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Abstract—Cuckoo search (CS) is a highly competitive single
objective optimization technique. The algorithm has been widely
applied in various diverse application domains and has been
found to be efficient in solving various real-life problems. In the
present work, we have proposed a new enhanced version of CS
algorithm and tested its performance on recently proposed CEC
2017 and CEC 2020 benchmark test problems. The proposed
algorithm has been named as CSsin and it employs four major
modifications, i) new techniques for global and local search
are devised, ii) dual search strategy is followed to enhance
exploration and exploitation properties of CS algorithm, iii)
a linearly decreasing switch probability has been used to add
a balance between local and global search, and iv) linearly
decreasing population size is used to reduce the computational
burden. Apart from these modifications, the division of itera-
tions has been employed as a further modification. The CSsin
algorithm has been tested on IEEE CEC 2017 and CEC 2020
benchmark test problems having various dimension sizes and a
comparative study has been performed with respect to state-
of-the-art optimization algorithms for single objective bound
constraint optimization problems. The results of statistical signif-
icance test affirm the competitiveness of the proposed algorithm
with respect to state-of-the-art techniques. Index Terms—Cuckoo
Search, Self-adpatation, cuckoo version 1.0, CEC2017, numerical
optimization.

I. INTRODUCTION

Nature has always served as the main source of inspiration
for solving various real world problem. Instead we can say
that, it has been solving various problems from the past mil-
lions of years. There are numerous examples where nature has
served as a source of inspiration. These include immune sys-
tem to fight against various diseases, perception based systems
for recognizing various patterns, learning process of the brain
to train neural networks, decision making and reflex action for
making robots and others. All these systems have a common
feature of high level computing and numerous algorithms have
been introduced in this context to solve various optimization
problems from varying fields such as business management,
feature selection, classification problems, travelling salesmen
problems and others. The main reason for the popularity of
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these algorithms is that they are simple in structure, flexible
and have minimal set of training parameters. Further these
algorithms do not require any guess in the initial stages for
solving problems and hence have a better chance of solving
problems at hand when compared to traditional optimization
approaches.

Cuckoo search (CS) is one such recently introduced nature
inspired algorithm, based on the obligate brood parasitic
behavior of cuckoo birds found in nature [1]. By using obligate
brood parasitic behavior, the cuckoos lay their egg in the nests
of crows which consider these eggs as their own and help
them in hatching. The newly hatched cuckoo birds, consume
all the food gathered by host bird and also kick the host
eggs out of the nest. In some cases, the foreign eggs are
identified by the host bird and they throw the foreign eggs out
of their nests. This danger has motivated the cuckoo species
to evolve continuously in such a way that they depict the
foraging patterns of host species and change their color, so
that the host treats them as own and help them in hatching.
The CS algorithm is inspired from this behavior of cuckoos
and is based on three basic rules, i) each cuckoo lays only
one egg in any random nest, ii) the nest with the best fitness
will allow the cuckoo species to survive and carry on to the
next generation, iii) there is a probability that the eggs can be
recognized by the host birds and based on this probability the
host bird either abandons the nest or throws the cuckoo species
out of the nest. Based on these concepts, the CS algorithm has
been derived and is given by Lévy flight based global search
and simple random walk based local search. The global search
equation is given by equation (1)

xt+1
i = xti + α× Levy(λ)(xbest − xti) (1)

In case of local search, random walk by using two search
equation if followed and is given by equation (2)

xt+1
i = xti + α×H(p− ε)× (xtj − xtk) (2)

where xti is the solution of the previous generation, ε is a
random number in the range of [0, 1], p is the probability
switch which helps in controlling the extent of global and local
search, xbest is the best solution in the current generation,
xtj and xtk are two randomly selected solutions in the tth

generation.



Overall there are three phase’s namely global phase, local
phase and the probability, which decides the better perfor-
mance of CS algorithm. Both the global search phase and
local search phases further corresponds to exploration and ex-
ploitation phases. Broadly, exploration or diversification tends
to explore whole of the search space where as exploitation
or intensification refers to searching of specified areas of
search space. Both these phenomena require a proper balance
in order to find an optimal solution [2]. This balance in
CS is brought by the use of switching probability. So there
are three major properties of CS which decides its proper
functioning. The global search is further controlled by using
Lévy flights component where as local search by uniformly
distributed random solutions [1]. Thus it can be said that CS
satisfies all the requirements of global convergence and hence
a global solution is guaranteed for most of the cases [3].
The main reason for this is that CS is able to move toward
the global solution or has the ability to find global minima
without falling or getting trapped in some local optima. Many
studies have proved the efficiency of CS in solving diverse
set of optimization problems, including multimodality, high
dimensionality, ill-conditioning and others [4].

Further, CS is very much affected by the choice of pa-
rameters used and is highly dependent on them [5]. The
major parameters used are the Lévy flight component or
scaling factor (L), a uniform random number and the switching
probability (p). Based on this fact, a large number of CS
algorithms have been proposed in the recent past to enhance
the performance of CS and improve its working capability
[4]. Most of the studies have improved either the Lévy flight
component or switching probability but less work has been
done to enhance local search phase. The idea of adaptive Lévy
flight component was suggested in [6]. The authors further
enhanced the local search phase by employing golden ratio
with 0.5 probability. Other important hybrid versions include
opposition based CS for improving the accuracy [7], improved
CS for enhancing the scaling factor and probability switch
[12], self-adaptive CS to enhance its exploration capability [8],
orthogonal based learning for enhancing CS [9], chaos based
CS [10] and others. The algorithm has also been applied to a
larger set of application domains namely distribution networks
[13], feature selection [11], load dispatch problems [15], signal
watermarking in electrocardiogram [14], web clustering [19],
modelling [17], infrastructure [18] and others [20], [21], [22].

CEC benchmark are the most widely used benchmark
problems and have been used by a large number of research
scientists for testing their algorithms. Even for CS, many
researchers have continuously focused on applying their al-
gorithms to CEC benchmarks in order to prove their effec-
tiveness. Cuckoo version 1.0 (CV 1.0) is one such recently
introduced algorithm which has been applied to CEC 2005 and
CEC 2015 benchmarks for real parameter optimization [3]. CV
1.0 is proven to be very powerful algorithm and has proven
its worth in line with differential evolution (DE) [24], grey
wolf optimization (GWO) [25], and others. The algorithm used
Cauchy and Normal distribution instead of simple Lévy flight

based component of exploration and uniformly distributed ex-
ploitation random numbers respectively. The algorithm though
used a standard value for p but still was capable of providing
better results. This algorithm also used concepts of division
of population and generations to achieve a proper balance
between the extent of exploration and exploitation. But from
the inference of CV 1.0, it can be found that there is still scope
of modification. So in [12], the authors have modified the
original CV 1.0 algorithm by employing parameter adaptation
and population reduction with respect to generations, to design
a new algorithm namely CVnew. The proposed approach uses
Cauchy based scaling factor along with equation modification
using GWO in the exploration phase and dual division strategy
along with sinusoidal adaptive decreasing adjustment as used
in LSHADE-EpSin [26] for enhancing the exploitation phase.
The third parameter that is probability was also adapted by
using exponentially decreasing distribution [12]. The Cauchy
based scaling and GWO equations because of their heavy
tailed nature, tend to potentially explore the search space
whereas dual division strategy and ensemble of sinusoidal
waves is used to adapt the parameters in an efficient manner.
Both Cauchy based random number for global phase and dual
division strategy for local phase is followed for first half of the
iterations whereas for second half Cauchy based adaptation
along with GWO equations for exploration and sinusoidal
based adaptation for exploitation is followed [12].

In present work, the CS algorithm has been modified to
test its performance on the CEC 2017 [23] and CEC 2020
[34] problems. The newly proposed algorithm has been named
as CSsin algorithm and uses dual population division in both
local and the global searching phases. The major reason for
the use of dual division of population is because of the extra
computational burden on the algorithm in solving two more
equations for finding the final solutions. Since most of the
work aims at providing the better performance at minimal
computational cost, so here CSsin algorithm aims at providing
the same when compared to its counterpart CS. The same point
can be validated from [18], where three versions of CS were
designed and it was found that there were marginal variation of
results in all the proposed algorithm for different population
divisions. So a slightly better solution can be compensated
if the computational burden can reduce significantly. Another
modification which has been proposed in the CSsin algorithm,
is the use of linear decreasing probability instead of constant
probability. The reason for the use of linearly decreasing
probability is that it decrease the probability marginally with
respect to iterations and there is not much variation in the
probability over the course of iterations and hence limit growth
of algorithm from exploration to exploitation gradually with
time. But in case of exponentially decreasing function, the
variation is slow at the start of iterations but as the solution
approaches final stages it converges at a faster pace, making
the algorithm getting stuck in some local minima. The third
modification which has been added in the proposed version
is the change in the total population with respect to itera-
tions. That is, with increase in iterations or generations, the



population size is reduced in order to restrict the maximum
function evaluations. The remainder of the paper is organized
into following sections. The proposed CSsin is presented in
section 2. The experimental setup and simulation results are
given in section 3 and finally conclusions are summarized in
section 4.

II. PROPOSED APPROACH

In this section, the proposed CSsin algorithm is elaborated
in detail. The algorithm firstly starts with initialization of a
random population of N cuckoo birds with respect to the
search range of the problem under consideration. After the
initialization step, two concepts based on population division
and iterations are employed. The basic idea for these concepts
have been motivated from [22] and it has been found that
both these conditions have helped the algorithm in successfully
finding the global optimal solution. The population division
has been followed to add diversity among the positions of
search agents during initial steps and converge towards the
final steps. On the other hand, iterative division is added
for achieving a balanced exploration and exploitation. This
modification is followed in both local and global search phase
and detailed discussion has been presented as follows.

For the first iterative half, dual population division is
employed for both global and local search. Here Cauchy
distributed global search is followed during the first half of
the population and for the second half equation (2) is modified
using concepts of GWO algorithm [25] to generate the new
solution. The Cauchy based solution is generated by using
equation (3)

fCauchy(0,g)(δ) =
1

π

g

(g2 + δ2)
(3)
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1

2
+
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π
arctan(
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g
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δ = tan(π(y − 1

2
)) (5)

xt+1
i = xti + α⊗ Cauchy(δ)(xbest − xti) (6)

where scaling factor g is equal to 1, δ is the Cauchy random
number in the range of [0, 1].The main reason for using
Cauchy based distribution is its fatter tail generating larger
steps for exploring search space in a much better way. Also
in CS, the final solution is guided by the best solution of the
current iteration, so there are chances that it may fall in some
local minima, ultimately leading to premature convergence.
Thus Cauchy based random number will help the algorithm
in performing extensive exploration. For second half of the
population, three different solutions from the search space
are taken to find the new solution. These three different
solutions are generated by using current solution and equations
regarding the same are given by (7){
x1 = xi −A1(C1.xnew − xti);x2 = xi −A2(C2.xnew − xti);

x3 = xi −A3(C3.xnew − xti);x
t+1
i = x1+x2+x3

3
(7)

where A1, A2, A3 and C1, C2, C3 are given by A = 2a.r1 −
a; C = 2.r2, a is linearly decreasing whereas r1andr2
are uniform distributed random numbers.This search equation
because of the presence of three different solution helps in
providing more intensive global search and ultimately paves
way for better performance of the proposed algorithm.

In the local search phase, population division is controlled
by using a new parameter namley F and this search equation
has been derived from the search equation used by CV1.0 [22]
and is given by (10)

F t+1
i =

1

2
×(sin(2π×freq×t+π)× tmax−t

tmax
+1); if r1 > 0.5

(8)
F t+1
i =

1

2
× (sin(2π× freq× t)× tmax−t

tmax
+1); if r1 < 0.5

(9)
xt+1
i = xti + F.((xtj − xtk) + (xtl − xtm)) (10)

where F is the scaling factor, xtj , x
t
k, x

t
l , x

t
m are four random

solutions. The scaling factor F has been derived from [26].
Here because of the use of a single scaling factor, the search
equation becomes efficient for smaller sections of search space
and hence make the algorithm perform better exploitation.
Also, instead of using a simple random F, the local search
phase uses a new ensemble of parameters for adaptation by
using sinusoidal decreasing F as used by LSHADE-cnEpSin
[26]. The frequency in case of LSHADE-cnEpSin is generated
using Cauchy distribution whereas for present case uniform
distribution is followed to generate the same. All these modi-
fications have been added for the second iterative half, whereas
for the first half, equation (2) has been used.

Apart from these modifications, the probability parameter
p which controls the extent of exploration and exploitation is
also adapted by linearly decreasing its value from a high value
of pmax = 0.75 to pmin = 0.25 by using equation (11)

p = pinit −
(pmax − pmin)

tmax
(11)

Here pinit is the initial value of p and is taken to be 0.75,
whereas tmax is the maximum iteration size. This equation
has been inspired form the perturbation rate equation used
by modified spider monkey optimization algorithm [24]. The
reason for the use of this adaptation is because of the re-
quirement of less extensive exploitation towards the start of
the iterations and more intensive local search towards the
end. A higher value of p allows the algorithm in performing
more extensive local search whereas lower values leads to
lesser intensive local search. But an adapted value of p may
help in balancing the two search phases and hence provide
proper exploitation operation toward the end of the iterations.
Furthermore, adaptive linear population reduction [28] is also
followed to reduce the total computational burden. Note that
this population is firstly sorted and only the worst members
of the population are eliminated. The general equation for
population reduction is given by equation 12

N(g + 1) = round[(
Nmin −Nmax

FEsmax
).FEs+Nmax] (12)



where values for Nmax and Nmin are set to 18 × D and
4, respectively, FEsmax are maximum number of function
evaluations. The minimum population size is kept 4 because
only 4 individuals are required at the minimum to perform
global and local search operations. This modification helps in
creating a self adaptive population step and hence reducing
the computational complexity of the algorithm. In the next
section, detailed discussion about the experimental results is
presented.

III. RESULTS AND DISCUSSION

In this section, detailed discussion related to the simulation
results of newly proposed CSsin algorithm are presented.
For performance evaluation, simulations are performed on
Windows 10 having Matlab 2017a, E5-2630 2.20GHz Intel
Xeon Processor with 32GB RAM. Here CEC2017 numerical
benchmark problems are used and comparison has been per-
formed with respect to SaDE [29], JADE [30], SHADE [28],
mean-variance mapping optimization (MVMO) [31], CV1.0
[22] and CVnew [12]. The results for SaDE, JADE, MVMO
and SHADE are taken from [26] whereas for CV1.0 and
CVnew are taken from their respective papers. The CEC2017
test suite on the other hand consists of 30 real challenging
benchmark problems with 1-3 unimodal, 4-10 multimodal,
11-20 hybrid and 21-30 composite functions. This data set
is the most recent and highly complex one, consisting of all
major types of optimization problems. A general discussion
about these benchmark problems and their definitions can be
had from [32]. As far as parameter settings are concerned,
the proposed CSsin algorithm consists of very few parameters
when compared to its counter parts. The first parameter is
the initial population and is set to 50 where as other major
parameters consist of the upper and lower limits of probability
that is pmin and pmax and are taken as 0.75 and 0.25. The
final parameter is the freq which is set to 0.5. Apart from
this, all other parameters are chosen as such as used by
original CS algorithm. The stopping criteria was taken as
10, 000×D total number of function evaluations with 51 runs
performed for each test problem. The results are calculated
as error values and are presented in terms of best, worst,
mean and standard deviation. The error values are calculated
by finding the difference expected and the desired solution
and if the difference becomes less than 10−8, the error is
considered as zero. The results in this section are divided into
two subsections. In the first subsection, the results of CSsin
algorithm are presented for D = 10, D = 30 and D = 50
where D is the dimension size.In the second subsection, results
with respect to other state-of-the-art algorithms is presented.
Further Wilcoxon’s rank-sum test [33] has also been done to
prove the significance of CSsin algorithm statistically.

A. Algorithm Complexity

In this section, the runtime complexity of the CSsin algo-
rithm in terms of run time t0 is calculated by using the code
given as: for i = 1 : 1000000
x = 0.55 + double(i); x = x+ x; x = x/2; x = x× x

x = sqrt(x); x = log(x); x = exp(x); x = x/(x+ 2)
end
The complexity of algorithm is also shown in Table I. Here the
notations T0 corresponds to the computing time for the code
given above and T1 is the computing time for F18 function
from the Test suite given in the next section, with a total
number of function evaluations of 200,000. T2 is the mean
run time for the same function with same number of function
evaluations for a total number of five runs.

TABLE I
COMPLEXITY OF CSSIN ALGORITHM

D T0 T1 T2 (T2 − T1)/T0

10 4.094 3.964 0.834
30 0.1562 20.76 20.148 4.08
50 55.581 58.134 15.54

B. Statistical Results

In this section, results of CSsin algorithm for D = 10,
D = 30 and D = 50 are presented. The results are taken
as the best, worst, mean and standard deviation values, found
by the difference of desired and the expected solution. These
results are presented in Table II for 10D, Table III for 30D
and Table IV for 50D.

TABLE II
STATISTICAL RESULTS FOR 10D

Function Best Worst Mean Std dev.
F1 8.45E-02 8.83E+00 1.91E+00 1.87E+00
F2 0.00E+00 1.00E+10 1.96E+09 4.00E+09
F3 0.00E+00 4.80E-08 4.53E-09 1.08E-08
F4 1.86E-05 2.34E-01 1.22E-02 3.41E-02
F5 3.97E+00 2.48E+01 1.38E+01 5.63E+00
F6 2.63E-05 8.94E-04 2.73E-04 1.85E-04
F7 1.49E+01 4.66E+01 2.90E+01 7.32E+00
F8 2.98E+00 2.28E+01 1.37E+01 3.75E+00
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 1.24E-01 4.24E+02 2.33E+02 1.09E+02
F11 1.48E-04 5.13E+00 1.42E+00 1.02E+00
F12 1.06E+03 5.71E+03 2.30E+03 8.49E+02
F13 7.96E+00 2.34E+01 1.45E+01 3.12E+00
F14 2.48E+00 1.00E+01 5.59E+00 1.81E+00
F15 6.53E-01 2.51E+00 1.40E+00 4.96E-01
F16 4.01E-01 2.38E+02 5.88E+01 7.18E+01
F17 4.43E-01 1.96E+01 8.12E+00 7.20E+00
F18 3.56E+00 2.29E+01 1.47E+01 5.13E+00
F19 7.86E-01 2.42E+00 1.56E+00 3.71E-01
F20 5.52E-06 7.41E-01 1.30E-01 2.09E-01
F21 0.00E+00 1.02E+02 9.42E+01 2.38E+01
F22 1.51E+01 1.01E+01 8.94E+01 2.46E+01
F23 0.00E+00 3.19E+02 2.18E+02 1.33E+02
F24 5.27E-06 1.00E+02 9.41E+01 2.37E+01
F25 1.00E+02 3.99E+02 3.91E+02 4.18E+01
F26 0.00E+00 2.00E+02 3.92E+01 8.01E+01
F27 3.87E+02 3.92E+02 3.89E+02 7.67E-01
F28 1.00E+02 3.00E+02 2.96E+02 2.80E+01
F29 1.58E+02 2.77E+02 2.48E+02 1.65E+01
F30 4.56E+02 7.26E+03 1.97E+03 1.42E+03

IV. COMPARISON WITH OTHER ALGORITHMS

In this section, SaDE, JADE, SHADE, MVMO, CV1.0
and CVnew algorithms have been used for comparison with
the newly proposed CSsin algorithm. The last row of the
table gives the values of Wilcoxon rank-sum test [33]. These
results are calculated at 0.5 significance level with comparison
performed in terms of w(+win) /l(−loss) and /t(= tie). It
should be noted that ” + ” signifies that the algorithm under
consideration is better than the proposed algorithm, ” − ”
means the opposite and ” = ” means that there is either
no relevance or are having same statistical results and are



TABLE III
STATISTICAL RESULTS FOR 30D

Function Best Worst Mean Std dev.
F1 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F2 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F3 2.34E+03 9.02E+03 4.58E+03 1.51E+03
F4 1.07E-02 8.81E+01 3.30E+01 3.40E+01
F5 1.32E+02 2.16E+02 1.68E+02 1.85E+01
F6 5.92E-02 1.61E+00 5.17E-01 4.21E-01
F7 1.03E+02 3.12E+02 2.00E+02 4.83E+01
F8 8.45E+01 1.43E+02 1.16E+02 1.25E+01
F9 1.15E+03 3.96E+02 3.17E+03 5.68E+02
F10 1.57E+03 3.17E+03 2.48E+02 3.33E+02
F11 6.53E+00 9.77E+01 3.61E+01 1.86E+01
F12 4.14E+04 1.00E+10 2.56E+09 4.39E+09
F13 9.80E+02 6.14E+04 1.23E+04 1.45E+04
F14 1.61E+02 1.02E+03 3.36E+02 1.42E+02
F15 2.88E+02 7.44E+02 4.72E+02 1.03E+02
F16 1.37E+02 5.54E+02 3.97E+02 1.03E+02
F17 3.17E+01 1.65E+02 7.27E+01 2.53E+01
F18 1.93E+04 7.59E+04 3.91E+04 1.16E+04
F19 1.05E+02 5.87E+02 2.54E+02 8.41E+01
F20 4.21E+01 2.00E+02 1.58E+02 3.84E+01
F21 1.00E+02 1.04E+02 1.00E+02 7.70E-01
F22 1.00E+02 1.00E+02 1.00E+02 3.09E-02
F23 1.00E+02 4.17E+02 2.82E+02 1.30E+02
F24 1.00E+02 2.00E+02 1.66E+02 4.76E+01
F25 3.83E+02 3.87E+02 3.84E+02 1.61E+00
F26 2.00E+02 2.16E+02 2.02E+02 2.58E+00
F27 4.77E+02 5.09E+02 4.97E+02 8.51E+00
F28 3.00E+02 4.09E+02 3.48E+02 4.43E+01
F29 4.10E+02 5.91E+02 5.11E+02 4.23E+01
F30 9.78E+03 3.16E+04 1.84E+04 5.34E+03

TABLE IV
STATISTICAL RESULTS FOR 50D

Function Best Worst Mean Std dev.
F1 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F2 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F3 1.59E+03 4.75E+04 1.07E+04 6.68E+03
F4 2.74E-01 1.50E+02 1.88E+01 2.45E+01
F5 2.65E+02 3.53E+02 3.09E+02 2.10E+01
F6 1.46E+00 2.16E+01 1.00E+01 5.28E+00
F7 5.15E+01 9.31E+02 1.39E+02 9.71E+01
F8 2.69E+02 3.63E+02 3.17E+02 2.43E+01
F9 7.81E+03 1.33E+04 1.11E+04 1.00E+03
F10 3.66E+03 6.72E+03 4.97E+03 5.83E+03
F11 6.52E+01 1.80E+02 1.17E+02 2.91E+01
F12 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F13 1.00E+10 1.00E+10 1.00E+10 0.00E+00
F14 1.70E+03 7.53E+04 2.23E+04 1.72E+04
F15 1.64E+03 2.06E+04 1.13E+04 6.02E+03
F16 3.75E+02 1.07E+03 7.23E+02 1.79E+02
F17 2.86E+02 9.28E+02 6.50E+02 1.16E+02
F18 4.75E+04 4.31E+04 1.73E+05 7.91E+04
F19 9.06E+02 1.32E=04 5.84E+03 3.15E+03
F20 2.80E+01 6.94E+02 2.31E+01 9.73E+01
F21 1.08E+02 4.17E+02 1.57E+02 9.74E+01
F22 1.0E+02 1.02E+02 1.00E+02 3.91E-01
F23 1.30E+02 6.82E+02 3.51E+02 7.88E+01
F24 5.84E+02 7.40E+02 6.87E+02 3.57E+01
F25 3.61E+02 5.70E+02 4.26E+02 2.08E+01
F26 3.00E+02 3.00E+02 3.00E+02 4.57E-02
F27 5.39E+02 6.51E+02 5.97E+02 3.25E+01
F28 2.59E+02 5.15E+02 4.13E+02 1.83E+01
F29 4.98E+02 1.03E+03 8.03E+02 1.24E+02
F30 8.39E+04 3.45E+06 1.64E+05 6.29E+05

equivalent to each other. From the results of last row of Table
V, it is imperative that here also the proposed algorithm is
better than CV1.0, SaDE, CVnew, JADE and SHADE and
is highly competitive when compared to MVMO. Thus we
can say that the proposed algorithm is highly competitive and
future modification in the same approach may lead to much
better results. Also here CS can be considered as equally
competitive in line with DE and exceptional performance can
also be had from this algorithm also if serious efforts are put
forth for its modifications.

V. RESULTS FOR CEC 2020 BENCHMARK PROBLEMS

The CEC 2020 benchmark set is the most recently intro-
duced dataset in the field of numerical optimization [34].
This dataset consists of ten highly challenging optimization
problems with one unimodal function, three multi-modal func-
tions, three hybrid functions and three composite functions.

TABLE V
STATISTICAL RESULTS OF PROPOSED ALGORITHM IN COMPARISON TO THE

STATE-OF-THE-ART ALGORITHMS

SaDE JADE SHADE MVMO CV1.0 CVnew CSsin

F1

1.21E+03 5.23E-14 0.00E+00 1.33E-05 1.00E+10 1.00E+10 1.00E+10
(1.97E+03) (2.51E-14) (0.00E+00) (5.60E-06) (0.00E+00) (0.00E+00) (0.00E+00)
+ + + + = =

F2

9.27E+01 1.31E+13 1.08E+12 1.80E+17 1.00E+10 1.00E+10 1.00E+10
(4.12E+01) (8.53E+13) (4.39E+12) (1.27E+18) (0.00E+00) (0.00E+00) (0.00E+00)
+ - - - = =

F3

2.71E+02 1.77E+04 0.00E+00 5.30E-07 1.95E+04 8.71E+04 1.07E+04
(8.28E+02) (3.70E+04) (0.00E+00) (1.09E-07) (6.27E+03) (4.08E+03) (6.68E+03)
+ - + + - -

F4

8.92E+01 4.96E+01 5.68E+01 3.58E+01 1.16E+02 2.67E+01 1.88E+01
(4.21E+01) (4.71E+01) (8.80E+00) (3.66E+01) (6.27E+03) (5.92E+00) (3.45E+01)
- - - - + -

F5

9.23E+01 5.42E+01 3.28E+01 8.07E+01 3.41E+02 2.39E+02 3.09E+02
(1.86E+01) (8.80E+00) (5.03E+00) (1.64E+01) (8.02E+01) (3.80E+01) (2.10E+01)
+ + + + - +

F6

7.43E-03 1.44E-13 8.38E-04 5.43E-03 4.85E+01 4.07E+01 1.00E+01
(2.35E-02) (9.11E-14) (1.01E-03) (3.30E-03) 4.85E+01 (8.14E+00) (5.20E+00)
+ + + + - -

F7

1.40E+02 1.01E+02 8.09E+01 1.23E+02 2.74E+02 2.22E+02 1.39E+02
(1.97E+01) (6.48E+00) (3.78E+00) (1.27E+01) (7.29E+01) (3.49E+01) (9.71E+01)
- + + + - -

F8

9.42E+01 5.52E+01 3.23E+01 7.59E+01 3.29E+02 2.50E+02 3.17E+02
(1.77E+01) (7.76E+00) (3.82E+00) (1.61E+01) (7.29E+01) (4.51E+01) (2.43E+01)
+ + + + + +

F9

4.83E+01 1.17E+00 1.11E+00 7.38E+00 1.00E+04 1.06E+04 1.11E+04
(6.29E+01) (1.31E+00) (9.37E-01) (5.77E+00) (2.90E+03) (3.10E+03) (1.00E+03)
+ + + + =

F10

6.60E+03 3.75E+03 3.34E+03 3.49E+03 7.10E+03 6.09E+03 4.97E+03
(1.63E+03) (2.54E+02) (2.94E+02) (4.31E+02) (5.34E+02) (3.55E+02) (5.83E+02)
- + + + - -

F11

1.09E+02 1.36E+02 1.20E+02 4.74E+01 1.66E+02 1.18E+02 1.17E+01
(3.54E+01) (3.39E+01) (2.93E+01) (8.72E+00) (3.38E+01) (1.91E+01) (2.91E+01)
- - - - - -

F12

1.11E+05 5.14E+03 5.13E+03 1.29E+03 1.00E+10 1.00E+10 1.00E+10
(6.20E+04) (3.32E+03) (2.87E+03) (2.79E+02) (0.00E+00) (0.00E+00) (0.00E+00)
+ + + + = =

F13

1.21E+03 3.03E+02 2.65E+02 4.37E+01 1.00E+10 9.80E+09 1.10E+10
(1.45E+03) (2.69E+02) (1.49E+02) (1.76E+01) (0.00E+00) (1.40E+09) (0.00E+00)
+ + + + = +

F14

2.18E+03 1.05E+04 2.15E+02 4.85E+01 2.05E+02 3.98E+01 2.23E+04
(2.20E+03) (3.11E+04) (7.29E+01) (1.21E+01) (2.13E+01) (1.62E+01) (1.72E+04)
+ + + + + +

F15

3.35E+03 3.49E+02 3.22E+02 4.46E+01 1.37E+09 2.85E+02 1.13E+04
(2.79E+03) (4.42E+02) (1.42E+02) (1.12E+01) (3.47E+09) (3.54E+02) ( 6.02E+03)
+ + + + + +

F16

8.17E+02 8.56E+02 7.33E+02 8.40E+02 1.53E+03 1.44E+03 7.23E+02
(2.34E+02) (1.75E+02) (1.88E+02) (1.93E+02) (2.74E+02) (2.10E+02) (1.79E+02)
- - - - - -

F17

5.08E+02 6.00E+02 5.16E+02 5.19E+02 1.25E+03 1.13E+02 1.50E+02
(1.53E+02) (1.21E+02) (1.11E+02) (1.33E+02) (1.85E+02) (1.92E+02) (1.16E+02)
- - - - - +

F18

3.24E+04 1.89E+02 1.89E+02 4.17E+01 5.21E+02 1.51E+02 1.73E+05
(1.68E+04) (1.25E+02) (1.03E+02) (1.94E+01) (1.19E+02) (4.43E+01) (7.91E+04)
+ + + + + +

F19

1.13E+04 3.24E+02 1.59E+02 1.73E+01 1.73E+02 5.57E+01 5.84E+03
(1.68E+04) (1.25E+03) (568E+01) (5.13E+00) (4.17E+02) (1.10E+01) (3.15E+03)
- + + + + +

F20

3.52E+02 4.38E+02 3.33E+02 3.29E+02 1.05E+03 2.81E+02 2.31E+02
(1.50E+02) (1.33E+02) (1.20E+02) (1.47E+02) (2.14E+02) (1.65E+02) (9.73E+01)
- - - - - -

F21

2.87E+02 2.51E+02 2.33E+02 2.77E+02 5.41E+02 1.18E+02 1.57E+02
(1.36E+01) (9.63E+00) (5.11E+00) (1.60E+01) (6.27E+01) (8.77E+01) (9.74E+01)
- - - - - +

F22

2.92E+03 3.33E+03 3.17E+03 3.26E+03 7.33E+03 5.77E+03 1.00E+02
(3.24E+03) (1.80E+03) (1.55E+03) (1.71E+03) (1.99E+03) (3.64E+02) (3.91E-01)
- - - - - -

F23

5.22E+02 4.79E+02 4.59E+02 5.04E+02 7.74E+02 1.87E+02 4.51E+02
(2.05E+01) (1.17E+01) (8.75E+00) (1.71E+03) (8.06E+01) (5.11E+01) (7.88E+01)
- - - + + -

F24

5.89E+02 5.31E+02 5.31E+02 5.83E+02 8.32E+02 3.25E+02 6.87E+02
(1.86E+01) (7.62E+00) (7.45E+00) (1.69E+01) (1.21E+01) (8,95E+01) (3.57E+01)
+ + + + - +

F25

5.71E+02 5.19E+02 5.06E+02 5.09E+02 5.43E+02 4.70E+02 4.26E+02
(3.05E+01) (3.48E+01) (3.64E+01) (3.12E+01) (1.51E+01) (2.26E+01) (2.08E+01)
- - - - - -

F26

2.52E+03 1.61E+03 1.41E+03 1.93E+03 2.48E+03 1.16E+03 3.00E+02
(3.37E+02) (1.21E+02) (9.78E+01) (2.86E+02) (1.88E+03) (1.56E+03) (4.57E-02)
- - - - - -

F27

7.10E+02 5.50E+02 5.49E+02 5.43E+02 7.38E+02 4.53E+02 5.97E+02
(6.65E+01) (2.34E+01) (2.78E+01) (1.75E+01) (8.21E+01) (7.17E+01) (3.22E+01)
- + + + - -

F28

4.99E+02 4.91E+02 4.79E+02 4.64E+02 4.94E+02 4.58E+02 4.13E+02
(1.53E+01) (2.08E+01) (2.41E+01) (1.50E+01) (1.93E+01) (2.33E-01) (1.83E+01)
- - - - - -

F29

5.11E+02 4.77E+02 4.87E+02 4.89E+02 1.69E+03 1.45E+03 8.03E+02
(1.37E+02) (8.06E+01) (1.05E+02) (1.40E+01) (2.29E+02) (1.68E+02) (1.24E+02)
+ + + + - -

F30

8.07E+05 6.68E+05 6.82E+05 5.81E+05 4.64E+06 6.02E+05 1.64E+05
(8.33E+04) (9.25E+04) (8.51E+04) (1.02E+04) (8.59E+06) (2.99E+04) (6.25E+05)
- - - - - -

w/t/l 13/0/17 14/0/16 14/0/16 14/0/16 8/3/19 10/3/17



TABLE VI
STATISTICAL RESULTS OF PROPOSED ALGORITHM FOR CEC 2020

BENCHMARK PROBLEMS

Dimension Function Best Worst Mean Median Std

D=5

F1 0.00E+00 1.36E-06 2.81E-07 2.06E-07 3.01E-07
F2 1.08E-04 1.19E+02 8.75E+00 2.49E-01 2.81E+01
F3 5.14E+00 7.58E+00 5.65E+00 5.68E+00 4.74E-01
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 9.45E-06 3.80E-03 3.94E-04 1.67E-04 6.52E-04
F6 6.67E-05 1.90E-03 5.77E-04 4.68E-04 4.14E-04
F7 3.90E-07 1.49E-05 4.18E-06 2.29E-06 3.94E-06
F8 0.00E+00 1.00E+02 3.67E+01 4.87E-06 4.77E+01
F9 2.74E-05 1.00E+02 1.17E+01 1.98E-03 3.25E+01
F10 1.00E+02 3.47E+02 2.88E+02 3.00E+02 7.00E+01

D=10

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 4.37E-01 4.02E+01 1.58E+01 1.12E+01 1.21E+01
F3 1.11E+01 1.71E+01 1.39E+01 1.40E+01 1.71E+00
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 1.99E+00 9.12E+00 4.43E+00 4.33E+00 1.82E+00
F6 3.07E-02 3.85E-01 1.70E-01 1.50E-01 1.20E-01
F7 3.65E-02 4.61E-01 1.55E-01 1.22E-01 9.95E-02
F8 1.84E+01 1.00E+02 8.01E+01 1.00E+02 3.18E+01
F9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.38E-13
F10 1.00E+02 3.97E+02 3.77E+02 3.97E+02 7.55E+01

D=15

F1 0.00E+00 1.00E+10 3.33E+08 0.00E+00 1.82E+09
F2 4.72E+00 2.41E+02 7.25E+01 4.82E+01 5.99E+01
F3 1.64E+01 2.11E+01 1.80E+01 1.76E+01 1.25E+00
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 1.24E+00 2.57E+01 1.30E+01 1.34E+01 6.19E+00
F6 5.23E-02 8.70E+00 1.44E+00 3.83E-01 2.85E+00
F7 4.93E-01 1.24E+00 8.85E-01 8.98E-01 1.96E-01
F8 0.00E+00 1.00E+02 8.75E+01 1.00E+02 2.76E+01
F9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.30E-13
F10 4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00

D=20

F1 0.00E+00 1.00E+10 9.33E+09 1.00E+10 2.53E+09
F2 3.54E+00 2.75E+02 9.83E+01 1.27E+02 8.33E+01
F3 2.12E+01 3.17E+01 2.55E+01 2.53E+01 2.27E+00
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 1.96E+01 2.22E+02 1.16E+02 1.38E+02 6.34E+01
F6 2.87E-01 1.42E+00 6.72E-01 6.58E-01 82.23E-01
F7 7.90E-01 1.03E+01 2.62E+00 1.96E+00 2.26E+00
F8 6.93E+01 1.00E+02 9.89E+01 1.00E+02 5.59E+00
F9 1.00E+02 2.00E+02 1.03E+02 1.00E+02 1.82E+01
F10 3.99E+02 4.00E+02 3.99E+02 3.99E+02 2.44E-01

The experimental setting used for testing the proposed CSsin
algorithm is similar as given by [34]. For the 10 minimization
problems, the experiments are performed 30 times for a
variable dimension (D) size of 5, 10, 15 and 20. The maximum
number of function evaluations for D = 5 is 50, 000, for
D = 10 is 1, 000, 000, for D = 15 is 3, 000, 000 and for
D = 20 is 10, 000, 000 with a search range of [−100, 100]D

for all the test functions under consideration [34]. This is the
first termination criteria while the second being the error value
smaller than 10−8. The authors have used the same parameter
setting for CEC 2020 as used for evaluating the performance
of proposed CSsin algorithm for CEC 2017 benchmarks.
From the experimental results, it has been found that CSsin
algorithm performs better for D = 5, 10 whereas provides
competitive results for D = 15 and 20.

VI. CONCLUSIONS

This paper presents a new version of cuckoo search algo-
rithm namely CSsin algorithm and its application to CEC2017
and CEC2020 benchmark problems. The new algorithm em-
ploys adaptive parameters including dual search strategy to en-
hance exploration and exploitation properties, linearly decreas-
ing switch probability to balance between local and global
search, and linearly decreasing population size to reduce the
computational burden. For performance evaluation, the CSsin
algorithm is applied to CEC2017 benchmark problems and
compared with SaDE, JADE, SHADE, MVMO, CV1.0 and
CVnew algorithms. All these algorithms are highly efficient
and comparitive study show that the newly proposed CSsin

algorithm is highly competitve and hence can be used for real
world optimization problems.
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