEMS f1 − f7 IN 30 DIMENSIONS.

LS1 CLS1 LS2 CLS2 LS3 CLS3
µ± σ W µ± σ µ± σ W µ± σ µ± σ W µ± σ

f1 0.00e+00±0.00e+00 - 5.09e-28±2.81e-28 1.18e-28±1.02e-28 = 2.76e-27±1.41e-27 8.12e+04±2.14e+04 = 7.81e+04±2.12e+04
f2 1.11e+06±2.29e+06 + 2.24e+05±1.21e+05 1.80e+05±8.26e+04 = 1.78e+05±7.09e+04 2.19e+09±1.26e+09 + 1.28e+09±1.02e+09
f3 4.40e+03±6.24e+03 + 2.86e-04±1.56e-03 6.67e+03±8.92e+03 + 1.12e-23±5.16e-23 1.50e+03±2.30e+03 + 4.87e+01±1.83e+02
f4 1.35e+04±1.57e+04 + 1.75e-26±4.37e-26 3.51e-01±8.25e-01 + 1.23e-26±1.50e-26 1.20e+09±1.94e+09 + 1.65e+06±9.01e+06
f5 1.40e+02±2.22e+02 + 1.29e-04±3.90e-05 5.60e-05±3.57e-06 = 5.80e-05±9.18e-06 3.99e+05±4.13e+05 + 1.44e+05±1.43e+05
f6 5.54e+01±1.13e+01 + 3.82e+01±1.33e+01 2.96e+01±1.24e+01 = 2.74e+01±1.14e+01 1.05e+02±1.97e+01 = 9.93e+01±1.51e+01

TABLE III
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE PROBLEMS f1 − f7 IN 50 DIMENSIONS.

LS1 CLS1 LS2 CLS2 LS3 CLS3
µ± σ W µ± σ µ± σ W µ± σ µ± σ W µ± σ

f1 0.00e+00±0.00e+00 - 1.19e-27±3.89e-28 3.99e-28±2.08e-28 = 7.79e-27±3.06e-27 1.47e+05±2.66e+04 = 1.40e+05±2.32e+04
f2 9.75e+05±9.69e+05 + 2.12e+05±1.24e+05 2.76e+05±8.72e+04 = 2.60e+05±1.68e+05 6.64e+09±4.23e+09 + 3.40e+09±1.93e+09
f3 3.47e+03±4.14e+03 + 5.21e-24±1.99e-23 6.66e+03±6.96e+03 + 5.99e-24±2.17e-23 1.93e+04±1.17e+04 + 7.36e+03±7.49e+03
f4 7.04e+03±8.53e+03 + 2.33e-27±3.08e-27 5.20e-21±4.69e-21 + 1.36e-26±3.52e-26 3.27e+07±1.50e+08 + 1.79e+03±9.57e+03
f5 1.64e+02±1.67e+02 + 1.87e-04±4.11e-05 7.44e-05±3.33e-06 = 6.52e-05±6.46e-06 2.47e+05±1.79e+05 + 1.67e+05±1.08e+05
f6 5.94e+01±7.33e+00 + 4.13e+01±4.55e+00 5.65e+01±1.09e+01 = 5.24e+01±4.32e+00 1.10e+02±1.58e+01 = 1.08e+02±1.58e+01

Fig. 5. Performance trend (logarithmic scale) of LS2 vs CLS2 for the Rotated
Discus Function f4 in 10D

V. CONCLUSION

This paper proposes a method to analyse the fitness land-
scape of continuous optimisation problems. The analysis aims
to assess the epistasis of a basin of attraction to exploit
this information to design an effective local search within

Fig. 6. Performance trend (logarithmic scale) of LS3 vs CLS3 for the Rotated
Bent Cigar f3 in 10D

Memetic Frameworks. The proposed method makes use of
sampled points describing the geometry of the problem and
the covariance matrix associated with the distribution of these
points. The local search explores the basin of attraction along
the directions of the eigenvectors of this covariance matrix. In
other words, the local search works on an alternative reference



system of variables. This alternative reference system ensures
that the covariance matrix is diagonalised and then the problem
appears to be lowly epistatic.

The proposed method has been implemented on the three
local search algorithms composing a popular MA called Mul-
tiple Trajectory Search. Multiple experiments have been run
on a number of rotated unimodal problems. These unimodal
problems simulate basins of attraction detected during the
search of an MA. Numerical results show that the proposed
landscape fitness analysis detects a set of preferential search
directions. One of these directions is associated with a direc-
tional derivative higher than that of the directional derivatives
associated with the directions of all the variables. Furthermore,
each local search designed on the proposed fitness landscape
analysis outperforms its original counterpart.

The proposed fitness landscape analysis can be potentially
integrated within Memetic Frameworks to automatically de-
sign problem-specific local search algorithms.
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“Fitness clouds and problem hardness in genetic programming,” in
Genetic and Evolutionary Computation - GECCO 2004, Genetic and
Evolutionary Computation Conference, Seattle, WA, USA, June 26-30,
2004, Proceedings, Part II, pp. 690–701, 2004.

[6] L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel, “Negative slope
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