Loading [a11y]/accessibility-menu.js
An Improved Adaptive Genetic Algorithm for Mobile Robot Path Planning Analogous to the Ordered Clustered TSP | IEEE Conference Publication | IEEE Xplore

An Improved Adaptive Genetic Algorithm for Mobile Robot Path Planning Analogous to the Ordered Clustered TSP


Abstract:

The material transportation planning with a mobile robot can be regarded as the ordered clustered traveling salesman problem. To solve such problems with different priori...Show More

Abstract:

The material transportation planning with a mobile robot can be regarded as the ordered clustered traveling salesman problem. To solve such problems with different priorities at stations, an improved adaptive genetic simulated annealing algorithm is proposed. Firstly, the priority matrix is defined according to station priorities. Based on standard genetic algorithm, the generating strategy of the initial population is improved to prevent the emergence of non-feasible solutions, and an improved adaptive operator is introduced to improve the population ability for escaping local optimal solutions and avoid premature phenomena. Moreover, to speed up the convergence of the proposed algorithm, the simulated annealing strategy is utilized in mutation operations. The experimental results indicate that the proposed algorithm has the characteristics of strong ability to avoid local optima and the faster convergence speed.
Date of Conference: 19-24 July 2020
Date Added to IEEE Xplore: 03 September 2020
ISBN Information:
Conference Location: Glasgow, UK

References

References is not available for this document.