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Decision making for two learning agents acting like
human agents*

*A proof of concept for the application of a Learning Classifier Systems

1% Tobias Jordan
School of Computing
University of Kent
Canterbury, United Kingdom
tj202 @kent.ac.uk

Abstract—The paper investigates the suitability of a Learning
Classifier System implementation for mimicking human decision
making in agent based social simulations incorporating network
effects. Model behavior is studied for three distinct scenario
settings. We provide proof of concept for the adequacy of LCA
to tackle the task at hand. Specifically, it is found that the LCA
provides the agents within the simulation model with the ability to
learn and to react to environmental changes while accounting for
bounded rational decision making and the presence of imperfect
information, as well as network effects. Moreover it can be shown
that the LCA-agents exhibit a habit like behavioural pattern.

Index Terms—Agent Based Social Simulation, Learning Clas-
sifier Systems

I. INTRODUCTION

Currently, General Equilibrium Models [1] represent the
most popular paradigm for macroeconomic simulation and
thereby the most popular measure for political decision sup-
port. However, those models are based on strong neo-classical
assumptions like rational decision making, perfect market
behavior and perfect information for all actors. These assump-
tions do obviously not hold in the real world and lead to a
stereotype average consumer, that is the rational individual or
Homo Oeoconomicus. Critics on Homo Oeconomicus became
louder during the last decade due to the unrealistic assumptions
of the underlying model and the failure of rational individual
based models. Especially, in predicting problems such as the
big economic crisis of the beginning of 21st century [2].
These assumptions also suppose that our highly heterogeneous
societies can be understood by investigating the behavior of
rational average individual and their communication and group
behavior. We argue against that irrationality does not exist, or
at least not affect the crowds behavior [3]. In order to better
understand and predict human behavior, the concept of Agent
Based Modeling came up as an alternative for economists.
Agent Based Models use autonomous acting, communicating
computer programs, the so called agents that are able to decide
in a bounded rational way [4]. Agents within these models
may resemble individual, consumers or juristic persons like
companies. Agent Based Models thereby are enabled, to better
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model human heterogeneity and thus create a more sophisti-
cated image of reality. Complementary, the research area of
Social Network Science and Complex Networks suggests that
human decisions are not entirely autonomous, but influenced
by peers, siblings or parents [5]. This influence may occur
through spread of information or contagion of behavior via
social networks. The former foils the assumption of perfect
information, the latter challenges fully rational decisions. This
motivates the attempt to join findings from Social Network
Science and Agent Based Modeling in order to create models
that better represent reality, facilitating simulation of societies
and prediction of policy effects. In order to set-up a simulation
model that addresses the stated shortcomings of state of the art
General Equilibrium Models and copes with opinion dynamics
in social networks, the agents within the models need to be
equipped with an adequate decision making mechanism. Such
a mechanism may approximate human decision making in the
situation under investigation, enhancing the credibility and
accuracy of the model. Moreover, the mechanism must be
capable of coping with a dynamic environment. The research
at hand proposes such a decision mechanism for agent based
models incorporating network diffusion processes. In an early
work, Holland proposes Learning Classifier Systems (LCS)
as a good option to mimic human decision making in agent
based models. Principally he argues in favor of LCS because
they enable the agent to allocate environmental situations
to broad categories which are progressively refined by the
experience made. This in turn enables the agent to build
internal models of the world, while non of the models is
immutable, but always provisional and subject to change [6].
Further, Classifier Systems have been shown to be able to
learn to play nash-markov equilibria both with and without the
presence of imitation [7] [8].Therefore, a LCS is implemented
in order to make allowance for the often posited characteri-
zation of the human mind as a system to classify things and
situations. This work shall serve as a proof of concept for the
utilization of Learning Classifier Systems as an agent learning
representation in agent based social simulations.

As our use case serves the schooling decision of children.



Important determinants of schooling success are the motivation
of parents to support their children at school and the dedication
of children to study, as well as the quality of schools. Children
have to decide to which degree they dedicate themselves to
their education. As a motivation for this dedication serves the
question if education pays off or not (expected utility). As
schooling success depends on a large number of influence
factors, such as socio-economic status, peer influence and
current economic activity, we assume that children cannot
assess that expected utility but rather base their decision on
experience and peer information. Moreover, subjective percep-
tion, limited processing capacities and incomplete information
may influence expected utility calculation of individuals.

II. BACKGROUND

This Section gives a general overview on recent advances in
the fields important to the presented research, namely diffusion
processes in social networks, Agent Based Computational
Economics and Learning Classifier Systems.

A. Diffusion in Social Networks

Social influence and contagion, as well as spread of behavior
and information through social networks has been documented
in a wide range of cases [5]. This indicates the existence of
those effects on the schooling decision of individuals. Mar-
ques [9] reveals the huge differences between social networks
of the poor and those of more wealthy people, which further
encourages the considering of social network effects while
studying social phenomena.

As presented above, it has been extensively shown by
statistical research that behavior spreads throughout social net-
works, additionally, scientists tried to develop models to under-
stand how this spreading occurs. Econometric approaches have
been developed in order to capture peer effects on schooling
behavior of pupils [10]. However, even though this approaches
incorporate empirical peer effects, they do not consider the
very mechanism of behavior spreading, nor bounded rational
individuals. One approach to capture diffusion processes is to
model them as coordination games [11] or employing group
decision making approaches [12].

B. Agent Based Models - Agent Based Economics

According to Holland [13], Agent Based Modeling (ABM)
describes the study of systems consisting of autonomous
computational agents. The agents may be designed heteroge-
neously and are able to interact, which enables the ABMs
to reproduce macro phenomena that emerge from micro
level behavior. Examples for the use of ABM are models
of racial segregation [14], political opinion building [15]
or consumer behavior [16]. The sub-fields of Agent Based
Social Simulation (ABSS) and Agent Based Computational
Economics (ABC) join the fields of agent based computing,
computational simulation and respectively social sciences [17]
or economics [18], where applications reach from demogra-
phy [19] to tax compliance [20] or school effectiveness [21].
Using ABM to simulate social or economic contexts forces

the researcher to debug and understand macro phenomena
better, while large experimental studies may be conducted
without numerical or ethical concerns arising in real world
experimental setups. Contrary to traditional economic models,
ABM enables the researcher to incorporate the imperfection of
human rationality as well as limited information availability
to the model. In addition, the iterative interaction of agents
triggers insights that may be overseen in general equilibrium
approaches. A detailed summary of sociology in ABSS can be
found in [22], while [23] summarizes applications ins Agent
Based Computational Economics. Literature on Agent Based
Computational Economics suggest very distinct approaches
to model agents decision making. Approaches employ un-
conscious techniques like reinforcement learning, routine-
learning approaches like replicator dynamics, belief learning
methods as classifier systems or Bayesian approaches [24].
many of them have been proven to produce outcomes that
coincide with findings from experimental economics and even
econometrics [25].

C. Learning Classifier Systems

Learning Classifier Systems (LCS) are rule based programs.
They usually contain a Genetic Algorithm to manipulate the
set of rules they operate on and a Reinforcement Learning part
that aims at choosing the best performing rules [26]. Holland
proposed LCS first as a model of the emergence of cogni-
tion [27]. Classifier systems are regarded as an approximation
to human decision making, given a perceived situation [24]
although they are not belief based, which means that agents
are not conscious about the existence of other agents within
their environment [25].

According to Brenner [24], Classifier Systems consist of a
set of condition-action rules, where the conditions ¢ describing
the perceived state and the actions a, representing the respec-
tive action to be taken are stored as feature strings of the
form {¢y,ca,...,cn} or respectively {ai,as,...,a,}. The set
of condition - action rules R;(i = 1,2,...,n) combines then a
condition string with an action string. Whereas c;; or a;; may
be represented as a wild-card # indicating that this feature
applies independently from the given situation. For each
iteration, the current signal s = {s1, s2, ..., $,, } is compared to
the condition strings of the available condition - action rules.
The most adequate of those rules with corresponding condition
strings is being chosen for execution. For the purpose of
choice, each rule is being assigned a Specificity value and
a Strength value. The Specificity determines the number of
wild-cards within the rule, while the Strength is defined by the
pay-off, the rule generated in preceding iterations. the value
B(R;) is calculated according to Equation 1, where «, 8 and
~ are parameters. Accordingly, the corresponding rule with the
maximum value of B(R;) is regarded the most adequate rule.

B(R;) = a(B + v - Specificity(R;)) = Strength(t, R;) (1)

The Strength of each Rule R; at time ¢ is hereby calculated
according to Equation 2.



Strength(t+1, R;) = Strength(t, R;)+ Payof f(t)— B(R;)
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Subsequently, the Classifier System employs a genetic op-

erator that allows for creating new rules from the existing best

performing rules and forgetting rules that did not perform well
in the past.

III. PROBLEM

The agents within the presented simulation model are em-
bedded in an environment consisting of their peers' and an
individual socio-economic environment represented by indi-
vidual variables. We aim at modeling the behavior “dedication
at school” which cannot be observed easily. Hence we employ
the mark in mathematics of the respective pupil as a proxy
for the engagement at school. The agents within the model
iteratively decide what mark to achieve in the next iteration.
It is assumed that agents benefit from aligning their behavior
with peer behavior. Thus, an agent’s utility is affected by the
behavior her peers exhibit. Both, individual socio-economic
status and peer social-economic status hereby affect the utility.
Moreover, the agents are unaware of their own utility function
and hence have to learn which action pleases them most.

Perceptions are represented as condition strings E of the
form {s,p1,ps,...pn}, where s stands for the mark of the
current individual and p; stands for the mark of peer 7. Sub-
sequently, we explain, how those perceived condition strings
are processed in the decision module set up as a Classifier
System. In every case, the agent decides on a set of actions,
that may include all possible marks within the range {0, 100}.

IV. THE LCS DECISION MECHANISM

The classifier is based on a set of condition action rules R of
the form ¢— > @, where each ¢ represents a string c1, ca, ...Cp.
The length n of ¢ is given by the formula n = d + 1, where
d denotes the degree of the respective agent. ¢; stands for the
interval [x;,y;] with x;,y; € [0,100],y; > x; but can adopt
the # symbol also, indicating that this digit of the condition
string matches all possible values of s or p; respectively. The
first digit of ¢ narrows the mark of the respective agent, while
the remaining digits narrow the mark of her peers. At each
time step, the algorithm creates the list of matching condition
action strings M;. M; contains those strings for which the
condition Vx € Ez; € c; holds. To setup the system, a number
of condition-action-rules is created randomly. Here for each
rule to be created, a random interval is set for each digit of
the condition-string. The respective action of the condition-
action-string is then drawn from a normal distribution with
variance V AR(x);, while the mean is set to the initial mark
of the respective agent. Calculation of Strength and B(R;)
occurs according to Equation 2 and Equation 1 respectively
for all R; € M;. Subsequently, a roulette wheel mechanism
ensures that the action of that R; with the highest Strength is

Ifor the use case of this work, peers are thought of as friends within the
friendship network of pupils

most likely to be taken, while the likelihood for the choosing
of R; € M decreases with decreasing strength. If R does not
contain any rule that is compatible to the current perception
string - meaning that M; = ()-, that rule in R that is most
similar to the current perception E mutates so that it matches
E'. Hereby the action of the mutated string is also drawn from a
normal distribution where the mean is the currently performed
mark of the agent and variance is VAR(x)3. Furthermore,
an evolutionary process is implemented, aiming at continuous
improvement of the solutions found. Hereby a fraction of the
weakest rules death —rate in M is being deleted from R and
new rules are created, recombining the n strongest rules in
M via a cross-over operator until the original number of rules
in R is reached. In order to ensure diversity, an additional
mutation operator is introduced: A random mutation process
starts with a probability of ”mutation — rate”, altering
random characters of the condition string of a randomly chosen
rule R; € M that is not the currently best performing rule.
The character that indicates the action of the condition-action-
string to be mutated is drawn from a normal distribution with
variance VAR(z), while the mean is set to the currently
adopted mark of the respective agent.

Figure 1 illustrates this Classifier System for the simple case
of an agent with degree 2.

A. Evaluate Action

The evaluation of the fitness or utility, an action taken by
the agent causes, is being measured by a utility function. The
utility function proposed in [10] is implemented as presented
in Equation 3. In this case ;(y) is a component that introduces
exogenous heterogeneity to the model and ¢ is the imitation-
factor of the model, controlling the peer influence. Moreover,
x; represents the mark achieved by the respective agent ¢ and
g; stands for the binary peer matrix of the agent.

1

Qx? + 52 gijzizj  (3)

j=1

Ui(wi, 9i) = [pngi + 0i(yi)]x;

The exogenous heterogeneity component 6;(y,) is computed
according to Equation 4. y, is a vector of variables that
resemble observable differences between individuals, such as
race, age, and other socio-economic variables. ¢ and ¢ are
parameter vectors.

M
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This fitness function not only introduces wide individual
heterogeneity, but also accounts for a strategic complemen-
tarity in efforts [10]. this means that if the peer of agent ¢,
agent j increases her behavior level, then agent ¢ will receive
increasing marginal utility, if she also increases her behavior
level.

Table I summarizes the model parameters and contains a
brief explanation for each parameter.
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Fig. 1: Classifier System - Decision

TABLE I: model parameters

Model modules Parameters Explanation
« controls the importance of past performance for the selection of a Rule R; € M;
Strength Calculation | ~ ~ ~ = =~ = 7 B~~~ 7 7 7 7 7| controls the importance of past performance for the selection of a Rule R; € M; |
iiiiiiiii ~~ ~ 7 7 7 7 7 7| controls the importance of specificity of rulesin the LCS™ ~ ~ ~ ~ T " T 7 7 7]

controls how frequently rules within the LCS are replaced by randomly created rules

Genetic Operators

evolution — time

controls which share of the population of rules within the LCS
is replaced by newly created rules (cross-over recombination)

controls how often an evolutionary process is triggered for all agents

nr — action — rules

LCS

controls how many condition-action-rules an agent possesses
Variance of the normal distributions in the generation of action rules and mutation.
Control the maximum step-size for the increasing or respectively decreasing of marks

at each iteration.

Utility Function

Imitation Factor, controls the weight of peer behavior within the utility function

Parameter Vector, assigns weights to the individual variables of peers

V. EXPERIMENTS

Seeking to verify, if the implemented decision making
algorithm is capable of mimicking human decision making
in the situation of interest, we choose the most simple model
set-up, containing two interconnected agents. The parameter
vectors o and ¢ of the utility function U;(x;, g;) are chosen so
that clear strategies emerge for each agent. For the purpose of
experimentation, we define the three distinct strategy settings
listed below. (i) ”Good mark”: both agents may always prefer
to achieve the better mark, this is achieved by setting o
and ¢ so that ‘{% > 0 . (i1) ”Bad mark™: both agents may
always prefer to achieve the worse mark, this is achieved by
setting o and d so that % < 0. (ii1) ”Good mark imitation”:
achieving a good mark is a dominant strategy for both agents.
However, peer behavior heavily influences the utility outcome.

The parameter vectors are set as in (i) and the imitation factor
v is set to 20. Figure 2 illustrates the respective utility for
agent 1 as a function of her achieved mark markl and the
achieved mark of her peer mark2.

We set the model parameters as presented in Table II.

In order to assess, if the model behaviour fulfills our
expectations, we measure, if the algorithm is capable of
finding good solutions for each scenario. As we seek to mimic
human behaviour, we do explicitly not expect fully accurate
and rational decision making. The agents are expected to
demonstrate a tendency towards the optimal solution while
sporadic not optimal solutions are tolerated. Moreover, a
learning process should be observable throughout run-time.
Ultimately a human-like agent is expected to react on changes
in her environment, namely the change of behavior of her
peers and the alteration of her own situation. We measure
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Fig. 2: Utility functions for the three strategy settings (i) "Good
mark”, (ii) "Bad mark” and (iii) ”Good mark imitation”

TABLE II: model parameters for experiments

Model modules Parameters Values
g1 0.74
Strength Calculation g2 0.83
g3 0.42
mutation — rate 0.15
Genetic Operators death — rate 0.34
evolution — time 15
nr — action — rules 200
VAR(z)1 4
LCS VAR(z)2) 40
VAR(z)3) 10
4 (4)(23) : 0.5; (4i3) : 20
Utility Function o *
@ *

*set to create the respective strategy (i), (ii) or (iii).

this examining the probability for an agent to change the
current action subject to recent alterations of the environmental
variables, peer behavior and self-behavior.

The models are run 500 times with a run-time of 500
iterations.

A. Overall Performance - Learning Process

The finally achieved mark of agent 1 after each run may be
revised in Figure 3 for each scenario. Here each cross indicates
the final mark of agentl and agent2 and the respective utility
derived by agentl after 500 iterations. One may observe that
for scenarios (i) and (iii) both agents achieved final marks close
to the function optimum. Also, for the majority of simulations,
marks for both agents can be found in the upper half of the
scale. The best possible soultion in scenario (ii) would be a
mark of 0 for both agents. however, as Figure 3c reveals,
the agents did not achive this optimal solution frequently.
Nevertheless, a tendency towards lower maks is observable.

B. Run-time Performance

In order to investigate the model behaviour for each it-
eration, we analyzed the marks achieved by both agents, as
well as the utility for agentl. Figure 4 illustrates the average
outcome for each iteration in 500 simulations. The solid green
line indicates the averagely achieved utility of agent 1 for each
iteration, while the dashed red line ajust below 80 is achieved.
Plotting the average outcomes for scenario (ii) indicates a
negative development of marks throughout the run-time and
respectively increasing average utility values. Finally achieved
average mark for both agents lies below 60 while the achieved
average utility amounts above -8800. Recall that the best
possible decision for this scenario for both agents would be a
final mark of O and respectively a utility of 0. Scenario (iii)
yields average mark and utility development comparable to
scenario (i).

Moreover, the runtime analysis encompasses examination of
agent behavior over time. In order to observe, how repeatedly
chosen actions affect the disposition of agents to try out
different behavioral patterns, the frequency of occurences
of behavioral change have been related to the number of
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Fig. 3: results obtained after 200 iterations



iterations with unchanged behavior preceeding that alteration.
Figure 5 illustrates the respective outcomes. Here the green
dashed line indicates how often a change of behavior was
observed throughout all experiments after x iterations. The
red dashed line represents the probability density function of
the distribution of x. It becomes clear that the vast majority
of action changes occurs after few repetitions of the same
behavior. very low frequencies are observed for more than
10 iterations. In order to ensure the validity of the calculated
frequencies, x that ocurred less than 20 times have not been
considered for this analysis.
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Fig. 5: Frequency of action change related to preceeding
number of repetitions of the same behavior

C. Reaction to variation of peer behavior

Finally we investigate how the agent responds to changes
in peer behavior and in own behavior. To this purpose we
calculate the variable A according to Equation 6, where ay
indicates the action of agentl taken in iteration k, x; indicates
the mark of agentl at iteration ¢ and y; the mark of agent2 at
iteration 7.

J J
(Z (zio1 —x)))? + (Z (Yi1 —v:))%,05)
ik ik
ap # Qp—1,05 7 Gj41,0;5 > Qg

A, =

In Figure 6 we plot the cumulative frequency of A in the
2.5 x 10° iterations of the 500 experiments as a red solid line.
The green line however, indicates the cumulative frequency of
A in the subset of iterations that actually triggered a change
of action for the observed agent. As the relations presented
in this Figure are very similar for all three scenarios, we
demonstrate the outcomes for scenario (i). For A > 10, the
green line appears to grow much steeper than the red line.
Also, the red plot appears to be much more concave than the
green plot. The more concave shape of the red plot indicates
that A is represented less than proportional within the set

of A that actually triggered an action change for low A ,
while the oposite holds as A grows. Thus, it appears that the
probability for an agent to change the current behaviour is
substantially higher if the environment, respectively the peer
behavior, changes.
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Fig. 6: Frequencies of cumulative environmental change

VI. DISCUSSION

As stated above, this work seeks to present a solution for hu-
man alike agent decision making. Hence the decision making
algorithm may account for bounded rational decisions that may
not be optimal in all cases but demonstrate a tendency towards
good decisions. The results presented in Section V-A indicate
that the proposed LCS is capable of delivering good solutions
for differently shaped utility functions. In the examined simple
settings with only two interacting agents, solutions yielding
high utility were encountered in the majority of simulations.
However, the algorithm also exhibited miss judgment and
biased decisions that may also be expected from human
decision makers. Difficulties were particularly encountered in
situations with negative pay-offs. It may be argued that humans
particularly struggle with situations where the outcopmee is
always negative. However there may be alternative parameter
settings that help the agents to better perform in negative utility
functions. Moreover, it is not clear yet, if the implemented
LCA also performs well in more complicated settings with
a larger number of heterogeneous peers and high imitation
utility.

Furthermore, the realistic agents are expected to exhibit
the ability to learn from past experiences. Section V-B il-
lustrates that on average, the agents decision improves with
increasing run-time. Specifically for the scenarios (i) and (iii).
The decisions in scenario (iii) also improve, yet on a rather
low pace. This may indicate that the LCS implementation is
more sensible to negative pay-offs. However, the continuously
positive developing average utility is a strong signal that the
agents exhibit learning behavior.



Finally, it was posited that agents may react sensible to
changes in peer behavior. In Section V-C we found that
the probability for an agent to change her current action is
significantly lower, when the cumulative difference of her
mark and of the mark of her peer to the respective marks
after the preceding action change is close to zero.This analysis
also revealed that probability of action change increases with
increasing cumulative difference of the environment. Hence,
it can be argued that the agents do react on change in
peer behavior and self behavior. The runtime analysis further
revealed that agents become heavily less likely to change their
course of action, once a certain action has been executed
repeatedly. Most alterations in behavior have been observed in
a short period after experimenting a new behavior. This may
resemble habituation in human beings, a behavioural feature
that frequently occurs in reality. Once one created a habit like
for example drinking a cup of coffee after lunch it becomes
quite difficult to change that behavior even if the environment
changed.

VII. CONCLUSION

Within this paper we propose the implementation of a learn-
ing classifier system as a decision making module for agent
based models that incorporate social influence ad heteroge-
neous interconnected agents. We aim at developing a decision
mechanism that resembles bounded rational human decision
making well and that incorporates imperfect information as a
feature from real decision making situations. The use case
of the simulation model is the decision about engagement
at school of individuals, measured via the achieved mark of
those individuals. Experiments with two interconnected agents
are conducted in three distinct scenario settings: (i) Firstly,
a scenario is set up, where the dominant strategy for both
agents is to achieve the best possible mark. (ii) Secondly,
the environment is set so that the best possible decision for
both observed agents would be not to engage at school at all
and consequently achieve the worst possible mark. At last, we
investigate a scenario with high utility derived from imitation
of peer behavior. The simulation study shows that the proposed
LCA performs well in achieving good solutions for both agents
for the respective scenarios. Still, optimization is not accurate
but biased by peer decisions and habit and thus well resembles
human decision making. Moreover, a learning effect could be
identified which is essential when mimicking human decision
making. Finally it could be shown that the agents react to
environmental change while exhibiting a tendency to create
habits which are not changed even if the environment changes.
Summarizing, it could be shown, that the application of LCA
may in fact be an adequate approach to mimic human decision
making in agent based simulations. However, further study
is required in order to verify if the LCA performs well also
in more complicated settings, incorporating larger numbers of
heterogeneous interconnected agentsand settings incorporating
exclusively negative pay-offs. Within this study, only one well
performing calibration of the simulation model was tested.
More detailed analysis of model behaviour under different

parameter settings would most certainly contribute to further
develop the decision module.
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