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Abstract—This paper presents an application of Evolutionary
Computation (EC) to the benchmark of the safety isolating
transformer problem. The benchmark adopts multidisciplinary
optimization strategies, namely the multidisciplinary feasible
(MDF) and the individual discipline feasible (IDF) formulations.
The benchmark meets the requirements of engineers and sci-
entists working with machine design problem, such as in the
first part of the design process that is the choice of structure
and materials. The EC methods employed in this paper are
based on Evolutionary Algorithms (EAs), namely two variants of
Differential Evolution (DE), two variants of Hybrid Adaptive DE
(HyDE) and the Vortex Search (VS). The results showed in this
paper suggest that EA methods are competitive with the classical
optimization method, the sequential quadratic programming
(SQP). Among the developed EAs, HyDE-DF is able to obtain
better values than SQP on a significant battery of trials.

I. INTRODUCTION

Optimal design of the safety isolation transformer is a

complex problem, which requires accounting for different

physical phenomena. The transformer can be represented by an

analytical model [1]. Usually, analytical models can be solved

within fast number evaluations and with acceptable level of

accuracy. The study in [2] addresses the optimal design of the

isolation transformer adopting the use of single-level multidis-

ciplinary optimization strategies, namely the multidisciplinary

feasible (MDF), individual discipline feasible (IDF) and all-

at-once (AAO). While single-level methods (MDF, IDF and

AAO) have been widely studied and have made full proof of

their capabilities in the past. However, most of the studies

available in the literature have addressed the optimal design

of transformers using classical optimization approaches [2].

Evolutionary algorithms (EA) are an alternative to classical

optimization and have showed their potential to a high num-

ber of applications in power systems [3]. EAs have gained

some attention due to its effectiveness in providing acceptable

solutions to complex problems when many times classical

optimization cannot deal. EAs present numerous advantages

that contribute to their success in the energy domain, including

their simplicity of implementation and can handle nonlinear,
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non-differentiable and non-separable functions without much

of convergence compromise [3]. This paper is based on the

benchmark presented earlier in [4] of the multidisciplinary

optimal design of a single-phase low-voltage safety isolation

transformer. We apply advanced state-of-the-art EAs methods

to the design problem of safety transformer and compare the

results with those available on the L2EP benchmark1. One of

the EAs we adopt and develop in the work is called Hybrid

Adaptive Differential Evolution or HyDE2. HyDE has been

developed by the authors of ISEP/GECAD and has showed

excellent performance in the past in a decent number of

problems and benchmark functions [5], [6], [7]

This paper is organized as follows: after this Introduction,

Section II describes the optimization problem of the safety

transformer design; Section III presents the formulation of two

benchmark problems (MDF and IDF); Section IV presents the

adopted HyDE algorithm in the paper (including other EAs

that have been included for comparison); Section V presents

the results and discussion of the paper while Section VI

discloses the conclusions of the work.

II. SAFETY TRANSFORMER DESIGN PROBLEM

Many analytical test functions are available in the litera-

ture to compare optimization algorithms. They exhibit some

interesting features such as explicit equations, fast to com-

pute, obvious minimum, and scaled decision variables. As

algorithms’ performances depend on the optimization problem

and the model, the benchmark used in this paper aims to

compare them for design (pre-sizing) problems in electrical

engineering and more precisely in electromagnetic devices.

This benchmark exhibits other interesting features such as

multiphysics, implicit equations, highly constrained, badly

scaled design variables, and multiple minima. Fully detailed

materials of this benchmark are available online1. The physical

phenomena within the transformer are thermal, electric and

magnetic, all expressed in equations. This model consists in

two sub-models. The first one contains electric and magnetic

equations and requires the knowledge of copper temperature

and voltage drop. Its assumptions are uniform distribution of

magnetic induction in the iron core and no voltage drop due

to the magnetizing current. The magnetic field in coils is in

1http://optimisation.l2ep.ec-lille.fr/benchmarks/
2HyDE is available in https://fernandolezama.github.io/CodesImple
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the direction of the coil axis. The thermal sub-model requires

the knowledge of iron and copper losses. Its main assumption

is uniform temperature in coils and iron. To address the

multidisciplinary coupling, two formulations are used.

A. Multidisciplinary feasible

The multidisciplinary feasible (MDF) formulation ensures

the consistency of the model and solves the non-linear implicit

system by using a fixed-point loop. The electromagnetic sub-

model computes the iron and copper losses, and updates the

voltage drop. The losses are inputs of the thermal sub-model

that computes the temperatures. At the beginning of the next

iteration, the electromagnetic sub-model updates the copper

conductivity according to its temperature, and the voltage drop.

Consequently, both sub-models run several times for each

model evaluation.

B. Individual discipline feasible

In the individual discipline feasible (IDF) formulation, the

model is not consistent. From the initial values of voltage

drop and copper temperature, the electromagnetic sub-model

computes the losses and updates the voltage drop. The thermal

sub-model computes the temperatures from the losses. After

one run of both sub-models, the copper temperature and

voltage drop are a priori not equal to their initial values. The

computing time of the model for IDF is consequently smaller

than for MDF.

III. BENCHMARK PROBLEMS FORMULATION

According to the multidisciplinary formulation used, two

optimization problems are given.

A. Multidisciplinary feasible (MDF)

The single-objective optimization problem of a safety-

isolating transformer contains seven design variables. There

are three parameters a, b, c for the shape of the lamination, one

for the frame d, two for the section of conductors S1, S2, and

one for the number of primary turns n1. There are eight non-

linear inequality constraints in the MDF optimization problem.

The copper and iron temperatures Tcond, Tiron should be less

than 120oC and 100oC, respectively. The efficiency should be

higher than 80%. The relative magnetizing current I10/I1 and

drop voltage ∆V2/V20 should both be less than 10%. Finally,

the filling factors of coils f1 and f2 should both be lower

than 0.5. The objective is to minimize the total mass Mtot of

iron and copper materials. As a mechanism prevents from an

infinite fixed-point loop, a constraint on the residue is added

to guarantee the convergence. Fig. 1 shows the structure of

the safety isolating transformer considered in this problem.

To summarize, the optimization problem is minimization of

Mtot (total mass in kg):

minimize Mtot (1)

s.t.

Tcond ≤ 120◦C; Tiron ≤ 100◦C;
I10

I1
≤ 0.1;

∆V2

V20

≤ 0.1

Fig. 1: Structure of a safety isolating transformer [4].

f1 ≤ 1; f2 ≤ 1; η ≥ 0.8; residue < 10−6

3mm ≤ a ≤ 30mm; 14mm ≤ b ≤ 95mm

6mm ≤ c ≤ 40mm; 10mm ≤ d ≤ 80mm

200 ≤ n1 ≤ 1200; 0.15mm
2
≤ S1 ≤ 19mm

2

0.15mm
2
≤ S2 ≤ 19mm

2

B. Individual discipline feasible (IDF)

To ensure the model consistency, two additional equality

constraints are used with two additional variables that link the

physics: Tcond IDF and ∆V2 IDF are respectively the initial

values for the copper temperature and the voltage drop. The

additional equality constraints are the difference between the

initial values and the updated ones.

The optimization problem becomes:

minimize Mtot (2)

s.t.

Tcond ≤ 120◦C; Tiron ≤ 100◦C;
I10

I1
≤ 0.1;

∆V2

V20

≤ 0.1

f1 ≤ 1; f2 ≤ 1; η ≥ 0.8; residue < 10−6

3mm ≤ a ≤ 30mm; 14mm ≤ b ≤ 95mm

6mm ≤ c ≤ 40mm; 10mm ≤ d ≤ 80mm

200 ≤ n1 ≤ 1200; 0.15mm
2
≤ S1 ≤ 19mm

2

0.15mm
2
≤ S2 ≤ 19mm

2

40o
C ≤ Tcond IDF ≤ 400o

C

0.1V ≤ ∆V2 IDF ≤ 24V
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The size of the optimization problem is larger with IDF

formulation which may lead to a higher number of model

evaluations. Moreover, some algorithms could be in difficulty

with equality constraints.

IV. HYDE-DE AND OTHER EVOLUTIONARY ALGORITHMS

As we can see, the optimal design of a safety isolation trans-

former is a complex problem that cannot be easily solved, even

with the use of deterministic techniques. It is in this situations

when the use of alternatives methods, such as approximate

algorithms, becomes reasonable to find solutions in a more ef-

ficient way. Thus, we evoke the use of evolutionary algorithms

(EA) for the proposed optimization problem. EAs are a family

of optimization algorithms inspired by the evolution process

seen in nature [3]. Once a problem is mathematically defined,

including the objective function and a way to represent a

solution to the problem, different EAs can be explored to find

optimal and near-optimal solutions to a given problem. In this

paper, we applied a recently proposed self adaptive version

of the well-known differential evolution (DE) called Hybrid-

Adaptive DE with decay function, or HyDE-DF [8]. HyDE-DF

achieved the third place (out of 36 algorithms) in the 100-digit

challenge at CEC/GECCO 2019 [7].

In addition, we compare its performance againts other EAs,

namely DE/rand/1 and DE/target-to-best/1 [9], HyDE [5] (a

previous version of HyDE-DF), and the vortex search (VS)

[10]. We provide an explanation to these EAs in the following

subsections.

A. Hybrid-Adaptive DE with Decay Function

HyDE-DF is inspired in the evolutionary mechanism of

the original DE. For instance, HyDE-DF uses a population

(Pop) of individuals (solutions to the problem) ~xj,i,G =
[x1,i,G, ..., xD,i,G], where G is the generation number, and

i = [1, ..., NP ] is the number of individuals in the population,

to optimize a D-dimensional function. In an initialization

phase, NP solutions are generated randomly within the lower

and upper ranges [xlb,j , xub,j ] (i.e., the bounds defined in the

design variables of the isolated transformer in Eqs. 1 and 2).

HyDE-DF follows the general iterative process of EAs by

creating new solutions applying a mutation and recombination

operator, and performing elitist selection (solutions with better

performance in the objective function survive into the next

generation).

The first difference between DE and HyDE-DF is in the

mutation operator. HyDE-DF uses a new mutation operator

known as “DE/target-to-perturbedbest/1” (similar to that in

HyDE) in combination with a decay function as follows:

~mi,G = ~xi,G + δG · [F 1

i (ǫ · ~xbest − ~xi,G)] + F 2

i (~xr1,G − ~xr2,G)
(3)

where F 1

i and F 2

i , are scale factors in the range [0, 1]
independent for each individual i, and ǫ = N (F 3

i , 1) is a

random perturbation factor taken from a normal distribution

with mean F 3

i and standard deviation 1. F 1

i , F 2

i and F 3

i are

updated each iteration following the same rule of a well-known

adaptive version of DE called jDE algorithm (see Sect. III.B

of [11]). The new defined operator modifies the DE/target-

to-best/1 strategy with a perturbation of the best individual

(inspired by the evolutionary PSO [12]). This modification

tries to take advantage of the strong convergence properties

towards the best solution of these two strategies, but might

suffer from premature convergence in some cases. To alleviate

the premature convergence effect, the δG factor is used to

gradually decrease the influence of the term F 1

i (ǫ·~xbest−~xi,G)
responsible for the fast convergence towards the best individual

in the population.

δG is a function that decreases its value from 1 → 0,

gradually mitigating the influence towards xbest, and taking

advantage of the inherent DE exploitation capabilities in later

stages of the evolutionary process. The decay factor at each

generation G is calculated as:

δG = e1−1/a2

; with a = (GEN −G)/GEN (4)

where a is a value that linearly decreases from 1 → 0.

Such a decrease value of a is proportional to the number of

generations GEN . Figure 2 is used to illustrate the impact

of the decay factor in the evolutionary process. It can be

noticed that the decay factor reaches a value near to 0 at the

60% of the evolutionary process. In this way, the operator has

strong exploration properties towards the xbest in the first part

of the evolutionary process, while switching to a more local

exploitation phase at the end of it.

After the mutation operator is applied, the recombination

and selection process follow the same rules as the original DE.

For instance, the recombination operator is applied between

the mutant and the current target vector as:

~tj,i,G =

{

~mj,i,G if (randi,j [0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

(5)

where Cr is the recombination parameter that is updated

with the same jDE rule [13], and Rnd is a random integer in

the range [1, D] to guarantee that at least one element is taken

from the mutant individual ~mi,G.

New individuals are evaluated in a given fitness function to

measure the performance of an individual (i.e., the objective

functions described in Eqs. 1 and 2). After that, the elitist

selection process is performed and good solutions are pre-

served while solutions with lower fitness are deleted from the

population.

As can be seen, the second difference between DE and

HyDE-DF resides in the self-adaptation of parameters in-

volved. HyDE-DF uses the same mechanism as jDE algorithm

[13] to self-control the parameters F 1

i , F
2

i , F
3

i and Cri and

avoid the tuning of them for each problem. The only differ-

ence, regarding jDE, is that the main operator of HyDE-DF

employs three Fi parameters instead of just one. Therefore,

each individual in the population is extended with parameter

values F 1

i = F 2

i = F 3

i = 0.5 and Cri = 0.9.



A
ut

ho
r ve

rs
io

n
Generations (G) ×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
e
c
a
y
 f
a
c
to

r 
(δ

G
)

0

0.2

0.4

0.6

0.8

1
δ

G
=e(1-1/a

2
)m

i,G
  = x

i,G
+F

1

i
(ǫ·x

best
 -x

i,G
)+ F

2

i
(x

r1,G
-x

r2,G
)

m
i,G

  = x
i,G

+δ
G

 · [F
1

i
(ǫ·x

best
 -x

i,G
)]+ F

2

i
(x

r1,G
-x

r2,G
)

m
i,G

=x
i,G

+F
2

i
(x

r2,G
-x

r3,G
)

Fig. 2: HyDE-DF decay factor is used to gradually switch between the original HyDE operator to the DE/rand/1 operator.

B. Other EAs used for comparison

In this subsection, we briefly describe the algorithms used

for comparison purposes. The reader is directed to the follow-

ing references for further details: A detailed explanation of

DE can be found in [14]; HyDE is described in [5]; VS is

introduced in [10].

• DE/rand/1 is the most basic version of the main of

operator of DE, yet has been successfully applied to a

wide range of domains and problems. The main operator

of DE/rand/1 is defined as:

~mi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (6)

where ~xr1,G, ~xr2,G, ~xr3,G ∈ Pop are three random in-

dividuals from the Pop, mutually different from each

other. F is a mutation parameters usually set in the

range [0, 1]. After that, the recombination and selection

operators follows the same mechanisms as HyDE-DF.

• DE/current-to-best/1 strategy uses information of the best

individual in the population to modify the convergence

capabilities of the algorithm. Its main operator is defined

as:

~mi,G = ~xi,G+F (~xbest,G−~xi,G)+F (~xr1,G−~xr2,G) (7)

where ~xi,G is the current target vector, and ~xbest,G is the

solution with best fitness in the population. DE/target-to-

best/1, in its original form, favors exploitation only since

all the vectors are attracted toward the same best position

found by the entire population,thereby converging faster

toward the same point.

• Hybrid-adaptive DE (HyDE) is a new self-adaptive ver-

sion of DE proposed in [11]. HyDE uses a new mutation

operator known as “DE/target-to-perturbedbest/1”:

~mi,G = ~xi,G +F 1

i (ǫ · ~xbest − ~xi,G) +F 2

i (~xr1,G − ~xr2,G)
(8)

where F 1

i and F 2

i , are scale factors in the range [0, 1]
independent for each individual i, and ǫ = N (F 3

i , 1)
is a random perturbation factor taken from a normal

distribution with mean F 3

i and standard deviation 1. F 1

i ,

F 2

i and F 3

i are updated each iteration following the same

rule of a well-known adaptive version of DE called jDE

algorithm (see Sect. III.B of [11]). The new defined

operator modifies the DE/target-to-best/1 strategy with

a perturbation of the best individual (inspired by the

evolutionary PSO [12]). This modification tries to take

advantage of the strong convergence properties towards

the best solution of these two strategies, but might suffer

from premature convergence in some cases.

• Vortex search (VS) is classified as a single-solution based

metaheuristic, although its framework is very similar to

that of EAs as well. In each iteration, an N given number

of neighbor solutions are generated using a multivariate

Gaussian distribution around the initial solution. Those

N solutions are evaluated in the fitness function, and the

single-solution is updated with the best solution found.

The radius of search is gradually reduced during the

iterative process, favoring exploitation capabilities in the

final iterations. This process is iterative repeated until a

stop criterion is achieved [10].

C. Encoding of solutions and fitness function

One positive feature of EAs that share similar frameworks

(i.e., initialization, mutation, recombination, and selection),

is that they can be applied easily once a valid encoding of

solutions and a fitness function is defined. The reason we

selected the algorithms presented in Sect. IV, is because all

of them share similar iterative frameworks, so the comparison

can be done almost straightforward.

For the two defined problems (i.e., the MDF formulation

from Eq. (1) and the IDF formulation from Eq. (2)), the

encoding of solutions is represented by vectors including the

design variables.

Particularly, a solution for the IDF formulation is defined

as a vector of dimension D = 7 as follows:

~x = [a, b, c, d, n1, S1, S2] (9)

where each element represents the value of a design variable.

On the other hand, the IDF formulation requires two extra
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variables, thus, a solution is defined as a vector of dimension

D = 9 as follows:

~x = [a, b, c, d, n1, S1, S2, Tcond IDF ,∆V2 IDF ] (10)

Vectors with the above structures, having values withing

the allowed bounds of desing variables, can be evaluated

in objective functions described in Eqs. (1) and (2). The

resulting value is called the fitness of a solution, and reflect

the performance that a solution has. The less the value, the

better the individual. Therefore, the fitness functions used in

this study correspond to Eqs. (1) and (2).

V. RESULTS AND DISCUSSION

In this section we present the results using deterministic and

the developed EAs applied to the safety transformer problem.

A. Deterministic

The sequential quadratic programming (SQP) method from

MATLAB Optimization Toolbox is used. All options are set to

the default values. As the gradient is required, it is computed

by using a forward finite-difference approximation, resulting

in additional model evaluations. This method starts from an

initial solution given by the user. If no good starting point is

known, it may be drawn with the random uniform law.

Thus, the optimization process becomes stochastic and

statistics for the objective values are given in Tables I and

II with the mean computing time and the convergence rate

(conv). This last is defined as the number of solutions with

optimal objective value below the lowest one plus 2e-5 divided

by the number of trials.

We use SQP with two variations (SQP and an improved

SQPimp). Both have multi-start but to increase the conver-

gence rate of SQP, two techniques are used in SQPimp):

All design variables are scaled, and several initial solutions

TABLE I: Performance comparison of algorithms using MDF

formulation.

min max mean std time Conv

VS 2.312060 2.407100 2.340715 0.02 180.9 0.01
DE 2.311153 2.316645 2.312002 0.00 173.7 0.06
DE best 2.311153 2.386627 2.318276 0.01 172.6 0.02
HyDE 2.315386 2.417907 2.339663 0.02 178.5 0.01
HyDE-DF 2.311151 2.321686 2.311534 0.00 178.3 0.34

SQP 2.311220 9.72453 2.998278 1.54 0.1 0.13
SQPimp 2.311153 2.986595 2.331611 0.1 0.1 0.86

TABLE II: Performance comparison of algorithms using IDF

formulation.

min max mean std time Conv

VS 2.315072 2.940729 2.453896 0.10 176.3 0.01
DE 2.311410 2.409213 2.321811 0.01 166.7 0.01
DE best 2.311246 2.408570 2.335629 0.02 167.7 0.01
HyDE 2.366087 2.727329 2.495261 0.08 170.1 0.01
HyDE DF 2.311187 2.405398 2.320237 0.01 176.7 0.01

SQP 2.311193 7.082574 2.750605 0.93 0.2 0.11
SQPimp 2.311153 9.506476 2.437748 0.79 0.2 0.88
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Fig. 3: Average convergence of the tested EA. [a] MDF

formulation. [b] IDF formulation.

(multi-start) are randomly sampled. The results are given for

100 starting points with uniform sampling over the design

space. In Table I, it can be seen that MDF formulation SQP
reports a solution of 2.311220 kg and 2.311153 kg using

SQPimp. In IDF formulation (cf. Table II), SQP reported

value is 2.311193 kg while SQPimp is 2.311153 (the same as

MDF formulation). Convergence rate is improved as expected

when design variables are scaled (SQPimp) in both MDF and

IDF formulation, i.e. 86% and 88% against 13% and 11%,

respectively. The average number of evaluations is 187.

B. Stochastic EAs

1) Algorithm settings: The parameters for each algorithm

where chosen according to other studies. For DE, the mutation

factor and recombination constant (F and Cr) were set to

the recommended values 0.5 and 0.9 respectively [15]. HyDE

and HyDE-DF [11] are a self-adaptive parameter versions but

initial values for F i and Cr where set to 0.5. VS algorithm

does not have any parameter to configure [10]. The size of

population (NP ) chosen is 10 and iterations (GEN ) is 10e4.

2) Performance comparison and results: The experiments

have been run 100 times to produce the statistical results

presented here. The performance of the EAs can be seen



A
ut

ho
r ve

rs
io

n
TABLE III: Wilcoxon comparison of HyDE-DF (best EA method) against all others.

Function

HyDE-DF vs. VS HyDE-DF vs. DE/rand/1 HyDE-DF vs. DE/current-to-best/1

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 4.73E-30 5048 2 ’+’ 8.92E-08 4.02E+03 1031 ’+’ 5.44E-22 4897 1.53E+02 ’+’
IDF 3.21E-27 5020 30 ’+’ 0.258477 2855 2195 ’=’ 1.94E-09 4181 8.69E+02 ’+’
’+/=/-’ ’2/0/0’ ’1/1/0’ ’2/0/0’

Function

HyDE-DF vs. HyDE HyDE-DF vs. SQP HyDE-DF vs. SQPimp

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 1.58E-30 5050 0 ’+’ 5.24E-23 4928 122 ’+’ 8.47E-05 1403 3647 ’-’
IDF 1.58E-30 5050 0 ’+’ 3.98E-18 4747 303 ’+’ 7.63E-07 1134 3916 ’-’
’+/=/-’ ’2/0/0’ ’2/0/0’ ’0/0/2’

in Table I and Table II for MDF and IDF, respectively. In

MDF formulation, HyDE-DF achieves a better result than

both variants of SQP, with a reported value of 2.311151 kg.

Overall, DE variants are able to compete with SQP in MDF

formulation. Standard HyDE and VS is not as good as the

other tested EAs in this case with the worse reported min. and

mean values in both MDF and IDF (but not worse than the

mean values of SQP). The execution time under the proposed

algorithm settings varies between 172 and 181 seconds (MDF)

and 167 and 177 seconds (IDF). Standard DE versions are

lighter and thus faster in both cases. In IDF formulation, the

HyDE-DF can do better in mean values than SQP but not

better in the min. value than SQPimp. HyDE-DF obtains

the highest convergence rate3 of 34% in MDF formulation

whereas the convergence rate in IDF formulation is only 1%

in all the EAs, which means that a better solution may still

exist. Compared with other EAs, HyDE-DF is significantly

better than VS, DE variants and the standard HyDE, which is

proved by the Wilcoxon test in Table III.

The convergence plot in each iteration of HyDE-DF and

other tested EAs is shown in Fig. 3. HyDE-DF has similar

convergence characteristics in both problems, stabilizing after

8,000 iterations. DE versions converge faster than HyDE

variants and VS. However, HyDE-DF is able to overcome the

the limitations of exploitation seen in early versions of DE (get

stuck in a local optima). Nevertheless, DE performs quite well

here when compared to more recent EAs like standard HyDE

and VS. Indeed, VS has a similar convergence characteristic

of HyDE-DF by also implementing a decay function, which

in turns enables them to transit between exploration and

exploitation (the belly curve), however VS is stuck after a

while.

Since the results of HyDE-DF using NP=10 and

GEN=10e4 provided inferior performance in IDF regarding

the min. value when compared with SQPimp, cf. Table II, we

increased NP to 50 and GEN to 5e5. In a similar fashion

as the former results, we present the statistics of the 100 runs

in Table IV for this setting. In this case the results of both

DE and HyDE-DF compared with best results available from

3The convergence rate is a measure of how many solutions have been found,
within the defined tolerance that are equivalent in 100 runs.

SQP method are displayed. HyDE-DF is better than DE and

SQP in all measures (cf. Wilcoxon validity test in Table V).

DE performance by reference is only better or statistically

equivalent to SQPimp in MDF but not IDF formulation (cf.

Table V) The convergence rate in HyDE-DF increases to 86%

and 100% in MDF and IDF formulation but the execution

time increases from a few minutes to around one hour in this

setting.

Tables VI and VII present the variables of the best solutions

found for MDF and IDF formulation using the increased NP
size and generations (NP = 50 and GEN = 5e5) using

the respective physical units as well as the values for the

constraints of the design problem.

TABLE IV: Performance comparison of best EAs increasing

population size (NP = 50) and generations (GEN = 5e5)

against SQPimp.

MDF formulation
min max mean std time Conv

DE 2.311151 2.311151 2.311151 4E-15 4525 1
HyDE-DF 2.311151 2.311151 2.311151 2E-15 4577 1
SQPimp 2.311153 2.986595 2.331611 1E-01 - 0.86

IDF formulation
min max mean std time Conv

DE 2.311154 2.311535 2.311249 8E-05 4313 0.20
HyDE-DF 2.311150 2.311150 2.311150 2E-13 4350 1
SQPimp 2.311153 9.506476 2.437748 8E-01 - 0.88

VI. CONCLUSIONS

In this paper an application of Evolutionary Computation

(EC) to the benchmark of the safety isolating transformer

problem has been presented. The presented benchmark prob-

lem adopts multidisciplinary feasible (MDF) and the individual

discipline feasible (IDF) optimization model. We apply several

Evolutionary Algorithms (EAs) to the benchmark problem

under MDF and IDF formulations. A comparison between

EAs and SQP algorithm is extensively made. The results

are evaluated using an adequate scientific approach adopting

Wilcoxon test to validate the statistical meaning of the average

results of the trials.

The results indicate that EA methods are competitive with

the SQP method (both SQP and SQPimp). Among the
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TABLE V: Wilcoxon comparison of best EAs increasing population and generations against SQPimp

Function

HyDE-DF vs. DE/rand/1 HyDE-DF vs. SQP imp SQP imp vs. DE/rand/1

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 2.38E-07 5021 29 ’+’ 4.04E-28 4278 0 ’+’ 4.04E-28 0 4278 ’-’
IDF 1.58E-30 5050 0 ’+’ 5.05E-29 4560 0 ’+’ 8.32E-11 3916 644 ’+’
’+/=/-’ ’2/0/0’ ’2/0/0’ ’1/0/1’

TABLE VI: Best solutions found (MDF formulation) increasing population size (NP = 50) and generations (GEN = 5e5)

Parameter Desing

a b c d n 1 S 1 S 2 Obj. Mass

(mm) (mm) (mm) (mm) (-) (mm2) (mm2) (Kg)

HyDE DF 0.012917 0.050122 0.016611 0.043258 640.770836 3.25E-07 2.91E-06 2.311151

SQPimp 0.012917 0.050122 0.016611 0.043258 640.771478 3.25E-07 2.91E-06 2.311153

Constraints

T con Tiron DeltaV/DeltaV20 I10/I1 f1 f2 n

HyDE DF 108.8182 100 0.069082 0.1 1 1 0.800001
SQPimp 108.8182 100 0.069083 0.1 1 1 0.895537

TABLE VII: Best solutions found (IDF formulation) with increasing population size (NP = 50) and generations (GEN = 5e5)

Parameter Design

a b c d n 1 S 1 S 2 T cond IDF Delta V 2 Obj. Mass

(mm) (mm) (mm) (mm) (-) (mm2) (mm2) Co V (Kg)

HyDE DF 0.01292 0.05012 0.01661 0.04326 640.77092 3.25E-07 2.91E-06 108.8181 1.6580 2.311150

SQPimp 0.01292 0.05012 0.01661 0.04326 640.77136 3.25E-07 2.91E-06 108.8182 1.6580 2.311153

Constraints

T con Tiron DeltaV/DeltaV20 I10/I1 f1 f2 n

HyDE DF 108.8182 100 0.069082 0.100001 1.000001 1.000001 0.8954091
SQPimp 108.8182 100 0.069083 0.1 1 1 0.895537

developed EAs, HyDE-DF is able to obtain better values than

SQP and other tested EAs on a significant battery of trials,

regarding convergence and total mass (kg) objective function.
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